

May 7, 2018

Buzz Oates Development and Construction Services Attention: Troy Estacio 555 Capitol Mall, Ninth Floor Sacramento, CA 95814

DRAFT WASTE MATERIALS REUSE WORKPLAN WASTE UNIT 1 MATERIALS MURPHY PARKWAY PROPERTY APN 198-012-009 17100 Murphy Parkway Lathrop, California Brusca Project No. 137-002

INTRODUCTION

In accordance with your request, we have prepared this *Draft Workplan* for the onsite reuse of solid waste materials and associated soils that were excavated, stockpiled, tested, and evaluated at the subject property as a part of clean closure activities. The property consists of an approximate 48-acre, vacant parcel identified as APN 198-012-009 in Lathrop, San Joaquin County, California. Recent waste management work at the site included excavation/removal, stockpiling, sampling, and testing of a layer of solid waste materials (primarily broken glass) and associated soils that existed beneath a clean soil "cap" on the far northwesterly portion of the subject parcel. These wastes on the property have been referred to as Waste Unit 1 (WU1). The removed/stockpiled waste materials were sampled and tested to evaluate whether the materials can be reused onsite in engineered fills during upcoming site development.

The waste management work recently performed at the site is a component of the clean closure activities for the subject parcel in general accord with CCR Title 27, Section 21810 and with the guidance outlined in the Local Enforcement Agency (LEA) Advisory #16 published by CalRecycle. Advanced GeoEnvironmental (AGE) prepared a *Clean Closure Plan* for the property dated March 5, 2018.¹ An element of the *Clean Closure Plan* is an *Excavation and Material Management Plan (EMMP)* that was prepared by our firm and presented measures and procedures for the removal, management, sampling, testing, and evaluation of residual solid waste materials within WU1.² Our firm prepared *Addendum* to the *EMMP* dated March 22,

¹ AGE; "Clean Closure Plan, 17100 Murphy Parkway, Lathrop, San Joaquin County, California, PNA Parcel B (Portion of Solid Waste Information System [SWIS] number 39-CR-0022), APN 198-120-09"; March 5, 2018.

² Brusca Associates, Inc.; "Excavation and Material Management Plan, Murphy Parkway Property, APN 198-012-009, 17100 Murphy Parkway, Lathrop, San Joaquin County, California"; March 9, 2018.

2018 to slightly revise the verification soil sampling program (testing of soils beneath the area of removed wastes) as suggested by the Central Valley Regional Water Quality Control Board (CVRWQCB).³

This *Draft Workplan* includes: a general description of the site; background information; a description of the planned site development; information, laboratory data and discussion pertaining to stockpiled materials generated during the recent removal of solid waste materials from WU1; justification for onsite reuse of materials excavated from WU1; procedures for the reuse of these materials in onsite engineered fills; and verification/reporting procedures to ensure that the materials are reused in the manner described herein.

A *Vicinity Map* showing the location of the subject parcel is presented as Plate 1. A *Site Map* is presented as Plate 2 showing the layout of the entire parcel, the former area of capped wastes (WU1) on the far northwesterly portion of the site, the locations of stockpiled materials that were recently excavated and removed from the capped waste area, and the general layout of the planned large commercial/light-industrial building on the property. A detail map showing WU1 area and the locations of verification soil samples collected beneath the area of removed wastes is presented as Plate 3. A civil engineering drawing depicting additional details pertaining to the planned construction is presented as Plate 4. Analytical laboratory data for samples of the stockpiled materials from WU1, as well as for the verification soil samples collected beneath WU1, are presented on Tables I through VII; the laboratory reports and chain-of-custody documentation are included in Appendix A. The *Foundation Investigation* (geotechnical engineering report) for the site development project is presented in Appendix B.

SITE DESCRIPTION AND BACKGROUND

Site Location and Description

The approximate 48-acre subject property is located about 500 feet easterly of Murphy Parkway and about 1,000 feet northerly of D'Arcy Parkway in a commercial and industrial area of Lathrop, San Joaquin County, California. The property consists of an approximate 48-acre parcel identified as APN 198-012-009. The subject parcel is currently vacant/undeveloped land. The site is generally flat; however, two depressed areas are situated on the northwesterly portion of the site (bordering the WU1 area). Until recently, portions of the site were used for livestock grazing; wire fencing is in place on portions of the site for livestock enclosure purposes. A *Vicinity Map* showing the location of the property is presented as Plate 1, and a *Site Map* is presented as Plate 2.

Historical Site Activities

The 48-acre subject parcel historically was vacant farmland. In the early 1960s, a large glass manufacturing facility (currently referred to as former Pilkington North America [PNA] facility) was constructed directly northerly of the subject property. The subject 48-acre parcel (identified by APN 198-012-009) was associated with the former PNA facility, and, along with other offsite areas, was used for solid waste handling and waste water disposal related to the PNA facility.

³ Brusca Associates, Inc.; "Addendum, Excavation and Material Management Plan, Murphy Parkway Property, APN 198-012-009, 17100 Murphy Parkway, Lathrop, San Joaquin County, California"; March 22, 2018.

Solid wastes comprised largely of waste glass materials were handled within the northwesterly portion of the subject 48-acre site; the vast majority of waste glass materials historically handled and temporarily stored in this area were hauled from the property in the past to offsite disposal locations. Glass manufacturing activities at the former PNA facility were discontinued several years ago. In recent years, the subject 48-acre parcel generally has been unused, except for some livestock grazing.

Treated industrial and domestic waste water, as well as storm water, generated at the former PNA facility northerly of the subject property was disposed at that facility, and also on the subject 48-acre parcel via spray irrigation. The waste water discharge was performed under permit with the CVRWQCB. Because the subject 48-acre property is no longer intended for waste water discharge, the CVRWQCB is currently in the process of removing this area from the waste water discharge permit.

Past Onsite Waste Investigations and Remedial Work

It is indicated that the handling of glass wastes on the subject property ceased in the 1980s. Around 2012, the local oversight agency (the San Joaquin County Environmental Health Department [SJCEHD]) required the placement of a clean soil cap over the northwesterly portion of the property (WU1 area) where a thin layer of residual glass wastes was known to exist at the site surface. A *Soil Cover Workplan* was prepared in early 2013, and the capping work was implemented in late 2013.⁴ The area of the cap (WU1 area) is shown on Plate 2.

Starting in 2014, a substantial amount of investigation, waste characterization, and waste removal work was implemented on the subject parcel by AGE with direction and oversight by the SJCEHD. This work included:

- a significant number of explorations (test pits and borings) within the capped area and other site areas, including areas to the south and east of the capped area.
- a geophysical survey (involving ground penetrating radar and a magnetometer survey) on the westerly portion of the property to identify any unknown areas of disturbed materials/buried wastes. The geophysical and trenching work reportedly identified two areas (approximate 2,000 square feet each in plan area) of deeper disturbed materials/wastes along the far westerly margin of the property and outside of the cap area. These areas were identified as the South Waste Cell (SWC) and the North Waste Cell (NWC). The SWC and NWC waste materials subsequently were completely excavated and removed from the parcel for offsite landfill disposal.
- collection of samples of soil and waste materials from WU1, SWC, and NWC areas, as well as from other site areas for analytical laboratory testing.

AGE's investigative, remedial, and characterization work associated with solid wastes on the subject parcel was summarized in a *Site Assessment Summary Report* dated December 21, 2017.⁵

⁴ Antea Group; "Soil Cover Workplan, Former Cullet Staging Area, Pilkington North America, Inc., 500 East Louise Avenue, Lathrop, California"; May 22, 2013.

⁵ AGE; "Revised Site Assessment Summary Report, 17100 Murphy Parkway, Lathrop, San Joaquin County, California, Solid Waste Information System (SWIS) Number 39-CR-022 (APN 198-120-09); January 10, 2018.

Brusca File No. 137-002

PLANNED SITE DEVELOPMENT/CONSTRUCTION

Redevelopment of the subject property is planned to be initiated in the very near future. The planned development includes construction of an approximate 870,000 square-foot commercial/light-industrial structure intended for use for warehouse/distribution purposes. The layout of the planned development is shown on Plates 2 and 3. The planned structure will be of tilt-up concrete construction with a concrete slab-on-grade floor. Onsite areas exterior to the building will support asphaltic-concrete and concrete pavements, storm water basins, and very limited landscaping.

WU1 WASTE EXCAVATION, STOCKPILING, SAMPLING/TESTING, AND EVALUATION

Excavation, removal, and stockpiling of waste materials and associated soil within WU1 (capped area within the northwesterly portion of the subject parcel) was performed in April 2018 by Ramcon Engineering and Environmental Contracting. The work was overseen by a Certified Engineering Geologist from our firm; additionally, representatives of SJCEHD, the CVRWQCB, and CalRecycle observed the work. The work was performed in accordance with the agency-approved *EMMP* and associated *Addendum* referenced earlier in this *Workplan*.

Prior to removal of the waste materials from WU1, the clean soil cap materials were removed from this area and stockpiled along the northerly margin of the site. Subsequently, the underlying waste materials and associated soils were excavated with earthmoving equipment, removed from the WU1 area, and stockpiled directly to the south of the WU1 area on the property (see Plate 2). Five stockpiles of WU1 materials were created (identified as SP1 through SP5). Stockpiles SP1, SP2, SP3, and SP5 range in volume from about 1,000 to about 5,000 cubic yards. Stockpile SP4 is comprised predominantly of sizable cemented masses (boulder-size and smaller) of glass fragments in a fine-grained matrix; the volume of SP4 is quite small (less than 10 cubic yards). The total volume of stockpiles were covered with plastic sheeting, and the plastic sheeting was secured with sandbags to prevent wind disturbance.

Per the provisions of the *EMMP*, our firm collected verification soil samples below the removed wastes in the WU1 area, and we collected samples of the stockpiled materials removed from WU1 for analytical laboratory testing. The sampling was conducted by a Certified Engineering Geologist from our firm and was overseen by regulatory agency representatives. A total of 49 spatially distributed, random/representative samples of the WU1 materials was collected. The samples were placed in laboratory-provided glass jars, immediately placed on ice, and transported to State-certified analytical laboratories under chain-of-custody for analysis for the following:

- Total Petroleum Hydrocarbons as gasoline, diesel, and motor oil by EPA Method 8015B
- SVOCs by EPA Method 8270C
- Polychlorinated Biphenyls (PCBs) by EPA Method 8082
- Title 22 Metals Total Threshold Limit (TTLC) by EPA Method 6010/200.7
- Dioxins and Furans by EPA Method E1613

The results of the above-listed analyses performed on stockpiled materials from WU1 are presented on summary data tables attached to this *Workplan*; summary data tables from the verification soil sampling beneath the area of removed wastes also are included. For reference, hazardous waste criteria and screening levels are included on the summary data tables. The laboratory reports and chain-of-custody documentation are presented in Appendix A.

As outlined in the *EMMP*, samples stockpiled materials from WU1 containing the highest concentrations of total metals were analyzed for soluble Title 22 metals by the Waste Extraction Method (WET) by EPA Method 1311 using deionized water (DI) as the extractant; this element of the testing program was required by the CVRWQCB for the purpose of evaluating potential future leaching impact to groundwater posed by the waste materials. A total of 11 samples was selected for the DI WET metals testing, including samples from each of the five stockpiles.

WU1 MATERIALS REUSE EVALUATION

Per the provisions of the approved *EMMP*, the laboratory data from the samples of stockpiled materials removed from WU1 have been evaluated to determine whether these materials are acceptable for onsite reuse in engineered fills during upcoming site development. As shown on Tables IV, VI, and VII, none of the 49 samples of the stockpiled materials from WU1 contained total metals, petroleum hydrocarbons, PCBs, SVOCs or dioxins/furans at concentrations above the commercial/industrial screening levels established in the *EMMP* (or in the case of arsenic, above the site-specific background concentration). Additionally, none of the results exceed hazardous waste criteria established in the California Code of Regulations (CCR) Title 22, Division 4.5. As such, these results indicate that the stockpiled materials from WU1 are acceptable for onsite reuse.

Materials reuse evaluation has included consideration of the potential for future impact to groundwater as a result of possible leaching of metals from the materials. As shown on Table V, the DI WET concentrations from the tested samples for the majority of the Title 22 metals do not exceed California Maximum Contaminant Level (MCL) drinking water concentrations. However, the concentrations of DI WET arsenic, chromium and lead concentrations detected in most of the samples exceed the MCL values. We note that several groundwater samples have been collected and tested beneath the WU1 area as a part of past site assessment work, and none of the groundwater samples from this area have contained lead or chromium at concentrations above their respective MCL values, despite the fact that waste materials were handled and stored in this area for several decades starting in the 1960s (and during operation of the PNA facility, much greater volumes of wastes were stored in this area than were removed during the recent waste management work). As such, it does not appear likely that the chromium and lead in the removed/stockpiled waste materials represents a significant threat to groundwater quality. It is noted that elevated concentrations of arsenic (above the MCL value) have been detected in groundwater at various locations beneath the subject property, including beneath the WU1 area. However, in general, the distribution of elevated concentrations of arsenic in groundwater beneath the site is somewhat erratic, and some of the past groundwater samples collected beneath WU1 in the past have not contained elevated concentrations of arsenic. It is known that naturally-occurring elevated concentrations of arsenic exist in groundwater in other areas of San Joaquin County, and the arsenic detected in groundwater beneath the subject property may also be naturally occurring.

To further evaluate the leaching potential of arsenic in the stockpiled materials removed from WU1, we have compared the estimated mass of the DI soluble arsenic contained in the stockpiled materials to a potential volume of receptor groundwater beneath the site. Based on an average DI WET arsenic concentration of 0.02 milligrams per Liter (mg/L), and recognizing that the DI WET test utilizes 50 grams of materials and 500 milliliters of water as an extractant, we calculate the total mass of DI soluble arsenic in the stockpiled materials to be approximately 4,120 grams. Assuming, that the entirety of this mass is leached to groundwater, a saturated zone void ratio of 0.5, and a twenty-foot depth of dispersion and diffusion within the saturated zone, the soluble arsenic mass in the stockpiled materials would represent 0.007 mg/L beneath the 48-acre property; this value is below the drinking water standard for arsenic (0.01 mg/L). This mass calculation likely substantially overestimates potential arsenic impact to groundwater because the DI WET data utilized is from the samples with the highest total metals results (the actual average DI WET arsenic concentration in the stockpiled materials likely is less than 0.02 mg/L), and the mass calculation assumes that all soluble arsenic in the stockpiled materials leaches to groundwater.

Despite the foregoing that suggests that the soluble arsenic, chromium and lead detected in the stockpiled materials removed from WU1 is not likely to represent a significant leaching threat to shallow groundwater quality, as a highly protective and conservative measure we propose specific procedures to be implemented during the onsite reuse of these materials to mitigate leaching potential. Specifically, we propose that the stockpiled materials removed from WU1 be placed beneath the concrete floor slab of the planned building on the property (and to a lesser degree, beneath planned concrete pavements) so that these materials are not subject to rainwater infiltration and related leaching potential. Construction plans indicate that the concrete slab-on-grade floor for the planned building on the property will be seven inches thick and reinforced with #4 reinforcing bars at 24 inches on center, each way; floor slab concrete will be designed to achieve a minimum 28-day unconfined compressive strength of 3,000 pounds per square inch (psi). The building will be completely surrounded by concrete and asphaltic-concrete pavements. Site pavements will be sloped to drain and onsite storm water will be directed toward drain inlets that discharge to the storm water system. As such, rainwater infiltration and associated leaching potential to materials directly below the future building's floor slab is considered to be negligible.

Once the building pad is constructed utilizing the materials removed from WU1 within the pad subgrade, a comparatively minor amount of these materials will subsequently be excavated during foundation and underground utility trench excavation within the building pad. We suggest that these materials be placed below concrete pavements that will adjoin the building (i.e. the planned concrete-paved dock areas northerly and southerly of the planned building). The concrete pavements are designed to be six inches thick and reinforced with #4 reinforcing bars at 24 inches on center, each way; pavement concrete will be designed to achieve a minimum 28-day unconfined compressive strength of 4,000 psi. The concrete pavements will substantially prevent rainwater infiltration and associated leaching potential to underlying materials.

We propose that the materials removed from WU1 be placed within the upper one-foot of the subgrades beneath the floor slab and concrete pavement sections mentioned above since these subgrades will be cement treated as a part of construction activities to enhance the engineering/strength properties of the subgrades. The cement treatment of these materials would further reduce the leaching potential of metals in the materials. It is well recognized that cement treatment of soils can mitigate leaching potential of heavy metal ions by providing both physical

resistance to leaching and by creating an elevated pH environment. The cement treatment process results in an impermeable monolith that substantially reduces surface area available for leaching. Moreover, the increased pH of the treated material (caused by alkali nature of Portland cement) limits the solubility of metals. As such, incorporating the materials from WU1 into floor slab and pavement subgrades that will be treated with cement affords an even greater reduction of the potential for leaching of soluble metals in these materials. Following the placement of the WU1 materials beneath the building floor slab (and to a lesser degree beneath concrete pavements) and the treatment of these materials with cement, the potential for leaching of metals from these materials to groundwater is considered to be negligible.

Specific measures for the placement and cement treatment of the materials are presented below.

PROCEDURES OF REUSE OF WU1 MATERIALS

Notification

At least one week prior to the onset of construction activities at the site that involves the relocation of the stockpiled materials from WU1 and the placement of these materials within building pad and pavement subgrades, the SJCEHD, the CVRWQCB, and CalRecycle will be notified of the work schedule.

Placement and Cement Treatment of WU1 Materials

All of the materials contained in the stockpiles of material removed from WU1 will be placed within the upper one foot of the building pad subgrade for the proposed approximate 870,000 square-foot concrete tilt up building planned to be constructed on the site. Materials placement and compaction should conform to the requirements of project plans and specifications, including the project *Foundation Investigation* prepared by Raney Geotechnical, Inc.; a copy of the *Foundation Investigation* is included in Appendix B of this *Workplan*.⁶

As described in the appended *Foundation Investigation*, the upper one foot of the building pad subgrade will be treated with at least five percent Portland cement, as determined by dry unit weight. The treated mixture will be moisture conditioned and compacted to at least 92 percent of the maximum dry density as determined by the ASTM D1557-02 test procedure.

Any materials generated during trimming of the treated building pad to final grade, and all materials generated during foundation and utility trench excavation within the upper one foot of the building pad should be placed beneath areas adjoining the building that are designated to be concrete paved. These materials will be placed within the upper one foot of the concrete pavement subgrades and will subsequently be cement treated. The project *Foundation Investigation* indicates that the pavement subgrades will be cement treated in a similar manner as described above for the building pad subgrade.

⁶ Raney Geotechnical, Inc.; "Foundation Investigation, Murphy Parkway Warehouse, Murphy Parkway near D'Arcy Parkway, Lathrop, California"; December 19, 2016.

This *Workplan* does not address physical hazards (such as those posed by the waste glass within the materials removed from WU1 on the property); protection against physical and construction hazards are the responsibility of future contractors/workers and other site personnel and are not included in the scope of this plan. It is recommended that all agencies, companies, and workers whose activities may result in exposure to the materials removed from WU1 (including waste glass materials and dust) develop health and safety plans specific to the site conditions and their activities, and that such measures consider/address potential inhalation hazards posed by glass dust, as well as cut/abrasion hazards posed by glass fragments.

Verification Observation and Reporting

A qualified environmental professional will make observations of site activities that involve the onsite transport, placement, and cement treatment of materials removed from WU1 to confirm that the procedures described herein are implemented. Additionally, earthwork quality control observations and testing will be performed by the project geotechnical engineering firm. The locations of placement of the materials removed from WU1 will be recorded on a scaled site plan. Upon completion, a report will be prepared summarizing the materials reuse activities

CLOSING

This *Draft Workplan* will be submitted to the SJCEHD, the CVRWQCB, and CalRecycle for review and approval prior to finalizing the *Workplan* and implementing the onsite reuse of the materials removed from WU1. If you have any questions or require additional information, please contact the undersigned at (916) 677-1470.

