Laserfiche WebLink
Nitrate Mass Balance Calculation <br /> Shipherd Property - Existing and Proposed Residence <br /> 16375 E. Milgeo Avenue <br /> Ripon, San Joaquin County, California <br /> Data Input: <br /> Effluent Quantity(Q): 250 gals/day <br /> Effluent Stream(N j 40.00 mg/L-N <br /> Site Area(A): 1.04 Acres <br /> Concentration Rain(Nb): 1.00 mg/L-N <br /> Denitrification(d): 10.0% <br /> Deep Perc.of Rain(R): 6.38 in/yr <br /> Result: <br /> Mass Balance(Nj: 12.8 mg/L-N <br /> MCL Drinking Water Nitrate as N: 10.0 mg/L-N <br /> Percent of MCL Nitrate as N 128% <br /> Waste Loading(W): 3.23 in/yr <br /> Equations: <br /> Find <br /> (W) in = (Q) gal x 1 ft3 x 365 day x 1 acre x 12 in x 1 <br /> yr day 7.48 gal 1 year 43,560 ft2 1 ft (A)acre <br /> 3.23 in/yr(site)=250 ga4day x(1 cu-ft/7.48 gals)x(365 days/1 year)x(1 acre 143,560 sq-ft)x(12 in/1 ft)x(1 site/1.04 acres) <br /> Nc= WNW 1( d)+RNh <br /> W+R - Hantzsche-Fennemore Equation(Nc) <br /> 12.77 mg/L-N=((3.23 in/yr x 40 mg/L-N x(1-0.1))+(6.38 in/yr x lmg/L-N))/(3.23 in/yr+6.38 in/yr) <br /> Variables: <br /> Nc=Average nitrate-N concentration(mg/1)of combined effluent and rainfall percolate(12.77 mg/L-N). <br /> W=Uniform waste water loading for study area(in/yr)(3.23 inches/year). <br /> Nw=Total nitrate-N concentration of waste water percolate(40 mg/L-N). <br /> d=Fraction of nitrate-N loss due to denitrification in the soil(10%). <br /> R=Uniform deep percolation of rainfall(6.38 in/yr). <br /> Nb=Background nitrate-N concentration of rainfall(1 mg/L-N). <br /> Assumptions: <br /> 1. Total nitrogen concentration of waste stream based on estimate of 40 mg/L-N. <br /> 2. Fraction of nitrate-N loss due to denitrification in the soil is assumed to be 10%. <br /> 3. Estimated deep percolation of rainfall is 6.38 in/yr,see deep percolation of rain worksheet. <br /> 4. Assume background nitrate-N concentration of rainfall is 1 mg/L-N. <br /> Irerracon <br />