Sincerely,

BRUSCA ASSOCIATES, INC.

Joe Brusca Principal Engineering Geologist Certified Engineering Geologist No. 1948

JB:jb

Attachments: Plate 1, Vicinity Map Plate 2, Site Map Plate 3, Verification Soil Sample Detail Map Plate 4, Planned Development Drawing

> Table I, Summary of Total Metals Data – Verification Soil Samples Table II, Summary of Petroleum Hydrocarbons Data – Verification Soil Samples

Table III, Summary of SVOCs, PCBs, and Dioxins/Furans Data – Verification Soil Samples

Table IV, Summary of Total Metals Data – Stockpiled Waste Material Samples
Table V, Summary of DI WET Metals Data – Stockpiled Waste Material Samples
Table VI, Summary of Petroleum Hydrocarbons Data – Stockpiled Waste
Material Samples

Table VII, Summary of SVOCs, PCBs, and Dioxins/Furans Data – Stockpiled Waste Material

- Appendix A: Laboratory Reports and Chain-of-Custody Documentation
- Appendix B: Foundation Investigation report by Raney Geotechnical, Inc.

Brusca Project No. 137-002

PLATE 1

APPROXIMATE BOUNDARY OF SUBJECT 48-ACRE PARCEL

MURPHY PARKWAY PROPERTY WASTE MATERIALS REUSE WORK PLAN APN 198-012-009 17100 Murphy Parkway Lathrop, California

Brusca Project No. 137-002

SITE MAP

PLATE 2

All features and locations are approximate only

Brusca	MURPHY PARKWAY PROPERTY WASTE MATERIALS REUSE WORK PLAN	
Associates, Inc. Environmental Engineering Geology	APN 198-012-009 17100 Murphy Parkway	DEVELOPMENT
1860 Sierra Gardens Drive, # 332 Roseville, CA 95661	Lathrop, California	
ph (916) 677-1470 fax (916) 677-1471 BruscaAssociates.com	Brusca Project No. 137-002	PLATE 4

<u>TABLE I</u> <u>SUMMARY OF TOTAL METALS DATA</u> <u>VERIFICATION SOIL SAMPLES</u>

48-ACRE MURPHY PARKWAY PROPERTY

17100 Murphy Parkway, Lathrop, San Joaquin County, California

Brusca Reference No. 137-002

								E	TITL PA Met	E 22 ME thod 601	TALS 0B/200	.7						
SAMPLE ID	DATE SAMPLED	Antimony	Silver	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Copper	Lead	Molybdenum	Nickel	Selenium	Thallium	Vanadium	Zinc	Mercury
VS1	4/2/18	ND	ND	ND	49	ND	ND	5.2	5.0	3.3	ND	ND	5.8	ND	ND	19	21	ND
VS2	4/2/18			ND							ND							
VS3	4/2/18	ND	ND	ND	55	ND	ND	4.2	4.2	1.4	ND	ND	6.2	ND	ND	16	17	ND
VS4	4/2/18			ND							ND							
VS5	4/2/18	ND	ND	ND	47	ND	ND	4.8	4.0	ND	ND	ND	3.9	ND	ND	18	18	ND
VS7	4/2/18	ND	ND	ND	45	ND	ND	5.2	3.7	ND	ND	ND	4.1	ND	ND	17	19	ND
VS8	4/2/18			ND							ND							
VS9	4/11/18			ND							ND							
VS10	4/11/18			ND							ND							
VS11	4/11/18			ND							ND							
VS12	4/11/18			ND							ND							
VS13	4/11/18			ND							ND							
VS14	4/11/18			ND							ND							
VS16	4/11/18			ND							ND							
VS17	4/11/18			ND							ND							
VS18	4/11/18	ND	ND	ND	44	ND	ND	3.8	3.4	ND	ND	ND	3.8	ND	ND	13	18	ND
VS19	4/11/18			ND							ND							
VS20	4/11/18	ND	ND	ND	55	ND	ND	4.7	3.6	1.4	ND	ND	4.5	ND	ND	15	22	ND
VS21	4/11/18			ND							ND							
VS22	4/11/18	ND	ND	ND	72	ND	ND	4.3	4.0	1.6	ND	ND	4.4	ND	ND	16	20	ND
VS24	4/11/18	ND	ND	ND	52	ND	ND	4.2	3.8	3.1	ND	ND	4.9	ND	ND	16	19	ND
VS25	4/11/18			ND							ND							
VS26	4/11/18			ND							ND							

<u>TABLE I</u> <u>SUMMARY OF TOTAL METALS DATA</u> <u>VERIFICATION SOIL SAMPLES</u>

48-ACRE MURPHY PARKWAY PROPERTY

17100 Murphy Parkway, Lathrop, San Joaquin County, California

Brusca Reference No. 137-002

								E	TITL PA Met	E 22 ME hod 601	TALS 0B/200	.7						
SAMPLE ID	DATE SAMPLED	Antimony	Silver	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Copper	Lead	Molybdenum	Nickel	Selenium	Thallium	Vanadium	Zinc	Mercury
VS27	4/11/18			ND							ND							
VS28	4/11/18			ND							ND							
VS29	4/11/18			ND							ND							
VS30	4/11/18			ND							ND							
VS31	4/11/18			ND							ND							
VS33	4/11/18			ND							ND							
VS34	4/11/18			ND							ND							
VS35	4/11/18	ND	ND	ND	66	ND	ND	5.1	6.3	3.6	ND	ND	6.8	ND	ND	22	28	ND
VS36	4/11/18			ND							ND							
VS37	4/11/18	ND	ND	ND	77	ND	ND	5.9	6.4	4.1	ND	ND	7.5	ND	ND	18	26	ND
VS38	4/11/18			ND							ND							
VS39	4/11/18	ND	ND	ND	66	ND	ND	4.7	4.8	4.5	ND	ND	7.6	ND	ND	15	20	ND
VS41	4/11/18	ND	ND	ND	53	ND	ND	4.3	4.1	3.2	ND	ND	4.9	ND	ND	16	18	ND
VS43	4/11/18			ND							ND							
VS45	4/11/18			ND							ND							
VS47	4/11/18			ND							ND							
VS49	4/11/18			ND							ND							
VS51	4/11/18			ND							ND							
VS53	4/13/18	ND	ND	ND	80	ND	ND	7.1	6.6	6.8	ND	ND	8.8	ND	ND	23	28	ND
VS55	4/13/18	ND	ND	ND	65	ND	ND	7.7	5.8	4.1	ND	ND	8.2	ND	ND	24	27	ND
VS57	4/13/18	ND	ND	ND	49	ND	ND	6.6	4.7	3.0	ND	ND	5.8	ND	ND	21	32	ND
VS59	4/13/18	ND	ND	ND	62	ND	ND	6.0	5.0	3.5	ND	ND	7.2	ND	ND	20	22	ND
VS61	4/13/18			ND							ND							

<u>TABLE I</u> <u>SUMMARY OF TOTAL METALS DATA</u> <u>VERIFICATION SOIL SAMPLES</u>

48-ACRE MURPHY PARKWAY PROPERTY

17100 Murphy Parkway, Lathrop, San Joaquin County, California

Brusca Reference No. 137-002

								El	TITL PA Met	E 22 ME	TALS 0B/200	.7						
SAMPLE ID	DATE SAMPLED	Antimony	Silver	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Copper	Lead	Molybdenum	Nickel	Selenium	Thallium	Vanadium	Zinc	Mercury
VS63	4/13/18			ND							ND							
VS65	4/13/18	ND	ND	ND	26	ND	ND	3.7	2.7	1.9	ND	ND	3.4	ND	ND	11	11	ND
VS66	4/13/18			ND							ND							
VS68	4/13/18			ND							12							
VS70	4/13/18			ND							ND							
		-					SCR	EENING I	LEVEL	S								
Hazardous Wa	aste Criteria ²	500	500	500	10,000	75	100	2,500	8,000	2,500	1,000	3,500	2,000	100	700	2,400	5,000	20
DTSC SLs - residential ³		N/A	390	0.11 6	N/A	15	5.2	36,000	N/A	N/A	80	N/A	490	N/A	N/A	390	N/A	1.0
DTSC SLs - co	OTSC SLs - commercial ³			0.36 6	N/A	210	7.3	170,000	N/A	N/A	320	N/A	3,100	N/A	N/A	1,000	N/A	4.5
USEPA RSLs	- residential ⁴	31	390	0.68 6	15,000	160	71	120,000	23	3,100	400	390	1,500	390	0.78	390	23,000	11
USEPA RSLs	- commercial ⁴	470	5,800	3.0 ⁶	220,000	2,300	980	1,800,000	350	47,000	800	5,800	22,000	5,800	12	5,800	350,000	46

Notes: 1. All concentrations expressed in milligrams per kilogram (mg/kg)

2. California Code of Regulations Title 22, Division 4.5

3. DTSC-Modified Screening Levels (DTSC-SLs); January 2018

4. USEPA Regional Screening Levels, TR=1E-06, HQ=1"; November 2017

5. N/A = screening value not established

6. Arsenic data for the project are compared to background concentration of 8.6 mg/kg rather than cited screening levels.

<u>TABLE II</u> <u>SUMMARY OF PETROLEUM HYDROCARBONS DATA</u> <u>VERIFICATION SOIL SAMPLES</u>

48-ACRE MURPHY PARKWAY PROPERTY

17100 Murphy Parkway, Lathrop, San Joaquin County, California

Brusca Reference No. 137-002

		TOTAL	PETROLEUM HYDE	ROCARBONS
			EPA Method 8015	iC
~	DATE	C6-C12	C13-C28	C29-C40
SAMPLE ID	SAMPLED	(Gasoline Range)	(Diesel Range)	(Motor Oil Range)
VS1	4/2/18	ND	ND	ND
VS3	4/2/18	ND	ND	ND
VS5	4/2/18	ND	ND	ND
VS7	4/2/18	ND	950	2,100
VS18	4/11/18	ND	ND	ND
VS20	4/11/18	ND	ND	ND
VS22	4/11/18	ND	ND	ND
VS24	4/11/18	ND	220	310
VS35	4/11/18	ND	ND	ND
VS37	4/11/18	ND	ND	ND
VS39	4/11/18	ND	ND	ND
VS41	4/11/18	ND	ND	ND
V853	4/13/18	ND	ND	ND
VS55	4/13/18	ND	21	26
VS57	4/13/18	ND	ND	ND
VS59	4/13/18	ND	ND	ND
VS65	4/13/18	ND	ND	ND
		SCREENING LI	EVELS	
ESLs - resid	lential ²	740	230	11,000
ESLs - comn	nercial ²	3,900	1,100	140,000

Notes: 1. All concentrations expressed in milligrams per kilogram (mg/kg)

2. San Francisco Bay Regional Water Quality Control Board; "Environmental Screening Levels"; February 2016; Direct Exposure Human Health Levels; residential and commercial/industrial.

<u>TABLE III</u> <u>SUMMARY OF SVOCs, PCBs, AND DIOXINS/FURANS DATA</u> VERIFICATION SOIL SAMPLES

48-ACRE MURPHY PARKWAY PROPERTY

17100 Murphy Parkway, Lathrop, San Joaquin County, California

Brusca Reference No. 137-002

		EDA	PCBs	0007	SEMI-	DIOXINS/F	URANS
		EPA	<i>Methoa</i> a	5082 v	VOLATILE ORGANIC	EPA Metho	a 1015
		254	260	CB	COMPOUNDS		
	DATE	B-1	B-1	er I	EPA Method		
SAMPLE ID	SAMPLED	PC	PC	Oth	8270C	2,3,7,8-TCDD ⁶	TEQ ⁷
VS1	4/2/18	ND	ND	ND	ND	ND	0.00672
VS3	4/2/18	ND	ND	ND	ND	ND	0.00529
VS5	4/2/18	ND	ND	ND	ND	ND	0.00850
VS7	4/2/18	0.10	ND	ND	ND	ND	0.665
VS18	4/11/18	ND	ND	ND	ND	ND	0.0453
VS20	4/11/18	ND	ND	ND	ND	ND	0.252
VS22	4/11/18	ND	ND	ND	ND	ND	0.0430
VS24	4/11/18	ND	0.021	ND	ND	ND	1.05
VS35	4/11/18	ND	0.057	ND	ND	ND	0.158
VS37	4/11/18	ND	ND	ND	ND	ND	0.0529
VS39	4/11/18	ND	ND	ND	ND	ND	0.117
VS41	4/11/18	ND	ND	ND	ND	ND	0.215
VS53	4/13/18	ND	ND	ND	ND	ND	0.0123
VS55	4/13/18	ND	ND	ND	ND	ND	0.0501
VS57	4/13/18	ND	ND	ND	ND	ND	0.0622
VS59	4/13/18	ND	ND	ND	ND	ND	0.332
VS65	4/13/18	ND	ND	ND	ND	ND	0.139
			SCRE	ENING I	LEVELS		
Hazardous Waste	Criteria ²	50	50			$1 x 10^{7}$	N/A
DTSC SLs - reside	ential ³	N/A	N/A			N/A	5
DTSC SLs - comm	ercial ³	N/A	N/A			N/A	22
USEPA RSLs - res	sidential ⁴	0.24	0.24			N/A	5
USEPA RSLs - cor	mmercial ⁴	0.97	0.99			N/A	22

Notes: 1. All concentrations expressed in milligrams per kilogram (mg/kg) except for dioxin/furan results which are expressed in picograms per gram (pg/g) [parts per trillion]

2. California Code of Regulations Title 22, Division 4.5

3. DTSC-Modified Screening Levels (DTSC-SLs), January 2018, and DTSC HERO Note No. 2, April 2017 (preliminary remediation goals for dioxins/furans)

4. USEPA Regional Screening Levels, TR=1E-06, HQ=1"; November 2017

5. N/A = screening value not established

6. See laboratory report for other dioxin/furan compounds tested

7. TEQ = Toxic Equivalency calculated using the 2005 World Health Organization's (WHO's) toxic equivalency factors (TEFs)

<u>TABLE IV</u> <u>SUMMARY OF TOTAL METALS DATA</u> <u>STOCKPILED WASTE MATERIAL SAMPLES</u>

48-ACRE MURPHY PARKWAY PROPERTY

17100 Murphy Parkway, Lathrop, San Joaquin County, California

Brusca Reference No. 137-002

									TITL	E 22 MI	ETALS							
								E	PA Met	hod 601	0B/200	.7						
	DATE	ntimony	Silver	ursenic	arium	ryllium	ıdmium	romium	Cobalt	opper	Lead	ybdenum	Nickel	lenium	hallium	nadium	Zinc	ercury
SAMPLE ID	SAMPLED	Ar	•1	V	B	Be	ũ	Ch		0		Mol	F -1	Se	L	Va		Μ
SP1-1	4/4/18	ND	ND	ND	54	ND	ND	54	37	78	2.2	ND	51	ND	ND	12	36	ND
SP1-2	4/4/18	ND	ND	ND	65	ND	ND	5.4	4.0	3.7	ND	ND	5.4	ND	ND	16	29	ND
SP1-3	4/4/18	ND	ND	ND	61	ND	ND	5.3	3.9	4.0	ND	ND	5.1	ND	ND	16	28	ND
SP1-4	4/4/18	ND	ND	ND	69	ND	ND	5.3	4.6	4.2	8.4	ND	5.9	ND	ND	17	32	ND
SP1-5	4/4/18	ND	ND	ND	41	ND	ND	4.6	3.0	11	45	ND	3.9	ND	ND	8.0	30	ND
SP1-6	4/4/18	ND	ND	ND	44	ND	ND	4.2	3.0	5.1	24	ND	4.2	ND	ND	11	24	ND
SP1-7	4/4/18	ND	ND	ND	60	ND	ND	5.3	4.2	5.1	11	ND	5.5	ND	ND	14	29	ND
SP1-8	4/4/18	ND	ND	ND	66	ND	ND	6.1	3.6	7.2	13	ND	5.1	ND	ND	15	46	ND
SP1-9	4/4/18	ND	ND	ND	67	ND	ND	5.7	4.1	5.3	ND	ND	5.6	ND	ND	17	35	ND
SP1-10	4/4/18	ND	ND	ND	64	ND	ND	5.5	3.9	5.8	ND	ND	5.8	ND	ND	16	28	ND
SP1-11	4/4/18	ND	ND	ND	54	ND	ND	5.4	3.7	6.1	13	ND	4.9	ND	ND	13	28	ND
SP1-12	4/4/18	ND	ND	ND	55	ND	ND	4.5	3.7	4.6	12	ND	4.9	ND	ND	14	26	ND
SP1-13	4/4/18	ND	ND	ND	52	ND	ND	4.6	3.6	6.0	22	ND	4.5	ND	ND	13	29	ND
SP1-14	4/4/18	ND	ND	ND	52	ND	ND	4.2	3.6	3.2	21	ND	3.9	ND	ND	12	21	ND
SP1-15	4/4/18	ND	ND	ND	52	ND	ND	6.0	3.9	5.7	18	ND	5.0	ND	ND	14	27	ND
SP1-16	4/4/18	ND	ND	ND	64	ND	ND	5.6	5.1	5.2	ND	ND	6.5	ND	ND	17	31	ND
SP1-17	4/4/18	ND	ND	ND	49	ND	ND	5.0	3.6	3.9	9.4	ND	4.6	ND	ND	13	23	ND
SP1-18	4/4/18	ND	ND	ND	62	ND	ND	5.2	3.9	4.4	13	ND	5.7	ND	ND	15	27	ND
SP1-19	4/4/18	ND	ND	ND	58	ND	ND	5.4	3.8	4.6	ND	ND	5.3	ND	ND	14	28	ND
SP1-20	4/4/18	ND	ND	ND	57	ND	ND	5.9	3.9	4.6	10	ND	5.3	ND	ND	16	30	ND
SP2-1	4/5/18	ND	ND	ND	58	ND	ND	6.2	4.9	5.2	13	ND	5.9	ND	ND	20	33	0.52
SP2-2	4/5/18	ND	ND	ND	55	ND	ND	5.5	4.7	3.5	11	ND	5.3	ND	ND	20	29	ND
SP2-3	4/5/18	ND	ND	ND	63	ND	ND	6.7	4.2	5.5	ND	ND	6.2	ND	ND	22	33	ND
SP2-4	4/5/18	ND	ND	ND	62	ND	ND	6.5	4.9	5.5	9.8	ND	6.6	ND	ND	22	30	ND
SP2-5	4/5/18	ND	ND	ND	59	ND	ND	6.2	4.4	5.6	17	ND	5.9	ND	ND	18	31	ND
SP2-6	4/5/18	ND	ND	ND	68	ND	ND	7.1	5.0	5.7	13	ND	7.5	ND	ND	24	33	ND
SP2-7	4/5/18	ND	ND	ND	58	ND	ND	6.0	4.6	4.1	ND	ND	6.4	ND	ND	22	24	ND
SP2-8	4/5/18	ND	ND	ND	61	ND	ND	5.5	4.4	6.5	11	ND	5.1	ND	ND	16	27	ND
SP2-9	4/5/18	ND	ND	ND	52	ND	ND	5.5	5.6	8.5	32	ND	9.5	ND	ND	17	28	ND
SP2-10	4/5/18	ND	ND	ND	61	ND	ND	6.1	4.6	4.1	ND	ND	6.2	ND	ND	21	26	ND
SP2-11	4/5/18	ND	ND	ND	58	ND	ND	6.7	4.4	6.5	17	ND	6.4	ND	ND	20	31	ND
SP2-12	4/5/18	ND	ND	ND	58	ND	ND	5.8	4.5	5.8	11	ND	5.4	ND	ND	17	29	ND

<u>TABLE IV</u> <u>SUMMARY OF TOTAL METALS DATA</u> <u>STOCKPILED WASTE MATERIAL SAMPLES</u>

48-ACRE MURPHY PARKWAY PROPERTY

17100 Murphy Parkway, Lathrop, San Joaquin County, California

Brusca Reference No. 137-002

									TITL	E 22 ME	ETALS							
								E_{-}	PA Me	thod 601	0B/200	.7						
SAMPLE ID	DATE SAMPLED	Antimony	Silver	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Copper	Lead	Molybdenum	Nickel	Selenium	Thallium	Vanadium	Zinc	Mercury
SP3-1	4/12/18	ND	ND	ND	61	ND	ND	5.8	4.5	4.5	ND	ND	6.0	ND	ND	17	30	ND
SP3-2	4/12/18	ND	ND	ND	72	ND	ND	5.6	4.7	8.0	ND	ND	6.6	ND	ND	17	33	ND
SP3-3	4/12/18	ND	ND	ND	41	ND	ND	4.4	3.5	5.0	20	ND	4.1	ND	ND	10	24	ND
SP3-4	4/12/18	ND	ND	ND	53	ND	ND	5.1	4.4	4.3	ND	ND	5.7	ND	ND	15	26	ND
SP3-5	4/12/18	ND	ND	ND	64	ND	ND	4.9	4.2	5.2	ND	ND	5.1	ND	ND	15	29	ND
SP3-6	4/12/18	ND	ND	ND	43	ND	ND	5.1	3.8	4.4	14	ND	4.5	ND	ND	11	23	ND
SP3-7	4/12/18	ND	ND	ND	43	ND	ND	4.6	3.8	3.3	10	ND	4.1	ND	ND	11	25	ND
SP3-8	4/12/18	ND	ND	ND	67	ND	ND	5.7	4.9	4.6	17	ND	6.6	ND	ND	17	26	ND
SP3-9	4/12/18	ND	ND	ND	59	ND	ND	5.9	5.6	4.8	ND	ND	6.6	ND	ND	18	29	ND
SP3-10	4/12/18	ND	ND	ND	57	ND	ND	5.7	4.9	4.6	ND	ND	5.7	ND	ND	14	28	ND
SP3-11	4/12/18	ND	ND	ND	56	ND	ND	5.0	4.4	4.0	ND	ND	5.7	ND	ND	15	28	ND
SP3-12	4/12/18	ND	ND	ND	38	ND	ND	3.8	3.9	7.6	38	ND	3.6	ND	ND	8.3	22	ND
<u>SP4-1</u>	4/12/18	ND	ND	ND	31	ND	ND	3.5	3.2	7.0	25	ND	2.9	ND	ND	7.8	21	ND
SP5-1	4/13/18	ND	ND	ND	59	ND	ND	8.6	4.3	4.4	ND	ND	6.2	ND	ND	20	33	ND
SP5-2	4/13/18	ND	ND	ND	63	ND	ND	6.4	5.3	4.9	ND	ND	7.2	ND	ND	20	30	ND
SP5-3	4/13/18	ND	ND	ND	61	ND	ND	7.0	4.5	8.6	ND	ND	6.4	ND	ND	18	30	ND
SP5-4	4/13/18	ND	ND	ND	64	ND	ND	6.7	4.9	5.2	ND	ND	7.2	ND	ND	20	31	ND
					10.000		SCR	EENING	LEVEL	<u>.</u> S	1 0 0 0			100			-	• •
Hazardous Wast	te Criteria ²	500	500	500	10,000	75	100	2,500	8,000	2,500	1,000	3,500	2,000	100	700	2,400	5,000	20
DTSC SLs - resi	dential	N/A	390	0.11 °	N/A	15	5.2	36,000	N/A	N/A	80	N/A	490	N/A	N/A	390	N/A	1.0
DTSC SLs - com	mercial	N/A	1,500	0.36 6	N/A	210	7.3	170,000	N/A	N/A	320	N/A	3,100	N/A	N/A	1,000	N/A	4.5
USEPA RSLs - r	residential ⁴	31	390	0.68^{6}	15,000	160	71	120,000	23	3,100	400	390	1,500	390	0.78	390	23,000	11
USEPA RSLs - o	commercial ⁴	470	5,800	3.0^{6}	220,000	2,300	980	1,800,000	350	47,000	800	5,800	22,000	5,800	12	5,800	350,000	46

Notes: 1. All concentrations expressed in milligrams per kilogram (mg/kg)

2. California Code of Regulations Title 22, Division 4.5

3. DTSC-Modified Screening Levels (DTSC-SLs); January 2018

4. USEPA Regional Screening Levels, TR=1E-06, HQ=1"; November 2017

5. N/A = screening value not established

6. Arsenic data for the project are compared to background concentraiton of 8.6 mg/kg rather than cited screening levels.

<u>TABLE V</u> <u>SUMMARY OF DI WET METALS DATA</u> <u>STOCKPILED WASTE MATERIAL SAMPLES</u>

48-ACRE MURPHY PARKWAY PROPERTY

17100 Murphy Parkway, Lathrop, San Joaquin County, California

Brusca Reference No. 137-002

									TITLE EPA 1	E <mark>22 ME</mark> Method	ETALS 6020							
SAMPLE ID	DATE SAMPLED	Antimony	Silver	Arsenic	Barium	Beryllium	Cadmium	Chromium	Cobalt	Copper	Lead	Molybdenum	Nickel	Selenium	Thallium	Vanadium	Zinc	Mercury
SP1-1	4/4/18	0.002	0.005	0.030	0.48	0.001	0.002	0.069	0.045	0.12	0.30	0.021	0.06	ND	ND	0.26	0.44	0.0002
SP1-5	4/4/18	0.002	0.009	0.020	0.34	ND	0.002	0.060	0.039	0.20	0.36	0.016	0.045	ND	ND	0.16	0.35	0.0003
SP1-6	4/4/18	0.002	0.005	0.024	0.51	0.001	0.002	0.056	0.039	0.11	0.39	0.016	0.054	ND	ND	0.19	0.38	0.0002
SP1-8	4/4/18	0.001	0.004	0.027	0.52	0.001	0.001	0.057	0.037	0.085	0.14	0.024	0.053	ND	ND	0.24	0.37	0.0001
SP2-1	4/5/18	ND	0.005	0.017	0.45	0.001	ND	0.065	0.049	0.096	0.17	0.009	0.061	ND	ND	0.22	0.34	0.0003
SP2-6	4/5/18	ND	0.003	0.028	0.52	0.002	ND	0.054	0.044	0.099	0.11	0.007	0.073	ND	ND	0.25	0.32	0.0002
SP2-9	4/5/18	0.001	0.001	0.009	0.12	0.0004	0.0003	0.016	0.013	0.034	0.051	0.006	0.015	0.002	ND	0.080	0.068	0.0001
SP3-3	4/12/18	ND	0.003	0.013	0.34	ND	0.002	0.040	0.033	0.12	0.17	0.007	0.041	ND	ND	0.099	0.21	0.0003
SP3-12	4/12/18	ND	0.007	0.009	0.360	0.001	0.002	0.040	0.049	0.11	0.20	0.005	0.054	ND	ND	0.11	0.23	0.0001
SP4-1	4/12/18	ND	0.003	0.011	0.23	ND	0.002	0.033	0.031	0.11	0.17	0.007	0.028	ND	ND	0.075	0.25	0.00003
SP5-1	4/14/18	ND	ND	0.031	0.40	0.001	ND	0.047	0.032	0.055	0.046	0.007	0.047	ND	ND	0.20	0.20	ND
							SCR	EENIN	G LEVE	LS								
MCLs ²		0.006	N/A	0.01	1.0	0.004	0.005	0.05	N/A	1.3	0.015	N/A	0.1	0.05	0.002	N/A	N/A	0.002

Notes: 1. All concentrations expressed in milligrams per liter (mg/L)

2. Maximum Contaminant Levels (MCLs) for drinking water; California; July 2014

3. N/A = MCL not established

<u>TABLE VI</u> <u>SUMMARY OF PETROLEUM HYDROCARBONS DATA</u> <u>STOCKPILED WASTE MATERIAL SAMPLES</u>

48-ACRE MURPHY PARKWAY PROPERTY

17100 Murphy Parkway, Lathrop, San Joaquin County, California

Brusca Reference No. 137-002

		TOTAL	PETROLEUM HYDR	ROCARBONS
			EPA Method 8015	Ċ
	DATE	C6-C12	C13-C28	C29-C40
SAMPLE ID	SAMPLED	(Gasoline Range)	(Diesel Range)	(Motor Oil Range)
SP1-1	4/4/18	ND	47	100
SP1-2	4/4/18	ND	13	86
SP1-3	4/4/18	ND	47	68
SP1-4	4/4/18	ND	24	75
SP1-5	4/4/18	ND	96	52
SP1-6	4/4/18	ND	44	78
SP1-7	4/4/18	ND	88	92
SP1-8	4/4/18	ND	28	64
SP1-9	4/4/18	ND	44	28
SP1-10	4/4/18	ND	18	58
SP1-11	4/4/18	ND	75	87
SP1-12	4/4/18	ND	97	55
SP1-13	4/4/18	ND	71	74
SP1-14	4/4/18	ND	16	35
SP1-15	4/4/18	ND	170	240
SP1-16	4/4/18	ND	85	55
SP1-17	4/4/18	ND	81	40
SP1-18	4/4/18	ND	26	82
SP1-19	4/4/18	ND	39	51
SP1-20	4/4/18	ND	76	150
SP2-1	4/5/18	ND	62	59
SP2-2	4/5/18	ND	24	42
SP2-3	4/5/18	ND	18	55
SP2-4	4/5/18	ND	94	69
SP2-5	4/5/18	ND	51	46
SP2-6	4/5/18	ND	90	49
SP2-7	4/5/18	ND	60	57
SP2-8	4/5/18	ND	170	120
SP2-9	4/5/18	ND	370	380
SP2-10	4/5/18	ND	150	76
SP2-11	4/5/18	ND	110	68
SP2-12	4/5/18	ND	140	150
SP3-1	4/12/18	ND	29	29
SP3-2	4/12/18	ND	150	160
SP3-3	4/12/18	ND	51	37
SP3-4	4/12/18	ND	100	96
SP3-5	4/12/18	ND	32	15
SP3-6	4/12/18	ND	56	32

<u>TABLE VI</u> <u>SUMMARY OF PETROLEUM HYDROCARBONS DATA</u> <u>STOCKPILED WASTE MATERIAL SAMPLES</u>

48-ACRE MURPHY PARKWAY PROPERTY

17100 Murphy Parkway, Lathrop, San Joaquin County, California

Brusca Reference No. 137-002

		TOTAL	PETROLEUM HYDI	ROCARBONS
			EPA Method 8015	5C
	DATE	C6-C12	C13-C28	C29-C40
SAMPLE ID	SAMPLED	(Gasoline Range)	(Diesel Range)	(Motor Oil Range)
SP3-7	4/12/18	ND	39	19
SP3-8	4/12/18	ND	29	17
SP3-9	4/12/18	ND	85	82
SP3-10	4/12/18	ND	360	380
SP3-11	4/12/18	ND	26	33
SP3-12	4/12/18	ND	140	130
SP4-1	4/12/18	ND	170	220
SP5-1	4/13/18	ND	53	61
SP5-2	4/13/18	ND	70	58
SP5-3	4/13/18	ND	35	50
SP5-4	4/13/18	ND	17	56
	· · · · · · · · · · · · · · · · · · ·	SCREENING LI	EVELS	
ESLs - resid	ential ²	740	230	11,000
ESLs - comm	nercial ²	3,900	1,100	140,000

Notes: 1. All concentrations expressed in milligrams per kilogram (mg/kg)

2. San Francisco Bay Regional Water Quality Control Board; "Environmental Screening Levels"; February 2016; Direct Exposure Human Health Levels; residential and commercial/industrial.

TABLE VII

SUMMARY OF SVOCs, PCBs, AND DIOXINS/FURANS DATA

STOCKPILED WASTE MATERIAL SAMPLES

48-ACRE MURPHY PARKWAY PROPERTY

17100 Murphy Parkway, Lathrop, San Joaquin County, California

Brusca Reference No. 137-002

			PC	CBs				SEMI-V	OLATI	LE OR	GANIC	C COMI	POUNDS	5		DIOXINS	FURANS
		E	PA Met	hod 80	20				EP	A Meth	od 827	<u>'0C</u>	. <u> </u>			EPA Meth	1613 nod
SAMPLE ID	DATE SAMPLED	PCB -1016	PCB-1254	PCB-1260	Other PCBs	Pyrene	Benzo (a) anthracene	Benzo (b) fluoranthene	Benzo (k) fluoranthene	Benzo (a) pyrene	Chrysene	Fluoranthene	Indeno (1,2,3-cd) pyrene	Phenanthrene	Other SVOCs	2,3,7,8- TCDD ⁶	TEQ ⁷
SP1-1	4/4/18	ND	0.035	ND	ND	2.4	0.90	0.73	0.41	0.36	1.1	2.1	0.34	1.3	ND	0.375	6.49
SP1-2	4/4/18	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.668
SP1-3	4/4/18	ND	0.025	ND	ND	0.30	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.10
SP1-4	4/4/18	ND	0.013	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.510
SP1-5	4/4/18	ND	0.047	ND	ND	0.42	ND	ND	ND	ND	ND	0.36	ND	ND	ND	ND	4.88
SP1-6	4/4/18	ND	0.052	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5.00
SP1-7	4/4/18	ND	0.043	ND	ND	0.49	ND	ND	ND	ND	ND	0.42	ND	ND	ND	ND	1.65
SP1-8	4/4/18	ND	0.032	ND	ND	0.36	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2.93
SP1-9	4/4/18	ND	0.011	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.139
SP1-10	4/4/18	ND	0.013	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.23
SP1-11	4/4/18	ND	0.061	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2.94
SP1-12	4/4/18	ND	0.024	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.08
SP1-13	4/4/18	ND	0.043	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2.89
SP1-14	4/4/18	ND	0.019	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.316
SP1-15	4/4/18	ND	0.110	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	3.20
SP1-16	4/4/18	ND	0.025	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.97
SP1-17	4/4/18	ND	0.018	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.429
SP1-18	4/4/18	ND	0.042	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.891
SP1-19	4/4/18	ND	0.021	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2.84
SP1-20	4/4/18	ND	0.050	ND	ND	0.42	ND	ND	ND	ND	ND	0.34	ND	ND	ND	ND	3.62
SP2-1	4/5/18	ND	ND	0.029	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.77

TABLE VII

SUMMARY OF SVOCs, PCBs, AND DIOXINS/FURANS DATA

STOCKPILED WASTE MATERIAL SAMPLES

48-ACRE MURPHY PARKWAY PROPERTY

17100 Murphy Parkway, Lathrop, San Joaquin County, California

Brusca Reference No. 137-002

		PCBs					S	SEMI-V	OLATI	LE OR	GANIC	COM	POUND	5		DIOXINS/FURANS	
		E	PA Met	hod 80.	20				EP	A Meth	od 827	OC				EPA Meth	1613 nod
SAMPLE ID	DATE SAMPLED	PCB -1016	PCB-1254	PCB-1260	Other PCBs	Pyrene	Benzo (a) anthracene	Benzo (b) fluoranthene	Benzo (k) fluoranthene	Benzo (a) pyrene	Chrysene	Fluoranthene	Indeno (1,2,3-cd) pyrene	Phenanthrene	Other SVOCs	2,3,7,8- TCDD ⁶	TEQ ⁷
SP2-2	4/5/18	0.066	ND	0.072	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	4.65
SP2-3	4/5/18	ND	0.036	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2.73
SP2-4	4/5/18	ND	ND	0.077	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2.96
SP2-5	4/5/18	ND	ND	0.032	ND	0.95	0.34	ND	ND	ND	0.44	0.88	ND	0.53	ND	ND	1.64
SP2-6	4/5/18	ND	ND	0.058	ND	1.2	0.49	0.41	ND	ND	0.57	1.1	ND	0.75	ND	ND	2.71
SP2-7	4/5/18	ND	ND	0.086	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2.45
SP2-8	4/5/18	ND	ND	0.058	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2.57
SP2-9	4/5/18	ND	ND	0.058	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	3.43
SP2-10	4/5/18	0.072	ND	0.045	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.08
SP2-11	4/5/18	ND	ND	0.026	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.75
SP2-12	4/5/18	ND	ND	0.061	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2.21
SP3-1	4/12/18	ND	ND	ND	ND	0.65	0.30	0.30	ND	ND	0.34	0.73	ND	0.46	ND	ND	1.79
SP3-2	4/12/18	ND	0.020	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.62
SP3-3	4/12/18	ND	0.017	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.933
SP3-4	4/12/18	ND	0.015	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.522
SP3-5	4/12/18	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2.76
SP3-6	4/12/18	ND	0.012	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.995
SP3-7	4/12/18	ND	0.012	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.823
SP3-8	4/12/18	ND	0.019	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.34
SP3-9	4/12/18	ND	0.016	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.47	0.731
SP3-10	4/12/18	ND	0.018	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.492

TABLE VII

SUMMARY OF SVOCs, PCBs, AND DIOXINS/FURANS DATA

STOCKPILED WASTE MATERIAL SAMPLES

48-ACRE MURPHY PARKWAY PROPERTY

17100 Murphy Parkway, Lathrop, San Joaquin County, California

Brusca Reference No. 137-002

			PC	CBs				SEMI-V	OLATI	LE OR	GANIC	C COMP	OUND	S		DIOXINS/	FURANS
		E	PA Met	hod 80	20				EP	A Meth	10d 827	'0C				EPA Meth	1613 nod
SAMPLE ID	DATE SAMPLED	PCB -1016	PCB-1254	PCB-1260	Other PCBs	Pyrene	Benzo (a) anthracene	Benzo (b) fluoranthene	Benzo (k) fluoranthene	Benzo (a) pyrene	Chrysene	Fluoranthene	Indeno (1,2,3-cd) pyrene	Phenanthrene	Other SVOCs	2,3,7,8- TCDD ⁶	TEQ ⁷
SP3-11	4/12/18	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.616
SP3-12	4/12/18	ND	0.034	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.79
SP4-1	4/12/18	0.17	0.11	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2.91
SP5-1	4/13/18	ND	0.017	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.759
SP5-2	4/13/18	ND	0.014	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.670
SP5-3	4/13/18	ND	0.035	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.24
SP5-4	4/13/18	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.539
							SCRE	ENING	LEVE	LS							
Hazardous Was	ste Criteria ²	50	50	50	50	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A		1×10^{7}	N/A
DTSC SLs - res	idential ³	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A		N/A	5
DTSC SLs - commercial ³ N/A N/A N/A N/A N/A				N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A		N/A	22		
USEPA RSLs -	residential ⁴	4.1	0.24	0.24		1,800	1,800 1.1 1.1 1.1 0.11 110 2,400 1.1 N/A						N/A	5			
USEPA RSLs -	commercial ⁴	27	0.97	0.99		23,000	21	21	210	2.1	2,100	30,000	21	N/A		N/A	22

Notes: 1. All concentrations expressed in milligrams per kilogram (mg/kg) except for dioxin/furan results which are expressed in picograms per gram (pg/g) [parts per trillion]

2. California Code of Regulations Title 22, Division 4.5

3. DTSC-Modified Screening Levels (DTSC-SLs), January 2018, and DTSC HERO Note No. 2, April 2017 (preliminary remediation goals for dioxins/furans)

4. USEPA Regional Screening Levels, TR=1E-06, HQ=1"; November 2017

5. N/A = screening value not established

6. See laboratory report for other dioxin/furan compounds tested

7. TEQ = Toxic Equivalency calculated using the 2005 World Health Organization's (WHO's) toxic equivalency factors (TEFs)

APPENDIX A – Laboratory Reports

PROVIDING QUALITY ANALYTICAL SERVICES NATIONWIDE

10 April 2018

Joe Brusca Brusca Associates Inc. PO Box 332 Roseville, CA 95661 RE: Lathrop 48-Ac Property

Enclosed are the results of analyses for samples received by the laboratory on 04/03/18 10:00. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Mike Jaroudi Project Manager

Brusca Associates Inc.	Project: Lathrop 48-Ac Property	
PO Box 332	Project Number: 137-002	Reported:
Roseville CA, 95661	Project Manager: Joe Brusca	04/10/18 16:14

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
VS1	T181118-01	Soil	04/02/18 11:45	04/03/18 10:00
VS2	T181118-02	Soil	04/02/18 11:49	04/03/18 10:00
VS3	T181118-03	Soil	04/02/18 11:52	04/03/18 10:00
VS4	T181118-04	Soil	04/02/18 11:55	04/03/18 10:00
VS5	T181118-05	Soil	04/02/18 11:57	04/03/18 10:00
VS7	T181118-07	Soil	04/02/18 12:03	04/03/18 10:00
VS8	T181118-08	Soil	04/02/18 12:05	04/03/18 10:00

SunStar Laboratories, Inc.

Mike Jaroudi, Project Manager

Brusca Associates Inc.	Project: Lathrop 48-Ac Property	
PO Box 332	Project Number: 137-002	Reported:
Roseville CA, 95661	Project Manager: Joe Brusca	04/10/18 16:14

DETECTIONS SUMMARY

Sample ID: VS1	Laborate	Laboratory ID: T18			
		Reporting			
Analyte	Result	Limit	Units	Method	Notes
Barium	49	1.0	mg/kg	EPA 6010B	
Chromium	5.2	2.0	mg/kg	EPA 6010B	
Cobalt	5.0	2.0	mg/kg	EPA 6010B	
Copper	3.3	1.0	mg/kg	EPA 6010B	
Nickel	5.8	2.0	mg/kg	EPA 6010B	
Vanadium	19	5.0	mg/kg	EPA 6010B	
Zinc	21	1.0	mg/kg	EPA 6010B	
Sample ID: VS2	Laborat	ory ID:	T181118-02		

No Results Detected

Sample ID: VS3	Laborator	Laboratory ID: T181			
	R	eporting			
Analyte	Result	Limit	Units	Method	Notes
Barium	55	1.0	mg/kg	EPA 6010B	
Chromium	4.2	2.0	mg/kg	EPA 6010B	
Cobalt	4.2	2.0	mg/kg	EPA 6010B	
Copper	1.4	1.0	mg/kg	EPA 6010B	
Nickel	6.2	2.0	mg/kg	EPA 6010B	
Vanadium	16	5.0	mg/kg	EPA 6010B	
Zinc	17	1.0	mg/kg	EPA 6010B	
Sample ID: VS4	Laborator	y ID:	T181118-04		

No Results Detected

SunStar Laboratories, Inc.

Brusca Associates Inc.	Project: Lath				
PO Box 332	Project Number: 137-	002			Reported:
Roseville CA, 95661	Project Manager: Joe I	Brusca			04/10/18 16:14
Sample ID: VS5	Laborat	ory ID:	T181118-05		
		Reporting			
Analyte	Result	Limit	Units	Method	Notes
Barium	47	1.0	mg/kg	EPA 6010B	
Chromium	4.8	2.0	mg/kg	EPA 6010B	
Cobalt	4.0	2.0	mg/kg	EPA 6010B	
Nickel	3.9	2.0	mg/kg	EPA 6010B	
Vanadium	18	5.0	mg/kg	EPA 6010B	
Zinc	18	1.0	mg/kg	EPA 6010B	
		ID	T101110.07		
Sample ID: VS/	Laborat	ory ID:	1181118-07		
		Reporting			
Analyte	Result	Limit	Units	Method	Notes
C13-C28 (DRO)	950	10	mg/kg	EPA 8015B	
C29-C40 (MORO)	2100	10	mg/kg	EPA 8015B	
Barium	45	1.0	mg/kg	EPA 6010B	
Chromium	5.2	2.0	mg/kg	EPA 6010B	
Cobalt	3.7	2.0	mg/kg	EPA 6010B	
Nickel	4.1	2.0	mg/kg	EPA 6010B	
Vanadium	17	5.0	mg/kg	EPA 6010B	
Zinc	19	1.0	mg/kg	EPA 6010B	
PCB-1254	100	10	ug/kg	EPA 8082	
Sample ID: VS8	Labouat	ory ID:	T101110 00		
Cample D. VD0	Laborat	ory iD.	1101110-00		

No Results Detected

SunStar Laboratories, Inc.

Brusca Associates Inc.		Proje	ect: Lathro	p 48-Ac Pro	operty				
PO Box 332		Project Numb	ber: 137-00)2				Reported	:
Roseville CA, 95661		Project Manag	ger: Joe Br	usca				04/10/18 16	:14
			VS1						
		T181 1	18-01 (So	oil)					
Angleto	Bogult	Reporting	Unita	Dilution	Datah	Droporod	Analyzad	Mathad	Notos
Analyte	Kesuit	Liiiit	Units	Dilution	Batch	Flepaled	Allalyzeu	Method	INOLES
		SunStar L	aboratori	ies, Inc.					
Extractable Petroleum Hydrocar	bons by 8015B with Silica	a Gel Cleanuj)						
C6-C12 (GRO)	ND	10	mg/kg	1	8040323	04/03/18	04/04/18	EPA 8015B	
C13-C28 (DRO)	ND	10	"	"	"	"	"	"	
C29-C40 (MORO)	ND	10	"	"	"	"	"	"	
Surrogate: p-Terphenyl		81.4 %	65-	135	"	"	"	"	
Metals by EPA 6010B									
Antimony	ND	3.0	mg/kg	1	8040313	04/03/18	04/03/18	EPA 6010B	
Silver	ND	2.0	"	"	"	"		"	
Arsenic	ND	5.0	"	"	"	"		"	
Barium	49	1.0	"	"	"	"	"	"	
Beryllium	ND	1.0	"	"	"	"		"	
Cadmium	ND	2.0	"	"	"	"	"	"	
Chromium	5.2	2.0	"	"	"	"	"	"	
Cobalt	5.0	2.0	"	"	"	"	"	"	
Copper	3.3	1.0	"	"	"	"	"	"	
Lead	ND	3.0	"	"	"	"	"	"	
Molybdenum	ND	5.0	"	"	"	"	"	"	
Nickel	5.8	2.0	"	"	"	"	"	"	
Selenium	ND	5.0	"	"	"	"	"	"	
Thallium	ND	2.0	"	"	"	"		"	
Vanadium	19	5.0	"	"	"	"	"	"	
Zinc	21	1.0	"	"	"	"	"	"	
Cold Vapor Extraction EPA 7470	/7471								
Mercury	ND	0.10	mg/kg	1	8040314	04/03/18	04/03/18	EPA 7471A Soil	

SunStar Laboratories, Inc.

Mike Jaroudi, Project Manager

Brusca Associates Inc. PO Box 332 Roseville CA 95661	Proje Project Numb Project Manag	ect: Lathro per: 137-00	p 48-Ac Pro)2 usca	perty			Reported 04/10/18 16	: ·14
		,er: 500 Dr	useu				0 1/ 10/ 10 10	
	T1811	VS1 18-01 (So	,iI)					
	11011	.10-01 (50	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					
Analyte Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	SunStar L	aboratori	es, Inc.					
Polychlorinated Biphenyls by EPA Method 8082								
PCB-1016 ND	10	ug/kg	1	8040318	04/03/18	04/06/18	EPA 8082	
PCB-1221 ND	10	"	"	"	"	"	"	
PCB-1232 ND	10	"	"	"	"	"	"	
PCB-1242 ND	10	"	"	"	"	"	"	
PCB-1248 ND	10	"	"	"	"	"	"	
PCB-1254 ND	10	"	"	"	"	"	"	
PCB-1260 ND	10	"	"	"	"	"	"	
Surrogate: Tetrachloro-meta-xylene	119 %	35-	140	"	"	"	"	
Surrogate: Decachlorobiphenyl	139 %	35-	140	"	"	"	"	
Somivalatile Organic Compounds by FDA Mothod 8270C								
Carbazole ND	300	11g/kg	1	8040221	04/04/18	04/05/18	EPA 8270C	
Phenol ND	1000	ug/kg "	"	"	"	"	"	
Aniline ND	300					"		
2-Chlorophenol ND	1000						"	
1 4-Dichlorobenzene ND	300				"		"	
N-Nitrosodi-n-propylamine ND	300	"			"		"	
1.2 4-Trichlorobenzene ND	300	"				"	"	
4-Chloro-3-methylphenol ND	1000	"			"	"	"	
2-Methylnaphthalene ND	300	"				"	"	
1-Methylnaphthalene ND	300	"						
Acenaphthene ND	300	"			"	"		
4-Nitrophenol ND	1000	"						
2,4-Dinitrotoluene ND	300	"			"			
Pentachlorophenol ND	1000	"	"		"	"	"	
Pyrene ND	300	"	"		"		"	
Acenaphthylene ND	300	"			"	"	"	
Anthracene ND	300	"		"	"	"	"	
Benzo (a) anthracene ND	300	"			"	"	"	
Benzo (b) fluoranthene ND	300	"			"	"	"	
Benzo (k) fluoranthene ND	300	"	"	"	"	"	"	
Benzo (g,h,i) perylene ND	1000	"	"	"	"	"	"	

SunStar Laboratories, Inc.

SunStar Laboratories, Inc. PROVIDING QUALITY ANALYTICAL SERVICES NATIONWIDE

25712 Commercentre Drive Lake Forest, California 92630 949.297.5020 Phone 949.297.5027 Fax

Brusca Associates Inc. PO Box 332 Roseville CA, 95661		Proje Project Numb Project Manag	ect: Lathro per: 137-00 ger: Joe Br	op 48-Ac Pro)2 usca	perty			Reported 04/10/18 16	: 5:14
			VS1						
		T1811	18-01 (So	oil)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	ies, Inc.					
Semivolatile Organic Compounds by	EPA Method 8270C								
Benzo (a) pyrene	ND	300	ug/kg	1	8040221	04/04/18	04/05/18	EPA 8270C	
Benzyl alcohol	ND	300	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	300	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	300	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	300	"	"	"	"	"		
Bis(2-ethylhexyl)phthalate	ND	300	"	"	"	"	"		
4-Bromophenyl phenyl ether	ND	300	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	300	"	"	"	"	"	"	
4-Chloroaniline	ND	300	"	"	"	"	"	"	
2-Chloronaphthalene	ND	300	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether	ND	300	"	"	"	"	"		
Chrysene	ND	300	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	300	"	"	"	"	"	"	
Dibenzofuran	ND	300	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	300	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	300	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	300	"	"	"	"	"		
2,4-Dichlorophenol	ND	1000	"	"	"	"	"		
Diethyl phthalate	ND	300	"	"	"	"	"		
2,4-Dimethylphenol	ND	1000	"	"	"	"	"		
Dimethyl phthalate	ND	300	"	"	"	"	"		
4,6-Dinitro-2-methylphenol	ND	1000	"	"	"	"	"		
2,4-Dinitrophenol	ND	1000	"	"	"	"	"		
2,6-Dinitrotoluene	ND	1000	"	"	"	"	"		
Di-n-octyl phthalate	ND	300	"	"	"	"	"	"	
Fluoranthene	ND	300	"	"	"	"	"		
Fluorene	ND	300	"	"	"	"	"		
Hexachlorobenzene	ND	1500	"	"	"	"	"		
Hexachlorobutadiene	ND	300	"	"	"	"	"	"	
Hexachlorocyclopentadiene	ND	1000	"	"	"	"	"	"	
Hexachloroethane	ND	300	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene	ND	300	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Brusca Associates Inc. PO Box 332 Roseville CA, 95661	Project: Lathrop 48-Ac Property Project Number: 137-002 Project Manager: Joe Brusca								
	T1811	VS1 18-01 (So	il)						
Analyte Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes	
	SunStar L	aboratori	es, Inc.						
Semivolatile Organic Compounds by EPA Method 8270C									
Isophorone ND	300	ug/kg	1	8040221	04/04/18	04/05/18	EPA 8270C		
2-Methylphenol ND	1000	"		"	"	"	"		
4-Methylphenol ND	1000	"	"	"	"	"	"		
Naphthalene ND	300	"	"	"	"	"	"		
2-Nitroaniline ND	300	"	"	"	"	"	"		
3-Nitroaniline ND	300	"	"	"	"	"	"		
4-Nitroaniline ND	300	"	"	"	"	"	"		
Nitrobenzene ND	1000	"	"	"	"	"	"		
2-Nitrophenol ND	1000	"	"	"	"	"	"		
N-Nitrosodimethylamine ND	300	"	"	"	"	"	"		
N-Nitrosodiphenylamine ND	300	"	"	"	"	"	"		
2,3,5,6-Tetrachlorophenol ND	300	"	"	"	"	"	"		
2,3,4,6-Tetrachlorophenol ND	300	"	"	"	"	"	"		
Phenanthrene ND	300	"	"	"	"	"	"		
Azobenzene ND	300	"	"	"	"	"	"		
Pyridine ND	300	"	"	"	"	"	"		
2,4,5-Trichlorophenol ND	1000	"		"	"	"	"		
2,4,6-Trichlorophenol ND	1000	"	"	"	"	"	"		
Surrogate: 2-Fluorophenol	58.5 %	15-1	21	"	"	"	"		
Surrogate: Phenol-d6	61.7 %	24-1	113	"	"	"	"		
Surrogate: Nitrobenzene-d5	82.7 %	21.3-	119	"	"	"	"		
Surrogate: 2-Fluorobiphenyl	79.5 %	32.4-	102	"	"	"	"		
Surrogate: 2,4,6-Tribromophenol	73.3 %	18.1-	105	"	"	"	"		
Surrogate: Terphenyl-dl4	132 %	29.1-	130	"	"	"	"	S-GC	

SunStar Laboratories, Inc.

Brusca Associates Inc.	Project: Lathrop 48-Ac Property									
PO Box 332	Project Number: 137-002 Project Manager: Joe Brusca							Reported: 04/10/18 16:14		
Roseville CA, 95661										
			VS2							
		T181	118-02 (So	oil)						
		Reporting								
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes	
		SunStar L	aboratori	es, Inc.						
Metals by EPA 6010B										
Arsenic	ND	5.0	mg/kg	1	8040313	04/03/18	04/03/18	EPA 6010b		
Lead	ND	3.0	"	"	"	"	"	"		

SunStar Laboratories, Inc.

Mike Jaroudi, Project Manager

Brusca Associates Inc. PO Box 332	Inc. Project: Lathrop 48-Ac Property Project Number: 137-002										
Roseville CA, 95661		Project Manag	ger: Joe Br	usca				04/10/18 16	:14		
			VS3								
		T181	18-03 (So	il)							
		Reporting									
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes		
		SunStar L	aboratori	es, Inc.							
Extractable Petroleum Hydrocarb	oons by 8015B with Silica	Gel Cleanu)								
C6-C12 (GRO)	ND	10	mg/kg	1	8040323	04/03/18	04/04/18	EPA 8015B			
C13-C28 (DRO)	ND	10	"	"	"	"	"	"			
C29-C40 (MORO)	ND	10	"	"	"	"		"			
Surrogate: p-Terphenyl		72.8 %	65-	135	"	"	"	"			
Metals by EPA 6010B											
Antimony	ND	3.0	mg/kg	1	8040313	04/03/18	04/03/18	EPA 6010B			
Silver	ND	2.0	"	"	"	"	"	"			
Arsenic	ND	5.0	"	"	"	"	"	"			
Barium	55	1.0	"	"	"	"	"	"			
Beryllium	ND	1.0	"	"	"	"	"	"			
Cadmium	ND	2.0	"	"	"	"	"	"			
Chromium	4.2	2.0	"	"	"	"	"	"			
Cobalt	4.2	2.0	"	"	"	"	"	"			
Copper	1.4	1.0	"	"	"	"	"	"			
Lead	ND	3.0	"	"	"	"	"	"			
Molybdenum	ND	5.0	"	"	"	"	"	"			
Nickel	6.2	2.0	"	"	"	"	"	"			
Selenium	ND	5.0	"	"	"	"	"	"			
Thallium	ND	2.0	"	"	"	"	"	"			
Vanadium	16	5.0	"	"	"	"	"	"			
Zinc	17	1.0	"	"	"	"	"	"			
Cold Vapor Extraction EPA 7470/	7471										
Mercury	ND	0.10	mg/kg	1	8040314	04/03/18	04/03/18	EPA 7471A Soil			

SunStar Laboratories, Inc.

Brusca Associates Inc. PO Box 332	Inc. Project: Lathrop 48-Ac Property Project Number: 137-002										
Roseville CA, 95661		Project Manag	er: Joe Br	usca				04/10/18 16	:14		
			VS3								
		T1811	18-03 (So	il)							
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes		
		SunStar L	aboratori	es, Inc.							
Polychlorinated Biphenyls by EPA Me	ethod 8082										
PCB-1016	ND	10	ug/kg	1	8040318	04/03/18	04/06/18	EPA 8082			
PCB-1221	ND	10	"	"	"	"	"	"			
PCB-1232	ND	10	"	"	"	"	"	"			
PCB-1242	ND	10		"	"	"	"	"			
PCB-1248	ND	10		"	"	"	"	"			
PCB-1254	ND	10		"	"	"	"	"			
PCB-1260	ND	10		"	"	"	"	"			
Surrogate: Tetrachloro-meta-xylene		106 %	35-	140	"	"	"	"			
Surrogate: Decachlorobiphenyl		146 %	35-	140	"	"	"	"	S-GC		
Semivolatile Organic Compounds by I	EPA Method 82/0C	200	Л		0040221	04/04/10	04/05/10	ED1 00500			
	ND	300	ug/kg	1	8040221	04/04/18	04/05/18	EPA 82/0C			
Aniling	ND	1000									
	ND	300									
	ND	1000									
1,4-Dichlorobenzene	ND	300									
N-Nitrosodi-n-propylamine	ND	300									
1,2,4-Trichlorobenzene	ND	300									
4-Chloro-3-methylphenol	ND	1000									
2-Methylnaphthalene	ND	300									
l-Methylnaphthalene	ND	300		"	"	"	"	"			
Acenaphthene	ND	300		"	"	"	"	"			
4-Nitrophenol	ND	1000	"	"	"	"	"	"			
2,4-Dinitrotoluene	ND	300	"		"	"	"	"			
Pentachlorophenol	ND	1000	"	"	"	"	"	"			
Pyrene	ND	300	"	"	"	"	"	"			
Acenaphthylene	ND	300	"	"	"	"	"	"			
Anthracene	ND	300	"	"	"	"	"	"			
Benzo (a) anthracene	ND	300	"	"	"	"	"				
Benzo (b) fluoranthene	ND	300	"	"	"	"	"	"			
Benzo (k) fluoranthene	ND	300	"	"	"	"	"	"			
Benzo (g,h,i) perylene	ND	1000		"	"	"	"	"			

SunStar Laboratories, Inc.

SunStar Laboratories, Inc. PROVIDING QUALITY ANALYTICAL SERVICES NATIONWIDE

25712 Commercentre Drive Lake Forest, California 92630 949.297.5020 Phone 949.297.5027 Fax

Brusca Associates Inc.Project:Lathrop 48-Ac PropertyPO Box 332Project Number:137-002Roseville CA, 95661Project Manager:Joe Brusca04									
		T1811	VS3 18-03 (So	oil)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	ies, Inc.					
Semivolatile Organic Compounds by	EPA Method 8270C								
Benzo (a) pyrene	ND	300	ug/kg	1	8040221	04/04/18	04/05/18	EPA 8270C	
Benzyl alcohol	ND	300	"	"	"	"	"		
Bis(2-chloroethoxy)methane	ND	300	"	"	"	"	"		
Bis(2-chloroethyl)ether	ND	300	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	300	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	300	"	"	"	"	"	"	
4-Bromophenyl phenyl ether	ND	300	"	"	"	"	"		
Butyl benzyl phthalate	ND	300	"	"	"	"	"		
4-Chloroaniline	ND	300	"	"	"	"	"		
2-Chloronaphthalene	ND	300	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether	ND	300	"	"	"	"	"		
Chrysene	ND	300	"	"	"	"	"		
Dibenz (a,h) anthracene	ND	300	"	"	"	"	"		
Dibenzofuran	ND	300	"	"	"	"	"		
Di-n-butyl phthalate	ND	300	"	"	"	"	"		
1,2-Dichlorobenzene	ND	300	"	"	"	"	"		
1,3-Dichlorobenzene	ND	300	"	"	"	"	"		
2,4-Dichlorophenol	ND	1000	"	"	"	"	"		
Diethyl phthalate	ND	300	"	"	"	"	"		
2,4-Dimethylphenol	ND	1000	"	"	"	"	"	"	
Dimethyl phthalate	ND	300	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol	ND	1000	"	"	"	"	"	"	
2,4-Dinitrophenol	ND	1000	"	"	"	"	"		
2,6-Dinitrotoluene	ND	1000	"	"	"	"	"		
Di-n-octyl phthalate	ND	300	"	"	"	"	"		
Fluoranthene	ND	300	"	"	"	"	"		
Fluorene	ND	300	"	"	"	"	"		
Hexachlorobenzene	ND	1500	"	"	"	"	"		
Hexachlorobutadiene	ND	300	"	"	"	"	"	"	
Hexachlorocyclopentadiene	ND	1000	"	"	"	"	"	"	
Hexachloroethane	ND	300	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene	ND	300	"	"		"	"	"	

SunStar Laboratories, Inc.

Brusca Associates Inc. PO Box 332 Roseville CA, 95661	Project: Lathrop 48-Ac Property Project Number: 137-002 Project Manager: Joe Brusca									
		T1811	VS3 18-03 (So	oil)						
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes	
		SunStar L	aboratori	ies, Inc.						
Semivolatile Organic Compounds by EPA Me	thod 8270C	2								
Isophorone	ND	300	ug/kg	1	8040221	04/04/18	04/05/18	EPA 8270C		
2-Methylphenol	ND	1000	"	"	"	"	"	"		
4-Methylphenol	ND	1000	"	"	"	"	"	"		
Naphthalene	ND	300	"	"	"	"	"	"		
2-Nitroaniline	ND	300	"	"	"	"	"	"		
3-Nitroaniline	ND	300	"	"	"	"	"	"		
4-Nitroaniline	ND	300	"	"	"	"	"	"		
Nitrobenzene	ND	1000	"	"	"	"	"	"		
2-Nitrophenol	ND	1000	"	"	"	"	"	"		
N-Nitrosodimethylamine	ND	300	"	"	"	"	"	"		
N-Nitrosodiphenylamine	ND	300	"	"	"	"	"	"		
2,3,5,6-Tetrachlorophenol	ND	300	"	"	"	"	"	"		
2,3,4,6-Tetrachlorophenol	ND	300	"	"	"	"	"	"		
Phenanthrene	ND	300	"	"	"	"	"	"		
Azobenzene	ND	300	"	"	"	"	"	"		
Pyridine	ND	300	"	"	"	"	"	"		
2,4,5-Trichlorophenol	ND	1000	"	"	"	"	"	"		
2,4,6-Trichlorophenol	ND	1000	"	"	"	"	"	"		
Surrogate: 2-Fluorophenol		66.0 %	15-	121	"	"	"	"		
Surrogate: Phenol-d6		69.0 %	24-	113	"	"	"	"		
Surrogate: Nitrobenzene-d5		90.2 %	21.3	-119	"	"	"	"		
Surrogate: 2-Fluorobiphenyl		84.5 %	32.4	-102	"	"	"	"		
Surrogate: 2,4,6-Tribromophenol		77.8 %	8 % 18.1-105		"	"	"	"		
Surrogate: Terphenyl-dl4		133 %	29.1	-130	"	"	"	"	S-GC	

SunStar Laboratories, Inc.

Brusca Associates Inc.	Brusca Associates Inc. Project: Lathrop 48-Ac Property											
PO Box 332		Project Num	per: 137-00)2				Reported	:			
Roseville CA, 95661	1	Project Manager: Joe Brusca										
			VS4									
		T181	118-04 (So	oil)								
		Reporting										
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes			
		SunStar L	aboratori	ies, Inc.								
Metals by EPA 6010B												
Arsenic	ND	5.0	mg/kg	1	8040313	04/03/18	04/03/18	EPA 6010b				
Lead	ND	3.0	"	"		"	"	"				

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Mike Jaroudi, Project Manager

Brusca Associates Inc.		Proj	ect: Lathro	p 48-Ac Pro	operty					
PO Box 332		Project Numb	per: 137-00)2				Reported:		
Roseville CA, 95661	Η	Project Manag	ger: Joe Br	usca				04/10/18 16	:14	
			VS5							
		T181	118-05 (So	il)						
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes	
						.1				
		SunStar L	aboratori	es, Inc.						
Extractable Petroleum Hydrocart	oons by 8015B with Silica (Gel Cleanu	þ							
C6-C12 (GRO)	ND	10	mg/kg	1	8040323	04/03/18	04/04/18	EPA 8015B		
C13-C28 (DRO)	ND	10	"	"	"	"	"	"		
C29-C40 (MORO)	ND	10	"	"	"	"	"	"		
Surrogate: p-Terphenyl		71.9 %	65-	135	"	"	"	"		
Metals by EPA 6010B										
Antimony	ND	3.0	mg/kg	1	8040313	04/03/18	04/03/18	EPA 6010B		
Silver	ND	2.0	"	"	"	"	"	"		
Arsenic	ND	5.0	"	"	"	"	"	"		
Barium	47	1.0	"	"	"	"	"	"		
Beryllium	ND	1.0	"	"	"	"	"	"		
Cadmium	ND	2.0	"	"	"	"	"	"		
Chromium	4.8	2.0	"	"	"	"	"	"		
Cobalt	4.0	2.0	"	"	"	"	"	"		
Copper	ND	1.0	"	"	"	"	"	"		
Lead	ND	3.0	"	"	"	"	"	"		
Molybdenum	ND	5.0	"	"	"	"	"	"		
Nickel	3.9	2.0	"	"	"	"	"	"		
Selenium	ND	5.0	"	"	"	"	"	"		
Thallium	ND	2.0	"	"	"	"	"	"		
Vanadium	18	5.0	"	"	"	"	"	"		
Zinc	18	1.0	"	"	"	"	"	"		
Cold Vapor Extraction EPA 7470/	7471									
Mercury	ND	0.10	mg/kg	1	8040314	04/03/18	04/03/18	EPA 7471A Soil		

SunStar Laboratories, Inc.

Brusca Associates Inc. PO Box 332 Roseville CA, 95661	Proj Project Numl Project Manaş	ect: Lathro ber: 137-0 ger: Joe B	op 48-Ac Pro 02 rusca	perty			Reported 04/10/18 16	: 5:14
	T181	VS5 118-05 (S	oil)					
	Reporting		,					
Analyte Result	t Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	SunStar L	aborator	ies, Inc.					
Polychlorinated Biphenyls by EPA Method 8082								
PCB-1016 ND	10	ug/kg	1	8040318	04/03/18	04/06/18	EPA 8082	
PCB-1221 ND	10	"	"	"	"	"	"	
PCB-1232 ND	10	"	"	"	"	"		
PCB-1242 ND	10	"	"	"	"	"		
PCB-1248 ND	10	"	"	"	"	"	"	
PCB-1254 ND	10	"	"	"	"	"	"	
PCB-1260 ND	10	"	"	"	"	"	"	
Surrogate: Tetrachloro-meta-xylene	124 %	35	-140	"	"	"	"	
Surrogate: Decachlorobiphenyl	137 %	35	-140	"	"	"	"	
Semivolatile Organic Compounds by EPA Method 827	70C							
Carbazole ND	300	uø/kø	1	8040221	04/04/18	04/05/18	EPA 8270C	
Phenol ND	1000	"		"	"	"	"	
Aniline ND	300	"			"			
2-Chlorophenol ND	1000	"			"			
1,4-Dichlorobenzene ND	300	"	"		"	"		
N-Nitrosodi-n-propylamine ND	300	"			"	"		
1.2.4-Trichlorobenzene ND	300	"			"	"		
4-Chloro-3-methylphenol ND	1000	"	"	"	"	"	"	
1-Methylnaphthalene ND	300	"	"	"	"	"	"	
2-Methylnaphthalene ND	300	"	"	"	"			
Acenaphthene ND	300	"	"	"	"	"	"	
4-Nitrophenol ND	1000	"	"	"	"			
2,4-Dinitrotoluene ND	300	"		"	"	"		
Pentachlorophenol ND	1000	"		"	"	"		
Pyrene ND	300	"	"	"	"	"	"	
Acenaphthylene ND	300	"	"	"	"	"	"	
Anthracene ND	300	"	"	"	"	"	"	
Benzo (a) anthracene ND	300	"	"		"	"	"	
Benzo (b) fluoranthene ND	300	"	"		"	"	"	
Benzo (k) fluoranthene ND	300	"	"		"	"	"	
Benzo (g,h,i) perylene ND	1000	"	"	"	"	"	"	

SunStar Laboratories, Inc.

SunStar Laboratories, Inc. Providing Quality Analytical Services Nationwide

25712 Commercentre Drive Lake Forest, California 92630 949.297.5020 Phone 949.297.5027 Fax

Brusca Associates Inc.Project:Lathrop 48-Ac PropertyPO Box 332Project Number:137-002Roseville CA, 95661Project Manager:Joe Brusca04									
		T1811	VS5 18-05 (So	oil)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	ies, Inc.					
Semivolatile Organic Compounds by	EPA Method 8270C								
Benzo (a) pyrene	ND	300	ug/kg	1	8040221	04/04/18	04/05/18	EPA 8270C	
Benzyl alcohol	ND	300	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	300	"	"	"	"	"		
Bis(2-chloroethyl)ether	ND	300	"	"	"	"	"		
Bis(2-chloroisopropyl)ether	ND	300	"	"	"	"	"		
Bis(2-ethylhexyl)phthalate	ND	300	"	"	"	"	"		
4-Bromophenyl phenyl ether	ND	300	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	300	"	"	"	"	"	"	
4-Chloroaniline	ND	300	"	"	"	"	"	"	
2-Chloronaphthalene	ND	300	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether	ND	300	"	"	"	"	"		
Chrysene	ND	300	"	"	"	"	"		
Dibenz (a,h) anthracene	ND	300	"	"	"	"	"		
Dibenzofuran	ND	300	"	"	"	"	"		
Di-n-butyl phthalate	ND	300	"	"	"	"	"		
1,2-Dichlorobenzene	ND	300	"	"	"	"	"		
1,3-Dichlorobenzene	ND	300	"	"	"	"	"		
2,4-Dichlorophenol	ND	1000	"	"	"	"	"		
Diethyl phthalate	ND	300	"	"	"	"	"		
2,4-Dimethylphenol	ND	1000	"	"	"	"	"		
Dimethyl phthalate	ND	300	"	"	"	"	"		
4,6-Dinitro-2-methylphenol	ND	1000	"	"	"	"	"		
2,4-Dinitrophenol	ND	1000	"	"	"	"	"		
2,6-Dinitrotoluene	ND	1000	"	"	"	"	"		
Di-n-octyl phthalate	ND	300	"	"	"	"	"		
Fluoranthene	ND	300	"	"	"	"	"		
Fluorene	ND	300	"	"	"	"	"		
Hexachlorobenzene	ND	1500	"	"	"	"	"		
Hexachlorobutadiene	ND	300	"	"	"	"	"	"	
Hexachlorocyclopentadiene	ND	1000	"	"	"	"	"		
Hexachloroethane	ND	300	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene	ND	300	"	"		"	"	"	

SunStar Laboratories, Inc.

Brusca Associates Inc. PO Box 332 Roseville CA, 95661		Reported: 04/10/18 16:14							
		T1811	VS5 18-05 (So	oil)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	ies, Inc.					
Semivolatile Organic Compounds by EPA	Method 8270C								
Isophorone	ND	300	ug/kg	1	8040221	04/04/18	04/05/18	EPA 8270C	
2-Methylphenol	ND	1000	"	"	"	"	"	"	
4-Methylphenol	ND	1000	"	"	"	"	"	"	
Naphthalene	ND	300	"	"	"	"	"	"	
2-Nitroaniline	ND	300	"	"	"	"	"	"	
3-Nitroaniline	ND	300	"	"	"	"	"	"	
4-Nitroaniline	ND	300	"	"	"	"	"	"	
Nitrobenzene	ND	1000	"	"	"	"	"	"	
2-Nitrophenol	ND	1000	"	"	"	"	"	"	
N-Nitrosodimethylamine	ND	300	"	"	"	"	"	"	
N-Nitrosodiphenylamine	ND	300	"	"	"	"	"	"	
2,3,5,6-Tetrachlorophenol	ND	300	"	"	"	"	"	"	
2,3,4,6-Tetrachlorophenol	ND	300	"	"	"	"	"	"	
Phenanthrene	ND	300	"	"	"	"	"	"	
Azobenzene	ND	300	"	"	"	"	"	"	
Pyridine	ND	300	"	"	"	"	"	"	
2,4,5-Trichlorophenol	ND	1000	"	"	"	"	"	"	
2,4,6-Trichlorophenol	ND	1000	"	"	"	"	"	"	
Surrogate: 2-Fluorophenol		66.2 %	15-	121	"	"	"	"	
Surrogate: Phenol-d6		67.8 %	24-	113	"	"	"	"	
Surrogate: Nitrobenzene-d5		91.4 %	21.3	-119	"	"	"	"	
Surrogate: 2-Fluorobiphenyl		83.8 %	32.4	-102	"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		76.0 %	18.1	-105	"	"	"	"	
Surrogate: Terphenyl-dl4		126 %	29.1	-130	"	"	"	"	

SunStar Laboratories, Inc.

Brusca Associates Inc. PO Box 332 Roseville CA, 95661		Project: Lathrop 48-Ac Property Project Number: 137-002 Project Manager: Joe Brusca VS7								
		T181	118-07 (So	il)						
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes	
		SunStar L	aboratori	es, Inc.						
Extractable Petroleum Hydrocarl	bons by 8015B with Silic	a Gel Cleanu	p							
C6-C12 (GRO)	ND	10	mg/kg	1	8040323	04/03/18	04/04/18	EPA 8015B		
C13-C28 (DRO)	950	10	"	"	"	"	"	"		
C29-C40 (MORO)	2100	10	"	"	"	"	"	"		
Surrogate: p-Terphenyl		87.6 %	65	135	"	"	"	"		
Metals by EPA 6010B										
Antimony	ND	3.0	mg/kg	1	8040313	04/03/18	04/03/18	EPA 6010B		
Silver	ND	2.0	"	"	"	"	"	"		
Arsenic	ND	5.0	"	"	"	"	"	"		
Barium	45	1.0	"	"	"	"	"	"		
Beryllium	ND	1.0	"	"	"	"	"	"		
Cadmium	ND	2.0	"	"	"	"	"	"		
Chromium	5.2	2.0	"	"	"	"	"	"		
Cobalt	3.7	2.0	"	"	"	"	"	"		
Copper	ND	1.0	"	"	"	"	"	"		
Lead	ND	3.0	"	"	"	"	"	"		
Molybdenum	ND	5.0	"	"	"	"	"	"		
Nickel	4.1	2.0	"	"	"	"	"	"		
Selenium	ND	5.0	"	"	"	"	"	"		
Thallium	ND	2.0	"	"	"	"	"	"		
Vanadium	17	5.0	"	"	"	"	"	"		
Zinc	19	1.0	"	"	"	"	"	"		
Cold Vapor Extraction EPA 7470/	7471									
Mercury	ND	0.10	mg/kg	1	8040314	04/03/18	04/03/18	EPA 7471A Soil		

SunStar Laboratories, Inc.

Brusca Associates Inc. PO Box 332 Roseville CA, 95661		Proje Project Numb Project Manag	ect: Lathro ber: 137-00 ger: Joe Br	p 48-Ac Pro)2 usca	perty			Reported 04/10/18 16	: :14
		T1811	VS7 118-07 (So	oil)					
		Reporting			D (1				
Analyte	Kesuit	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Polychlorinated Biphenyls by EPA M	lethod 8082								
PCB-1016	ND	10	ug/kg	1	8040318	04/03/18	04/06/18	EPA 8082	
PCB-1221	ND	10	"	"	"	"	"	"	
PCB-1232	ND	10	"	"	"	"	"	"	
PCB-1242	ND	10	"	"	"	"	"	"	
PCB-1248	ND	10	"	"	"	"	"	"	
PCB-1254	100	10	"	"	"	"	"	"	
PCB-1260	ND	10	"	"	"	"	"	"	
Surrogate: Tetrachloro-meta-xylene		107 %	35-	140	"	"	"	"	
Surrogate: Decachlorobiphenyl		106 %	35-	140	"	"	"	"	
Semivolatile Organic Compounds by	EPA Method 8270C								
Carbazole	ND	300	119/kg	1	8040221	04/04/18	04/05/18	EPA 8270C	
Phenol	ND	1000	"	"	"	"	"	"	
Aniline	ND	300	"	"		"		"	
2-Chlorophenol	ND	1000	"	"		"		"	
1.4-Dichlorobenzene	ND	300	"	"		"		"	
N-Nitrosodi-n-propylamine	ND	300	"	"		"		"	
1.2.4-Trichlorobenzene	ND	300	"	"		"		"	
4-Chloro-3-methylphenol	ND	1000	"	"		"			
1-Methylnaphthalene	ND	300	"	"	"	"			
2-Methylnaphthalene	ND	300	"	"	"	"		"	
Acenaphthene	ND	300	"	"	"	"		"	
4-Nitrophenol	ND	1000	"	"	"	"		"	
2,4-Dinitrotoluene	ND	300	"	"	"	"		"	
Pentachlorophenol	ND	1000	"	"	"	"		"	
Pyrene	ND	300	"	"	"	"	"	"	
Acenaphthylene	ND	300	"	"	"	"	"	"	
Anthracene	ND	300	"	"	"	"	"	"	
Benzo (a) anthracene	ND	300	"	"		"	"	"	
Benzo (b) fluoranthene	ND	300	"	"		"	"	"	
Benzo (k) fluoranthene	ND	300	"	"		"	"	"	
Benzo (g,h,i) perylene	ND	1000	"	"	"	"	"	"	

SunStar Laboratories, Inc.

SunStar Laboratories, Inc. PROVIDING QUALITY ANALYTICAL SERVICES NATIONWIDE

25712 Commercentre Drive Lake Forest, California 92630 949.297.5020 Phone 949.297.5027 Fax

Brusca Associates Inc.Project:Lathrop 48-Ac PropertyPO Box 332Project Number:137-002Roseville CA, 95661Project Manager:Joe Brusca									
		T1811	VS7 18-07 (So	oil)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aborator	ies, Inc.		-			
Semivolatile Organic Compounds by EPA Me	ethod 8270C								
Benzo (a) pyrene	ND	300	ug/kg	1	8040221	04/04/18	04/05/18	EPA 8270C	
Benzyl alcohol	ND	300	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	300	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	300	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	300	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	300	"	"	"	"	"	"	
4-Bromophenyl phenyl ether	ND	300	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	300	"	"	"	"	"	"	
4-Chloroaniline	ND	300	"	"	"	"	"	"	
2-Chloronaphthalene	ND	300	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether	ND	300	"	"	"	"	"	"	
Chrysene	ND	300	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	300	"	"	"	"	"	"	
Dibenzofuran	ND	300	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	300	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	300	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	300	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	1000	"	"	"	"	"	"	
Diethyl phthalate	ND	300	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	1000	"	"	"	"		"	
Dimethyl phthalate	ND	300	"	"	"	"		"	
4,6-Dinitro-2-methylphenol	ND	1000	"	"	"	"		"	
2,4-Dinitrophenol	ND	1000	"	"	"	"		"	
2,6-Dinitrotoluene	ND	1000	"	"	"	"	"	"	
Di-n-octyl phthalate	ND	300	"	"	"	"		"	
Fluoranthene	ND	300	"	"	"	"		"	
Fluorene	ND	300	"	"	"	"		"	
Hexachlorobenzene	ND	1500	"	"	"	"		"	
Hexachlorobutadiene	ND	300	"	"	"	"	"	"	
Hexachlorocyclopentadiene	ND	1000	"	"	"	"	"	"	
Hexachloroethane	ND	300	"	"	"	"	"		
Indeno (1,2,3-cd) pyrene	ND	300	"	"		"	"	"	

SunStar Laboratories, Inc.

Brusca Associates Inc. PO Box 332 Roseville CA, 95661		Proje Project Numb Project Manag	ect: Lathro per: 137-00 ger: Joe Bro	p 48-Ac Pro 2 usca	perty			Reported : 04/10/18 16	:14
		T1811	VS7 18-07 (So	il)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Semivolatile Organic Compounds by	EPA Method 8270C								
Isophorone	ND	300	ug/kg	1	8040221	04/04/18	04/05/18	EPA 8270C	
2-Methylphenol	ND	1000		"	"	"	"	"	
4-Methylphenol	ND	1000	"	"	"	"	"	"	
Naphthalene	ND	300	"	"	"	"	"	"	
2-Nitroaniline	ND	300	"	"	"	"	"	"	
3-Nitroaniline	ND	300	"	"	"	"	"	"	
4-Nitroaniline	ND	300		"	"	"	"	"	
Nitrobenzene	ND	1000		"	"	"	"	"	
2-Nitrophenol	ND	1000		"	"	"	"	"	
N-Nitrosodimethylamine	ND	300		"	"	"	"	"	
N-Nitrosodiphenylamine	ND	300	"	"	"	"	"	"	
2,3,5,6-Tetrachlorophenol	ND	300	"	"	"	"	"	"	
2,3,4,6-Tetrachlorophenol	ND	300	"	"	"	"	"	"	
Phenanthrene	ND	300	"	"	"	"	"	"	
Azobenzene	ND	300		"	"	"	"	"	
Pyridine	ND	300		"	"	"	"	"	
2,4,5-Trichlorophenol	ND	1000		"	"	"	"	"	
2,4,6-Trichlorophenol	ND	1000	"	"	"	"	"	"	
Surrogate: 2-Fluorophenol		55.5 %	15-	121	"	"	"	"	
Surrogate: Phenol-d6		59.7 %	24-	113	"	"	"	"	
Surrogate: Nitrobenzene-d5		81.5 %	21.3	-119	"	"	"	"	
Surrogate: 2-Fluorobiphenyl		78.4 %	32.4-	-102	"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		62.0 %	18.1-	-105	"	"	"	"	
Surrogate: Terphenyl-dl4		92.8 %	29.1-	-130	"	"	"	"	

SunStar Laboratories, Inc.

Brusca Associates Inc.	usca Associates Inc. Project: Lathrop 48-Ac Property											
PO Box 332		Project Number: 137-002										
Roseville CA, 95661	I	Project Manager: Joe Brusca										
			VS8									
		T181	118-08 (So	oil)								
		Reporting										
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes			
		SunStar L	aboratori	ies, Inc.								
Metals by EPA 6010B												
Arsenic	ND	5.0	mg/kg	1	8040313	04/03/18	04/03/18	EPA 6010b				
Lead	ND	3.0	"	"		"	"	"				

SunStar Laboratories, Inc.

Mike Jaroudi, Project Manager

Brusca Associates Inc.	Project: Lathrop 48-Ac Property	
PO Box 332	Project Number: 137-002	Reported:
Roseville CA, 95661	Project Manager: Joe Brusca	04/10/18 16:14

Extractable Petroleum Hydrocarbons by 8015B with Silica Gel Cleanup - Quality Control

SunStar Laboratories, Inc.

		Deventione		G., il.,	C		0/DEC		DDD	
Analyte	Result	Limit	Units	Spike Level	Result	%REC	%REC Limits	RPD	Limit	Notes
Batch 8040323 - EPA 3550B GC										
Blank (8040323-BLK1)				Prepared: (04/03/18 A	nalyzed: 04	/04/18			
C6-C12 (GRO)	ND	10	mg/kg							
C13-C28 (DRO)	ND	10	"							
C29-C40 (MORO)	ND	10	"							
Surrogate: p-Terphenyl	71.0		"	100		71.0	65-135			
LCS (8040323-BS1)				Prepared &	k Analyzed:	04/03/18				
C13-C28 (DRO)	500	10	mg/kg	495		100	75-125			
Surrogate: p-Terphenyl	79.8		"	99.0		80.6	65-135			
LCS Dup (8040323-BSD1)				Prepared &	analyzed:	04/03/18				
C13-C28 (DRO)	540	10	mg/kg	505		106	75-125	7.88	20	
Surrogate: p-Terphenyl	82.4		"	101		81.6	65-135			

SunStar Laboratories, Inc.

SunStar Laboratories, Inc. Providing Quality Analytical Services Nationwide

25712 Commercentre Drive Lake Forest, California 92630 949.297.5020 Phone 949.297.5027 Fax

Brusca Associates Inc.	Project: Lathrop 48-Ac Property	
PO Box 332	Project Number: 137-002	Reported:
Roseville CA, 95661	Project Manager: Joe Brusca	04/10/18 16:14

Metals by EPA 6010B - Quality Control

SunStar Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch 8040313 - EPA 3050B

Blank (8040313-BLK1)				Prepared & Anal	lyzed: 04/03/18		
Antimony	ND	3.0	mg/kg				
Silver	ND	2.0	"				
Arsenic	ND	5.0	"				
Arsenic	ND	5.0	"				
Barium	ND	1.0	"				
Beryllium	ND	1.0	"				
Cadmium	ND	2.0	"				
Chromium	ND	2.0	"				
Cobalt	ND	2.0	"				
Copper	ND	1.0	"				
Lead	ND	3.0	"				
Molybdenum	ND	5.0	"				
Nickel	ND	2.0	"				
Lead	ND	3.0	"				
Selenium	ND	5.0	"				
Thallium	ND	2.0	"				
Vanadium	ND	5.0	"				
Zinc	ND	1.0	"				
LCS (8040313-BS1)				Prepared & Anal	lyzed: 04/03/18		
Arsenic	103	5.0	mg/kg	100	103	75-125	
Arsenic	103	5.0	"	100	103	75-125	
Barium	104	1.0	"	100	104	75-125	
Cadmium	103	2.0	"	100	103	75-125	
Chromium	104	2.0	"	100	104	75-125	
Lead	109	3.0	"	100	109	75-125	
Lead	109	3.0	"	100	109	75-125	

SunStar Laboratories, Inc.

SunStar Laboratories, Inc. PROVIDING QUALITY ANALYTICAL SERVICES NATIONWIDE

25712 Commercentre Drive Lake Forest, California 92630 949.297.5020 Phone 949.297.5027 Fax

Brusca Associates Inc.	Project: Lathrop 48-Ac Property	
PO Box 332	Project Number: 137-002	Reported:
Roseville CA, 95661	Project Manager: Joe Brusca	04/10/18 16:14

Metals by EPA 6010B - Quality Control

SunStar Laboratories, Inc.

Analyte Result Limit Units Level Result %REC Limits RPD Limit Notes			Reporting		Spike	Source		%REC		RPD	
	Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch 8040313 - EPA 3050B

Matrix Spike (8040313-MS1)	Source	: T181119-(01	Prepared &	Analyzed:	04/03/18				
Arsenic	90.6	5.0	mg/kg	100	1.36	89.3	75-125			
Arsenic	90.6	5.0	"	100	1.36	89.3	75-125			
Barium	161	1.0	"	100	66.0	95.4	75-125			
Cadmium	90.0	2.0	"	100	0.633	89.3	75-125			
Chromium	99.2	2.0	"	100	8.01	91.2	75-125			
Lead	95.6	3.0	"	100	ND	95.6	75-125			
Lead	95.6	3.0	"	100	2.80	92.8	75-125			
Matrix Spike Dup (8040313-MSD1)	Source	: T181119-(01	Prepared &	Analyzed:	04/03/18				
Arsenic	88.3	5.0	mg/kg	97.1	1.36	89.5	75-125	2.59	20	
Arsenic	88.3	5.0	"	97.1	1.36	89.5	75-125	2.59	20	
Barium	156	1.0	"	97.1	66.0	92.8	75-125	3.29	20	
Cadmium	87.9	2.0	"	97.1	0.633	89.9	75-125	2.30	20	
Chromium	96.9	2.0	"	97.1	8.01	91.6	75-125	2.36	20	
Lead	94.6	3.0	"	97.1	ND	97.5	75-125	1.04	20	
Lead	94.6	3.0	"	97.1	2.80	94.6	75-125	1.04	20	

SunStar Laboratories, Inc.

Mike Jaroudi, Project Manager

Brusca Associates Inc.	Project: Lathrop 48-Ac Property	
PO Box 332	Project Number: 137-002	Reported:
Roseville CA, 95661	Project Manager: Joe Brusca	04/10/18 16:14

Cold Vapor Extraction EPA 7470/7471 - Quality Control

SunStar Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 8040314 - EPA 7471A Soil										
Blank (8040314-BLK1)				Prepared &	Analyzed:	04/03/18				
Mercury	ND	0.10	mg/kg							
LCS (8040314-BS1)				Prepared &	Analyzed:	04/03/18				
Mercury	0.431	0.10	mg/kg	0.417		104	80-120			
Matrix Spike (8040314-MS1)	Sourc	e: T181119-(Prepared & Analyzed: 04/03/18							
Mercury	0.395	0.10	mg/kg	0.391	ND	101	75-125			
Matrix Spike Dup (8040314-MSD1)	Sourc	e: T181119-(01	Prepared &	Analyzed:	04/03/18				
Mercury	0.426	0.10	mg/kg	0.417	ND	102	75-125	7.63	20	

SunStar Laboratories, Inc.

Brusca Associates Inc.	Project: Lathrop 48-Ac Property	
PO Box 332	Project Number: 137-002	Reported:
Roseville CA, 95661	Project Manager: Joe Brusca	04/10/18 16:14

Polychlorinated Biphenyls by EPA Method 8082 - Quality Control

SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 8040318 - EPA 3550 ECD/GCMS										
Blank (8040318-BLK1)				Prepared: (04/03/18 A	nalyzed: 04	/06/18			
PCB-1016	ND	10	ug/kg							
PCB-1221	ND	10	"							
PCB-1232	ND	10	"							
PCB-1242	ND	10	"							
PCB-1248	ND	10	"							
PCB-1254	ND	10	"							
PCB-1260	ND	10	"							
Surrogate: Tetrachloro-meta-xylene	11.0		"	9.80		112	35-140			
Surrogate: Decachlorobiphenyl	12.7		"	9.80		130	35-140			
LCS (8040318-BS1)				Prepared: (04/03/18 A	nalyzed: 04	/06/18			
PCB-1016	72.2	10	ug/kg	98.0		73.6	40-130			
PCB-1260	66.4	10	"	98.0		67.7	40-130			
Surrogate: Tetrachloro-meta-xylene	11.7		"	9.80		119	35-140			
Surrogate: Decachlorobiphenyl	14.0		"	9.80		142	35-140			S-GC
Matrix Spike (8040318-MS1)	Sou	rce: T181118-0	01	Prepared: (04/03/18 A	nalyzed: 04	/06/18			
PCB-1016	53.3	10	ug/kg	99.0	ND	53.8	40-130			
PCB-1260	58.4	10	"	99.0	ND	59.0	40-130			
Surrogate: Tetrachloro-meta-xylene	12.2		"	9.90		123	35-140			
Surrogate: Decachlorobiphenyl	16.5		"	9.90		166	35-140			S-GC
Matrix Spike Dup (8040318-MSD1)	Sou	rce: T181118-(01	Prepared: (04/03/18 A	nalyzed: 04	/06/18			
PCB-1016	50.4	10	ug/kg	99.0	ND	50.9	40-130	5.54	30	
PCB-1260	50.6	10	"	99.0	ND	51.1	40-130	14.4	30	
Surrogate: Tetrachloro-meta-xylene	11.2		"	9.90		113	35-140			
Surrogate: Decachlorobiphenvl	12.4		"	9.90		125	35-140			

SunStar Laboratories, Inc.

Brusca Associates Inc.	Project: Lathrop 48-Ac Property	
PO Box 332	Project Number: 137-002	Reported:
Roseville CA, 95661	Project Manager: Joe Brusca	04/10/18 16:14

Semivolatile Organic Compounds by EPA Method 8270C - Quality Control

SunStar Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch 8040221 - EPA 3550 ECD/GCMS

Blank (8040221-BLK1)				Prepared: 04/04/18 Analyzed: 04/05/18
Carbazole	ND	300	ug/kg	
Aniline	ND	300	"	
Phenol	ND	1000	"	
2-Chlorophenol	ND	1000	"	
1,4-Dichlorobenzene	ND	300	"	
N-Nitrosodi-n-propylamine	ND	300	"	
1,2,4-Trichlorobenzene	ND	300	"	
4-Chloro-3-methylphenol	ND	1000	"	
2-Methylnaphthalene	ND	300	"	
1-Methylnaphthalene	ND	300	"	
Acenaphthene	ND	300	"	
4-Nitrophenol	ND	1000	"	
2,4-Dinitrotoluene	ND	300	"	
Pentachlorophenol	ND	1000	"	
Pyrene	ND	300	"	
Acenaphthylene	ND	300	"	
Anthracene	ND	300	"	
Benzo (a) anthracene	ND	300	"	
Benzo (b) fluoranthene	ND	300	"	
Benzo (k) fluoranthene	ND	300	"	
Benzo (g,h,i) perylene	ND	1000	"	
Benzo (a) pyrene	ND	300	"	
Benzyl alcohol	ND	300	"	
Bis(2-chloroethoxy)methane	ND	300	"	
Bis(2-chloroethyl)ether	ND	300	"	
Bis(2-chloroisopropyl)ether	ND	300	"	
Bis(2-ethylhexyl)phthalate	ND	300	"	
4-Bromophenyl phenyl ether	ND	300	"	
Butyl benzyl phthalate	ND	300	"	
4-Chloroaniline	ND	300	"	
2-Chloronaphthalene	ND	300	"	
4-Chlorophenyl phenyl ether	ND	300	"	
Chrysene	ND	300	"	
Dibenz (a,h) anthracene	ND	300	"	
Dibenzofuran	ND	300	"	
Di-n-butyl phthalate	ND	300	"	

SunStar Laboratories, Inc.

Brusca Associates Inc.	Project: Lathrop 48-Ac Property	
PO Box 332	Project Number: 137-002	Reported:
Roseville CA, 95661	Project Manager: Joe Brusca	04/10/18 16:14

Semivolatile Organic Compounds by EPA Method 8270C - Quality Control

SunStar Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch 8040221 - EPA 3550 ECD/GCMS

Blank (8040221-BLK1)				Prepared: 04/04/18 Analyzed: 04/05/18
1,2-Dichlorobenzene	ND	300	ug/kg	
1,3-Dichlorobenzene	ND	300		
2,4-Dichlorophenol	ND	1000	"	
Diethyl phthalate	ND	300		
2,4-Dimethylphenol	ND	1000		
Dimethyl phthalate	ND	300		
4,6-Dinitro-2-methylphenol	ND	1000	"	
2,4-Dinitrophenol	ND	1000		
2,6-Dinitrotoluene	ND	1000		
Di-n-octyl phthalate	ND	300		
Fluoranthene	ND	300		
Fluorene	ND	300		
Hexachlorobenzene	ND	1500	"	
Hexachlorobutadiene	ND	300		
Hexachlorocyclopentadiene	ND	1000	"	
Hexachloroethane	ND	300		
Indeno (1,2,3-cd) pyrene	ND	300		
Isophorone	ND	300		
2-Methylphenol	ND	1000		
4-Methylphenol	ND	1000		
Naphthalene	ND	300		
2-Nitroaniline	ND	300	"	
3-Nitroaniline	ND	300	"	
4-Nitroaniline	ND	300	"	
Nitrobenzene	ND	1000	"	
2-Nitrophenol	ND	1000	"	
N-Nitrosodimethylamine	ND	300	"	
N-Nitrosodiphenylamine	ND	300	"	
2,3,5,6-Tetrachlorophenol	ND	300	"	
2,3,4,6-Tetrachlorophenol	ND	300	"	
Phenanthrene	ND	300	"	
Azobenzene	ND	300	"	
Pyridine	ND	300		
2,4,5-Trichlorophenol	ND	1000		
2,4,6-Trichlorophenol	ND	1000	"	

SunStar Laboratories, Inc.

Brusca Associates Inc.	Project: Lathrop 48-Ac Property	
PO Box 332	Project Number: 137-002	Reported:
Roseville CA, 95661	Project Manager: Joe Brusca	04/10/18 16:14

Semivolatile Organic Compounds by EPA Method 8270C - Quality Control

SunStar Laboratories, Inc.

	D	Reporting	T T 1:	Spike	Source	0/852	%REC	0.000	RPD	N .
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 8040221 - EPA 3550 ECD/GCMS										
Blank (8040221-BLK1)				Prepared: (04/04/18 A	nalyzed: 04	/05/18			
Surrogate: 2-Fluorophenol	1990		ug/kg	3440		58.0	15-121			
Surrogate: Phenol-d6	2040		"	3440		59.4	24-113			
Surrogate: Nitrobenzene-d5	2900		"	3440		84.3	21.3-119			
Surrogate: 2-Fluorobiphenyl	2670		"	3440		77.7	32.4-102			
Surrogate: 2,4,6-Tribromophenol	2500		"	3440		72.7	18.1-105			
Surrogate: Terphenyl-dl4	4460		"	3440		130	29.1-130			
LCS (8040221-BS1)				Prepared: (04/02/18 A	nalyzed: 04	/05/18			
Phenol	1840	1000	ug/kg	3230		56.9	34-114			
2-Chlorophenol	1850	1000	"	3230		57.2	34-114			
1,4-Dichlorobenzene	1970	300	"	3230		61.0	34-114			
N-Nitrosodi-n-propylamine	2490	300	"	3230		77.3	30-110			
1,2,4-Trichlorobenzene	2180	300	"	3230		67.5	39-119			
4-Chloro-3-methylphenol	2620	1000	"	3230		81.1	50-130			
Acenaphthene	2460	300	"	3230		76.3	34-114			
Pentachlorophenol	1700	1000	"	3230		52.8	50-130			
Pyrene	2400	300	"	3230		74.4	30-110			
Surrogate: 2-Fluorophenol	1780		"	3230		55.0	15-121			
Surrogate: Phenol-d6	1870		"	3230		57.9	24-113			
Surrogate: Nitrobenzene-d5	2640		"	3230		81.9	21.3-119			
Surrogate: 2-Fluorobiphenyl	2480		"	3230		76.8	32.4-102			
Surrogate: 2,4,6-Tribromophenol	2530		"	3230		78.6	18.1-105			
Surrogate: Terphenyl-dl4	4310		"	3230		133	29.1-130			S-GC
Matrix Spike (8040221-MS1)	Sour	ce: T181108-	01	Prepared: (04/02/18 A	nalyzed: 04	/05/18			
Phenol	2260	1000	ug/kg	3240	ND	70.0	34-114			
2-Chlorophenol	2240	1000	"	3240	ND	69.1	34-114			
1,4-Dichlorobenzene	2240	300	"	3240	ND	69.2	34-114			
N-Nitrosodi-n-propylamine	2660	300	"	3240	ND	82.3	30-110			
1,2,4-Trichlorobenzene	2510	300	"	3240	ND	77.4	39-119			
4-Chloro-3-methylphenol	2680	1000	"	3240	ND	82.9	50-130			
Acenaphthene	2680	300	"	3240	ND	82.8	34-114			
Pentachlorophenol	1660	1000	"	3240	ND	51.4	50-130			
Pyrene	2370	300	"	3240	37.5	72.0	30-110			
Surrogate: 2-Fluorophenol	2140		"	3240		66.2	15-121			
Surrogate: Phenol-d6	2270		"	3240		70.2	24-113			

SunStar Laboratories, Inc.

Brusca Associates Inc.	Project: Lathrop 48-Ac Property	
PO Box 332	Project Number: 137-002	Reported:
Roseville CA, 95661	Project Manager: Joe Brusca	04/10/18 16:14

Semivolatile Organic Compounds by EPA Method 8270C - Quality Control

SunStar Laboratories, Inc.

				,						
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 8040221 - EPA 3550 ECD/GCMS										
Matrix Spike (8040221-MS1)	Sou	ırce: T181108-	01	Prepared: (04/02/18 A					
Surrogate: Nitrobenzene-d5	3040		ug/kg	3240		93.8	21.3-119			
Surrogate: 2-Fluorobiphenyl	2560		"	3240		79.1	32.4-102			
Surrogate: 2,4,6-Tribromophenol	2670		"	3240		82.4	18.1-105			
Surrogate: Terphenyl-dl4	4020		"	3240		124	29.1-130			
Matrix Spike Dup (8040221-MSD1)	Sou	ırce: T181108-	Prepared: (04/02/18 A	nalyzed: 04					
Phenol	2090	1000	ug/kg	3360	ND	62.2	34-114	8.06	42	
2-Chlorophenol	2260	1000	"	3360	ND	67.2	34-114	0.852	40	
1,4-Dichlorobenzene	2240	300	"	3360	ND	66.8	34-114	0.00715	28	
N-Nitrosodi-n-propylamine	2770	300	"	3360	ND	82.7	30-110	4.11	38	
1,2,4-Trichlorobenzene	2460	300	"	3360	ND	73.4	39-119	1.65	28	
4-Chloro-3-methylphenol	2710	1000	"	3360	ND	80.8	50-130	1.07	42	
Acenaphthene	2660	300	"	3360	ND	79.3	34-114	0.696	31	
Pentachlorophenol	1780	1000	"	3360	ND	52.9	50-130	6.52	50	
Pyrene	2310	300	"	3360	37.5	67.7	30-110	2.57	31	
Surrogate: 2-Fluorophenol	2160		"	3360		64.3	15-121			
Surrogate: Phenol-d6	2290		"	3360		68.1	24-113			
Surrogate: Nitrobenzene-d5	3090		"	3360		92.2	21.3-119			
Surrogate: 2-Fluorobiphenyl	2620		"	3360		78.0	32.4-102			
Surrogate: 2,4,6-Tribromophenol	2730		"	3360		81.3	18.1-105			
Surrogate: Terphenyl-dl4	4160		"	3360		124	29.1-130			

SunStar Laboratories, Inc.

Brusca Associates Inc.	Project: Lathrop 48-Ac Property	
PO Box 332	Project Number: 137-002	Reported:
Roseville CA, 95661	Project Manager: Joe Brusca	04/10/18 16:14

Notes and Definitions

- S-GC Surrogate recovery outside of established control limits. The data was accepted based on valid recovery of the remaining surrogate(s).
- DET Analyte DETECTED
- ND Analyte NOT DETECTED at or above the reporting limit
- NR Not Reported
- dry Sample results reported on a dry weight basis
- RPD Relative Percent Difference

SunStar Laboratories, Inc.

Mike Jaroudi, Project Manager

1						· · · ·										·			_		A.
Sample disposal Instructions: Di		Relinquished by (signature)	Relinquished by: (signature)	Reinquished by: (signature)				15 T	126	Č25	454	£ 5V	V 57	VS	Sample ID	Project Manager:	Phone: (9/6677-14	Address: Po Box 33	Client BRUSCA ARC	PROVIDING QUALITY ANALYTICAL S 25712 Commercentre 949-297-5020	SunStar
sposal @ \$2.00 ea		00 Date / Tin	/ Date / Tin	$-\frac{1}{2}(9)$			-							4/2/13	Date Sampled	SRUSCA	040	2, Rasevi	1 A	ERVICES NATIONWIDE Drive, Lake Fo	ies, Inc.
ach 			ne	ne :37 PW				12:05	12:00	11:57	11:55	12	1:49	1245	Time		-ax (9/6)	STUE STUE		orest, CA	
Return t		Reneived b	Received by	Receivers			-					-		7502	Sample		677-	A-956		92630	
o client	. (9	v (sionature)	y: (signatute)				_							LAR	Container		(47)	6			Chain
ק		4.3.			1	┼┽┼		>	4	X		X		×	8260 - SVOCS 8270		. I I			ζ	of Cu
ckup		Da	Dat	2					+					-	8260 BTEX, OXY only						Isto
			le / Ti	18				X		X		X		X	8270 PCBs BOBZ	Bat	Col	Pro	ַ גַר		dy
		lo:00	ime	と言											8021 BTEX		lecto	ject l	D		Re
	Ļ			10					<u> </u> .				_	_	8015M (gasoline)			lam -	4		
	urn	Rec		c hair		+++			+				_		8015M (diesel)		RU		۳] مرا		Q
	arou	ceive		of	+++	╉╋╋	┼┥	-	7-	Ð	ŀ	$\frac{1}{2}$	-	\Im	6010/7000 Title 22 Metals	UP	Ч С	P 0	ã		
	nd ti	d goo	Seals	Tota	╎┝╼╈╾╁╸	╉┟╋			╞	P	┝─┦	γ		\rightarrow	6020 ICP-MS Metals	1181	1	£			
	me:	d cor	inta	l#of lysea		┼┼┼	+1	X	╋		X		え	_	I EAD AND APSENDE	8/1/		S			
	V op	ditior	ц: Т)	conta als Y/				Ì								1		4		• }	
	MA	1/cold	NNA	N/NA												1					t da ser e
-	1	4,9	Í					08	06	8	04	â	a2	2	Laboratory ID #		Client	י ז גרב	Daue		
COC 1609									HULD						Comments/Pi	, 1	Project #: 13	COPERTY			
03				otes											reservative		7-002		¥.		
	1									-	\vdash	-		-	Total # of containers	1					

PROVIDING QUALITY ANALYTICAL SERVICES NATIONWIDE

19 April 2018

Joe Brusca Brusca Associates Inc. PO Box 332 Roseville, CA 95661 RE: Lathrop 48-Ac Property

Enclosed are the results of analyses for samples received by the laboratory on 04/12/18 10:00. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Mike Jaroudi Project Manager

Brusca Associates Inc.	Project: Lathrop 48-Ac Property	
PO Box 332	Project Number: 137-002	Reported:
Roseville CA, 95661	Project Manager: Joe Brusca	04/19/18 13:50

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
VS9	T181234-01	Soil	04/11/18 11:00	04/12/18 10:00
VS10	T181234-02	Soil	04/11/18 11:02	04/12/18 10:00
VS11	T181234-03	Soil	04/11/18 11:03	04/12/18 10:00
VS12	T181234-04	Soil	04/11/18 11:05	04/12/18 10:00
VS13	T181234-05	Soil	04/11/18 11:07	04/12/18 10:00
VS14	T181234-06	Soil	04/11/18 11:09	04/12/18 10:00
VS16	T181234-08	Soil	04/11/18 11:14	04/12/18 10:00
VS17	T181234-09	Soil	04/11/18 11:20	04/12/18 10:00
VS18	T181234-10	Soil	04/11/18 11:22	04/12/18 10:00
VS19	T181234-11	Soil	04/11/18 11:26	04/12/18 10:00
VS20	T181234-12	Soil	04/11/18 11:29	04/12/18 10:00
VS21	T181234-13	Soil	04/11/18 11:31	04/12/18 10:00
VS22	T181234-14	Soil	04/11/18 11:34	04/12/18 10:00
VS24	T181234-16	Soil	04/11/18 11:37	04/12/18 10:00
VS25	T181234-17	Soil	04/11/18 11:55	04/12/18 10:00
VS26	T181234-18	Soil	04/11/18 11:57	04/12/18 10:00
VS27	T181234-19	Soil	04/11/18 11:58	04/12/18 10:00
VS28	T181234-20	Soil	04/11/18 12:00	04/12/18 10:00
VS29	T181234-21	Soil	04/11/18 12:03	04/12/18 10:00
VS30	T181234-22	Soil	04/11/18 12:04	04/12/18 10:00
VS31	T181234-23	Soil	04/11/18 12:06	04/12/18 10:00
VS33	T181234-25	Soil	04/11/18 12:10	04/12/18 10:00
VS34	T181234-26	Soil	04/11/18 12:41	04/12/18 10:00
VS35	T181234-27	Soil	04/11/18 12:43	04/12/18 10:00
VS36	T181234-28	Soil	04/11/18 12:45	04/12/18 10:00
VS37	T181234-29	Soil	04/11/18 12:48	04/12/18 10:00

SunStar Laboratories, Inc.

Brusca Associates Inc.	Project: Lathrop 48-Ac Property	
PO Box 332	Project Number: 137-002	Reported:
Roseville CA, 95661	Project Manager: Joe Brusca	04/19/18 13:50

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
VS38	T181234-30	Soil	04/11/18 12:50	04/12/18 10:00
VS39	T181234-31	Soil	04/11/18 12:52	04/12/18 10:00
VS41	T181234-33	Soil	04/11/18 12:57	04/12/18 10:00
VS43	T181234-35	Soil	04/11/18 13:14	04/12/18 10:00
VS45	T181234-37	Soil	04/11/18 13:17	04/12/18 10:00
VS47	T181234-39	Soil	04/11/18 13:21	04/12/18 10:00
VS49	T181234-41	Soil	04/11/18 13:26	04/12/18 10:00
VS51	T181234-43	Soil	04/11/18 13:30	04/12/18 10:00

SunStar Laboratories, Inc.

Mike Jaroudi, Project Manager

Brusca Associates Inc.	Project: Lathrop 48-Ac Property	
PO Box 332 Roseville CA 95661	Project Number: 137-002 Project Manager: Joe Brusca	Reported: 04/19/18 12:50
	Toject Manager. Joe Drusea	v ⊤ /17/1013.30
	DETECTIONS SUMMARY	
Sample ID: VS9	Laboratory ID. T191924 01	
No Results Datacted		
To results Detected		
Sample ID: VS10	Laboratory ID: T181234-02	
No Results Detected		
Sample ID: VS11	Laboratory ID: T181234-03	
No Results Detected		
Samula ID. VO12	I ab	
Sample 1D: V512	Ladoratory 1D: 1181234-04	
No Results Detected		
Sample ID: VS13	Laboratory ID: T181234-05	
No Results Detected		
Sample ID: VS14	Laboratory ID: T181234-06	
No Results Detected		

SunStar Laboratories, Inc.

PROVIDING QUALIT	OORATORIES, Inc	•			L	ake Forest, California 949.297.5020 1 949.297.502
sca Associates Inc		Project: Lath	rop 48-Ac Pr	operty		
Box 332		Project Number: 137	-002			Reported:
eville CA, 95661		Project Manager: Joe	Brusca			04/19/18 13:50
Sample ID:	VS16	Labora	tory ID:	T181234-08		
No Results De	tected					
Sample ID:	VS17	Labora	tory ID:	T181234-09		
No Results De	tected					
Sample ID:	VS18	Labora	tory ID:	T181234-10		
			Reporting			
Analyte		Result	Limit	Units	Method	Notes
Barium		44	1.0	mg/kg	EPA 6010B	
Chromium		3.8	2.0	mg/kg	EPA 6010B	
Cobalt		3.4	2.0	mg/kg	EPA 6010B	
Nickel		3.8	2.0	mg/kg	EPA 6010B	
Vanadium Zinc		13	5.0 1.0	mg/kg	EPA 6010B FPA 6010B	
Line		10	1.0	шыкд	LINGUIGE	
C L D	V\$19	Labora	tory ID.	T181234-11		

No Results Detected

mple ID: VS20	Laborat	ory ID:	T181234-12		
		Reporting			
Analyte	Result	Limit	Units	Method	Notes
Barium	55	1.0	mg/kg	EPA 6010B	
Chromium	4.7	2.0	mg/kg	EPA 6010B	
Cobalt	3.6	2.0	mg/kg	EPA 6010B	
Copper	1.4	1.0	mg/kg	EPA 6010B	
Nickel	4.5	2.0	mg/kg	EPA 6010B	
Vanadium	15	5.0	mg/kg	EPA 6010B	
Zinc	22	1.0	mg/kg	EPA 6010B	

SunStar Laboratories, Inc.

V

Brusca Associates Inc.	Project: Lathrop 48-Ac	Property
PO Box 332	Project Number: 137-002	Reported:
Roseville CA, 95661	Project Manager: Joe Brusca	04/19/18 13:50

Laboratory ID:

T181234-13

Sample ID: VS21

No Results Detected

Sample ID: VS22	Labora	tory ID:	T181234-14		
		Reporting			
Analyte	Result	Limit	Units	Method	Notes
Barium	72	1.0	mg/kg	EPA 6010B	
Chromium	4.3	2.0	mg/kg	EPA 6010B	
Cobalt	4.0	2.0	mg/kg	EPA 6010B	
Copper	1.6	1.0	mg/kg	EPA 6010B	
Nickel	4.4	2.0	mg/kg	EPA 6010B	
Vanadium	16	5.0	mg/kg	EPA 6010B	
Zinc	20	1.0	mg/kg	EPA 6010B	
Sample ID: VS24	Labora	tory ID:	T181234-16		
		Reporting			
Analyte	Result	Limit	Units	Method	Notes
C13-C28 (DRO)	220	10	mg/kg	EPA 8015B	
C29-C40 (MORO)	310	10	mg/kg	EPA 8015B	
Barium	52	1.0	mg/kg	EPA 6010B	
Chromium	4.2	2.0	mg/kg	EPA 6010B	
Cobalt	3.8	2.0	mg/kg	EPA 6010B	
Copper	3.1	1.0	mg/kg	EPA 6010B	
Nickel	4.9	2.0	mg/kg	EPA 6010B	
Vanadium	16	5.0	mg/kg	EPA 6010B	
Zinc	19	1.0	mg/kg	EPA 6010B	
PCB-1260	21	10	ug/kg	EPA 8082	
Sample ID: VS25	Labora	tory ID:	T181234-17		

No Results Detected

SunStar Laboratories, Inc.

PROVIDING QUALITY ANALYTICAL SERVICES NATIONY	IC.		25712 Commercentre Dri Lake Forest, California 926 949.297.5020 Pho 949.297.5027 F
Brusca Associates Inc.	Project: Lathrop 48-Ac F	roperty	
PO Box 332	Project Number: 137-002		Reported:
Roseville CA, 95661	Project Manager: Joe Brusca		04/19/18 13:50
Sample ID: VS26	Laboratory ID:	T181234-18	
No Results Detected			
Sample ID: VS27	Laboratory ID:	T181234-19	
No Results Detected			
Sample ID: VS28	Laboratory ID:	T181234-20	
No Results Detected			
Sample ID: VS29	Laboratory ID:	T181234-21	
No Results Detected			
Sample ID: VS30	Laboratory ID:	T181234-22	
No Results Detected			
Sample ID: VS31	Laboratory ID:	T181234-23	
No Results Detected			
Sample ID: VS33	Laboratory ID:	T181234-25	
No Results Detected			
SunStar Laboratories, Inc.	The results in this rep custody document. Th	ort apply to the samples analyzatis analyzatis analytical report must be rep	ed in accordance with the chain of produced in its entirety.

Mike Jaroudi, Project Manager

Brusca Associates Inc.	Project: Lathrop 48-Ac Property	
PO Box 332	Project Number: 137-002	Reported:
Roseville CA, 95661	Project Manager: Joe Brusca	04/19/18 13:50

Laboratory ID:

T181234-26

Sample ID: VS34

No Results Detected

Sample ID: VS35	Laboratory ID:		T181234-27		
Analyte	Result	Limit	Units	Method	Notes
Barium	66	1.0	mg/kg	EPA 6010B	
Chromium	5.1	2.0	mg/kg	EPA 6010B	
Cobalt	6.3	2.0	mg/kg	EPA 6010B	
Copper	3.6	1.0	mg/kg	EPA 6010B	
Nickel	6.8	2.0	mg/kg	EPA 6010B	
Vanadium	22	5.0	mg/kg	EPA 6010B	
Zinc	28	1.0	mg/kg	EPA 6010B	
PCB-1260	57	10	ug/kg	EPA 8082	
Sample ID: VS36	Laborato	ory ID:	T181234-28		

No Results Detected

Sample ID: VS37	Laboratory ID:		T181234-29		
		Reporting			
Analyte	Result	Limit	Units	Method	Notes
Barium	77	1.0	mg/kg	EPA 6010B	
Chromium	5.9	2.0	mg/kg	EPA 6010B	
Cobalt	6.4	2.0	mg/kg	EPA 6010B	
Copper	4.1	1.0	mg/kg	EPA 6010B	
Nickel	7.5	2.0	mg/kg	EPA 6010B	
Vanadium	18	5.0	mg/kg	EPA 6010B	
Zinc	26	1.0	mg/kg	EPA 6010B	
Sample ID: VS38	Laborat	ory ID:	T181234-30		

SunStar Laboratories, Inc.

Brusca Associates Inc.	Project: Lathrop 48-Ac Property	
PO Box 332	Project Number: 137-002	Reported:
Roseville CA, 95661	Project Manager: Joe Brusca	04/19/18 13:50

Laboratory ID:

T181234-30

Sample ID: VS38

No Results Detected

Sample ID:	VS39	Laborate	Laboratory ID:			
	Reporting					
Analyte		Result	Limit	Units	Method	Notes
Barium		66	1.0	mg/kg	EPA 6010B	
Chromium		4.7	2.0	mg/kg	EPA 6010B	
Cobalt		4.8	2.0	mg/kg	EPA 6010B	
Copper		4.5	1.0	mg/kg	EPA 6010B	
Nickel		7.6	2.0	mg/kg	EPA 6010B	
Vanadium		15	5.0	mg/kg	EPA 6010B	
Zinc		20	1.0	mg/kg	EPA 6010B	
Sample ID:	VS41	Laborate	ory ID:	T181234-33		
			Reporting			
Analyte		Result	Limit	Units	Method	Notes
Barium		53	1.0	mg/kg	EPA 6010B	
Chromium		4.3	2.0	mg/kg	EPA 6010B	
Cobalt		4.1	2.0	mg/kg	EPA 6010B	
Copper		3.2	1.0	mg/kg	EPA 6010B	
Nickel		4.9	2.0	mg/kg	EPA 6010B	
Vanadium		16	5.0	mg/kg	EPA 6010B	
Zinc		18	1.0	mg/kg	EPA 6010B	
Sample ID:	VS43	Laborate	Laboratory IN:			
*						

No Results Detected

Sample ID: VS45

Laboratory ID:

T181234-37

No Results Detected

SunStar Laboratories, Inc.

SunStar — Laboratories, In Providing Quality Analytical Services Nation	IC.		25712 Commercentre D Lake Forest, California 92 949.297.5020 Ph 949.297.5027
usca Associates Inc.	Project: Lathrop 48-Ac F	Property	
Box 332	Project Number: 137-002		Reported:
seville CA, 95661	Project Manager: Joe Brusca		04/19/18 13:50
Sample ID: VS47	Laboratory ID:	T181234-39	
No Results Detected			
Sample ID: VS49	Laboratory ID:	T181234-41	
No Results Detected			
Sample ID: VS51	Laboratory ID:	T181234-43	

No Results Detected

SunStar Laboratories, Inc.

A

Mike Jaroudi, Project Manager

Brusca Associates Inc. PO Box 332		Proj Project Num	ect: Lathro ber: 137-00	p 48-Ac Pro)2	operty			Reported	:
Roseville CA, 95661		Project Mana	ger: Joe Br	usca			04/19/18 13:50		
			VS9						
		T181	234-01 (So	oil)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	ies, Inc.					
Metals by EPA 6010B									
Arsenic	ND	5.0	mg/kg	1	8041304	04/13/18	04/16/18	EPA 6010b	
Lead	ND	3.0	"	"	"	"		"	

SunStar Laboratories, Inc.

Mike Jaroudi, Project Manager

Brusca Associates Inc.												
PO Box 332		Project Num	per: 137-00)2				Reported				
Roseville CA, 95661	1	Project Manager: Joe Brusca										
			VS10									
		T1812	234-02 (So	oil)								
		Reporting										
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes			
		SunStar L	aboratori	ies, Inc.								
Metals by EPA 6010B												
Arsenic	ND	5.0	mg/kg	1	8041304	04/13/18	04/16/18	EPA 6010b				
Lead	ND	3.0	"	"	"	"	"	"				

SunStar Laboratories, Inc.

Mike Jaroudi, Project Manager

Brusca Associates Inc.												
PO Box 332		Project Numl	ber: 137-00	02				Reported:				
Roseville CA, 95661	I	Project Manager: Joe Brusca										
			VS11									
		T1812	234-03 (So	oil)								
		Reporting										
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes			
		SunStar L	aboratori	ies, Inc.								
Metals by EPA 6010B												
Arsenic	ND	5.0	mg/kg	1	8041304	04/13/18	04/16/18	EPA 6010b				
Lead	ND	3.0	"	"	"	"		"				

SunStar Laboratories, Inc.

Mike Jaroudi, Project Manager

Brusca Associates Inc.									
PO Box 332		Project Num	per: 137-00)2				Reported	:
Roseville CA, 95661	1	Project Manag	ger: Joe Br	usca				04/19/18 13:50	
			VS12						
		T1812	234-04 (So	oil)					
		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	ies, Inc.					
Metals by EPA 6010B									
Arsenic	ND	5.0	mg/kg	1	8041304	04/13/18	04/16/18	EPA 6010b	
Lead	ND	3.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Mike Jaroudi, Project Manager

Brusca Associates Inc.												
PO Box 332		Project Numl	ber: 137-00)2				Reported:				
Roseville CA, 95661]	Project Manager: Joe Brusca										
			VS13									
		T181 2	234-05 (So	oil)								
		Reporting										
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes			
		SunStar L	aboratori	es, Inc.								
Metals by EPA 6010B												
Arsenic	ND	5.0	mg/kg	1	8041304	04/13/18	04/16/18	EPA 6010b				
Lead	ND	3.0	"	"		"	"	"				

SunStar Laboratories, Inc.

Mike Jaroudi, Project Manager

Brusca Associates Inc.												
PO Box 332		Project Numl	per: 137-00)2				Reported:				
Roseville CA, 95661	1	Project Manager: Joe Brusca										
			VS14									
		T1812	234-06 (So	oil)								
		Reporting										
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes			
		SunStar L	aboratori	ies, Inc.								
Metals by EPA 6010B												
Arsenic	ND	5.0	mg/kg	1	8041304	04/13/18	04/16/18	EPA 6010b				
Lead	ND	3.0	"	"		"	"	"				

SunStar Laboratories, Inc.

Mike Jaroudi, Project Manager

Brusca Associates Inc.												
PO Box 332		Project Numl	ber: 137-00)2				Reported:				
Roseville CA, 95661	I	Project Manager: Joe Brusca										
			VS16									
		T1812	234-08 (So	oil)								
		Reporting										
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes			
		SunStar L	aboratori	es, Inc.								
Metals by EPA 6010B												
Arsenic	ND	5.0	mg/kg	1	8041304	04/13/18	04/16/18	EPA 6010b				
Lead	ND	3.0	"	"		"	"	"				

SunStar Laboratories, Inc.

Mike Jaroudi, Project Manager

Brusca Associates Inc.												
PO Box 332		Project Num	ber: 137-00)2				Reported:				
Roseville CA, 95661	1	Project Manager: Joe Brusca										
			VS17									
		T1812	234-09 (So	oil)								
		Reporting										
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes			
		SunStar L	aboratori	ies, Inc.								
Metals by EPA 6010B												
Arsenic	ND	5.0	mg/kg	1	8041304	04/13/18	04/16/18	EPA 6010b				
Lead	ND	3.0	"	"	"	"	"	"				

SunStar Laboratories, Inc.

Mike Jaroudi, Project Manager

Brusca Associates Inc.		Proj	ect: Lathro	p 48-Ac Pro	operty					
PO Box 332		Project Numl	ber: 137-00)2				Reported:		
Roseville CA, 95661	I	Project Manag	ger: Joe Br	usca				04/19/18 13:50		
			VS18							
		T1812	234-10 (So	oil)						
		Reporting								
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes	
		SunStar L	aboratori	es, Inc.						
Extractable Petroleum Hydrocarl	oons by 8015B with Silica	Gel Cleanu	p							
C6-C12 (GRO)	ND	10	mg/kg	1	8041214	04/12/18	04/18/18	EPA 8015B		
C13-C28 (DRO)	ND	10	"	"	"	"	"	"		
C29-C40 (MORO)	ND	10	"	"	"	"	"	"		
Surrogate: p-Terphenyl		109 %	65-	135	"	"	"	"		
Metals by EPA 6010B										
Antimony	ND	3.0	mg/kg	1	8041307	04/13/18	04/13/18	EPA 6010B		
Silver	ND	2.0	"	"	"	"	"	"		
Arsenic	ND	5.0	"	"	"	"	"	"		
Barium	44	1.0	"	"	"	"	"	"		
Beryllium	ND	1.0	"	"	"	"	"	"		
Cadmium	ND	2.0	"	"	"	"	"	"		
Chromium	3.8	2.0	"	"	"	"	"	"		
Cobalt	3.4	2.0	"	"	"	"	"	"		
Copper	ND	1.0	"	"	"	"	"	"		
Lead	ND	3.0	"	"	"	"	"	"		
Molybdenum	ND	5.0	"	"	"	"	"	"		
Nickel	3.8	2.0	"	"	"	"	"	"		
Selenium	ND	5.0	"	"	"	"	"	"		
Thallium	ND	2.0	"	"	"	"	"	"		
Vanadium	13	5.0	"	"	"	"	"	"		
Zinc	18	1.0	"	"	"	"	"	"		
Cold Vapor Extraction EPA 7470/	7471									
Mercury	ND	0.10	mg/kg	1	8041308	04/13/18	04/13/18	EPA 7471A Soil		

SunStar Laboratories, Inc.

Brusca Associates Inc.Project:Lathrop 48-Ac PropertyPO Box 332Project Number:137-002Roseville CA, 95661Project Manager:Joe Brusca04									
		T1812	VS18 234-10 (So	oil)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	ies, Inc.					
Polychlorinated Biphenyls by EPA M	lethod 8082								
PCB-1016	ND	10	ug/kg	1	8041144	04/11/18	04/14/18	EPA 8082	
PCB-1221	ND	10	"	"	"	"	"	"	
PCB-1232	ND	10	"	"	"	"	"	"	
PCB-1242	ND	10		"	"	"	"		
PCB-1248	ND	10		"	"	"	"		
PCB-1254	ND	10	"	"	"	"	"	"	
PCB-1260	ND	10	"	"	"	"	"	"	
Surrogate: Tetrachloro-meta-xylene		97.4 %	35-	140	"	"	"	"	
Surrogate: Decachlorobiphenyl		78.2 %	35-	140	"	"	"	"	
Semivolatile Organic Compounds by	EPA Method 8270C	200							
Carbazole	ND	300	ug/kg	1	8041145	04/11/18	04/13/18	EPA 8270C	
Phenol	ND	1000							
Aniline	ND	300							
2-Chlorophenol	ND	1000							
I,4-Dichlorobenzene	ND	300							
N-Nitrosodi-n-propylamine	ND	300							
1,2,4-Trichlorobenzene	ND	300							
4-Chloro-3-methylphenol	ND	1000							
1-Methylnaphthalene	ND	300							
2-Methylnaphthalene	ND	300							
Acenaphthene	ND	300							
4-Nitrophenol	ND	1000							
2,4-Dinitrotoluene	ND	300							
Pentachlorophenol	ND	1000							
Pyrene	ND	300							
Acenaphthylene	ND	300							
Anthracene	ND	300							
Benzo (a) anthracene	ND	300							
Benzo (b) fluoranthene	ND	300				"			
Benzo (k) fluoranthene	ND	300							
Benzo (g,h,1) perylene	ND	1000		"	"	"	"	"	

SunStar Laboratories, Inc.

Brusca Associates Inc.		Project Numb	Renorted						
Roseville CA, 95661		Project Manag	ger: Joe Bi	rusca				04/19/18 13	:50
			VS18						
		T1812	234-10 (Se	oil)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aborator	ies, Inc.					
Semivolatile Organic Compounds by EP	A Method 8270C								
Benzo (a) pyrene	ND	300	ug/kg	1	8041145	04/11/18	04/13/18	EPA 8270C	
Benzyl alcohol	ND	300	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	300	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	300	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	300	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	300	"	"	"	"	"	"	
4-Bromophenyl phenyl ether	ND	300	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	300	"	"	"	"		"	
4-Chloroaniline	ND	300	"	"	"	"	"	"	
2-Chloronaphthalene	ND	300	"	"	"	"		"	
4-Chlorophenyl phenyl ether	ND	300	"	"	"	"	"	"	
Chrysene	ND	300	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	300	"	"	"	"	"	"	
Dibenzofuran	ND	300	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	300	"	"	"	"		"	
1,2-Dichlorobenzene	ND	300	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	300	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	1000	"	"	"	"	"	"	
Diethyl phthalate	ND	300	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	1000	"	"	"	"	"	"	
Dimethyl phthalate	ND	300	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol	ND	1000	"	"	"	"	"	"	
2,4-Dinitrophenol	ND	1000	"	"	"	"	"	"	
2,6-Dinitrotoluene	ND	1000	"	"	"	"	"	"	
Di-n-octyl phthalate	ND	300	"	"	"	"	"	"	
Fluoranthene	ND	300	"	"	"	"	"	"	
Fluorene	ND	300	"	"	"	"	"	"	
Hexachlorobenzene	ND	1500	"	"	"	"	"	"	
Hexachlorobutadiene	ND	300	"	"	"	"	"	"	
Hexachlorocyclopentadiene	ND	1000	"	"	"	"	"	"	
Hexachloroethane	ND	300	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene	ND	300	"	"		"		"	

SunStar Laboratories, Inc.

Brusca Associates Inc. PO Box 332 Roseville CA, 95661	l P	Reported: 04/19/18 13:50							
		T1812	v 818 34-10 (Soi	l)					
Analyte R	esult	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar La	aboratorie	s, Inc.					
Semivolatile Organic Compounds by EPA Method	8270C								
Isophorone	ND	300	ug/kg	1	8041145	04/11/18	04/13/18	EPA 8270C	
2-Methylphenol	ND	1000	"	"	"	"	"	"	
4-Methylphenol	ND	1000	"	"	"	"	"	"	
Naphthalene	ND	300	"	"	"	"	"	"	
2-Nitroaniline	ND	300	"	"	"	"	"	"	
3-Nitroaniline	ND	300	"	"	"	"	"	"	
4-Nitroaniline	ND	300	"	"	"	"	"	"	
Nitrobenzene	ND	1000	"	"	"	"	"	"	
2-Nitrophenol	ND	1000	"	"	"	"	"	"	
N-Nitrosodimethylamine	ND	300	"	"	"	"	"	"	
N-Nitrosodiphenylamine	ND	300	"	"	"	"	"	"	
2,3,5,6-Tetrachlorophenol	ND	300	"	"	"	"	"	"	
2,3,4,6-Tetrachlorophenol	ND	300	"	"	"	"	"	"	
Phenanthrene	ND	300	"	"	"	"	"	"	
Azobenzene	ND	300	"	"	"	"	"	"	
Pyridine	ND	300	"	"	"	"	"	"	
2,4,5-Trichlorophenol	ND	1000	"	"	"	"	"	"	
2,4,6-Trichlorophenol	ND	1000	"	"	"	"	"	"	
Surrogate: 2-Fluorophenol		43.0 %	15-1	21	"	"	"	"	
Surrogate: Phenol-d6		47.8 %	24-1	13	"	"	"	"	
Surrogate: Nitrobenzene-d5		50.7%	21.3-	119	"	"	"	"	
Surrogate: 2-Fluorobiphenyl		63.6 %	32.4-	102	"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		74.4 %	18.1-	105	"	"	"	"	
Surrogate: Terphenyl-dl4		67.4 %	29.1-1	130	"	"	"	"	

SunStar Laboratories, Inc.

Brusca Associates Inc.												
PO Box 332		Project Numl	ber: 137-00	02				Reported	:			
Roseville CA, 95661	1	Project Manager: Joe Brusca										
			VS19									
		T181	234-11 (So	oil)								
		Reporting										
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes			
		SunStar L	aboratori	ies, Inc.								
Metals by EPA 6010B												
Arsenic	ND	5.0	mg/kg	1	8041304	04/13/18	04/16/18	EPA 6010b				
Lead	ND	3.0	"	"	"	"	"	"				

SunStar Laboratories, Inc.

Mike Jaroudi, Project Manager

Brusca Associates Inc.										
PO Box 332		Project Numb	ber: 137-00)2				Reported:		
Roseville CA, 95661		Project Manag	ger: Joe Br	usca				04/19/18 13	:50	
			VS20							
		T1812	234-12 (So	oil)						
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes	
		SunStar L	aboratori	ies, Inc.						
Extractable Petroleum Hydrocarl	bons by 8015B with Silic	a Gel Cleanu	D							
C6-C12 (GRO)	ND	10	mg/kg	1	8041214	04/12/18	04/18/18	EPA 8015B		
C13-C28 (DRO)	ND	10	"	"	"	"	"	"		
C29-C40 (MORO)	ND	10	"	"	"	"	"	"		
Surrogate: p-Terphenyl		102 %	65-	135	"	"	"	"		
Metals by EPA 6010B										
Antimony	ND	3.0	mg/kg	1	8041307	04/13/18	04/13/18	EPA 6010B		
Silver	ND	2.0	"	"	"	"	"	"		
Arsenic	ND	5.0	"	"	"	"	"	"		
Barium	55	1.0	"	"	"	"	"	"		
Beryllium	ND	1.0	"	"	"	"	"	"		
Cadmium	ND	2.0	"	"	"	"	"	"		
Chromium	4.7	2.0	"	"	"	"	"	"		
Cobalt	3.6	2.0	"	"	"	"	"	"		
Copper	1.4	1.0	"	"	"	"	"	"		
Lead	ND	3.0	"	"	"	"	"	"		
Molybdenum	ND	5.0	"	"	"	"	"	"		
Nickel	4.5	2.0	"	"	"	"	"	"		
Selenium	ND	5.0	"	"	"	"	"	"		
Thallium	ND	2.0	"	"	"	"	"	"		
Vanadium	15	5.0	"	"	"	"	"	"		
Zinc	22	1.0	"	"	"	"		"		
Cold Vapor Extraction EPA 7470/	/7471									
Mercury	ND	0.10	mg/kg	1	8041308	04/13/18	04/13/18	EPA 7471A Soil		

SunStar Laboratories, Inc.

Brusca Associates Inc.	ssociates Inc. Project: Lathrop 48-Ac Property									
PO Box 332		Project Numb	ber: 13/-00)2				Reported:	50	
Roseville CA, 95661		Project Manag	ger: Joe Br	usca				04/19/18 13	:50	
			VS20							
		T1812	234-12 (So	oil)						
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes	
		SunStar L	aboratori	ies, Inc.						
Polychlorinated Biphenyls by EPA M	lethod 8082									
PCB-1016	ND	10	ug/kg	1	8041144	04/11/18	04/14/18	EPA 8082		
PCB-1221	ND	10	"	"	"	"	"	"		
PCB-1232	ND	10	"	"	"	"	"	"		
PCB-1242	ND	10	"	"	"	"	"	"		
PCB-1248	ND	10	"	"	"	"	"	"		
PCB-1254	ND	10	"	"	"	"	"	"		
PCB-1260	ND	10	"	"	"	"	"	"		
Surrogate: Tetrachloro-meta-xylene		105 %	35-	140	"	"	"	"		
Surrogate: Decachlorobiphenyl		98.8 %	35-	140	"	"	"	"		
	EDA M.41 - J 9270C									
Semivolatile Organic Compounds by	EPA Method 82/0C	200			0041145	04/11/10	04/12/10	ED4 02700		
	ND	300	ug/kg	1	8041145	04/11/18	04/13/18	EPA 82/0C		
Dhanal	ND	1000								
2 Chlorenhand	ND	1000								
1.4 Dishlarahangana	ND	200		"						
N. Nitrogodi n propulamino	ND	200		"						
	ND	200		"						
4 Chlans 2 methodshand	ND	1000		"						
2 Mathedrachthalana	ND	200		"						
1 Mathylmaphthalana	ND	200		"		"				
	ND	300		"						
A Nitrophonol	ND	1000		"		"				
2.4 Dinitratelyana	ND	200		"		"				
Pantashlaranhanal	ND	1000		"						
Printacinorophenor	ND	200		"						
Assemble	ND	200		"						
Arthragene	ND	200		"						
Anumaterie Panza (a) anthraeana		200								
Denzo (a) anumacene Denzo (b) fluorenthere		200								
Denzo (b) Huoranthere	ND	300								
Denzo (k) huoraninene	ND	300								
Denzo (g,n,1) peryiene	ND	1000								

SunStar Laboratories, Inc.

Brusca Associates Inc. PO Box 332 Roseville CA, 95661	. Project: Lathrop 48-Ac Property Project Number: 137-002 Project Manager: Joe Brusca								
			VS20						
		T1812	34-12 (Se	oil)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aborator	ies, Inc.					
Semivolatile Organic Compounds by	EPA Method 8270C								
Benzo (a) pyrene	ND	300	ug/kg	1	8041145	04/11/18	04/13/18	EPA 8270C	
Benzyl alcohol	ND	300	"	"		"	"	"	
Bis(2-chloroethoxy)methane	ND	300	"	"		"	"	"	
Bis(2-chloroethyl)ether	ND	300	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	300	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	300	"	"	"	"	"	"	
4-Bromophenyl phenyl ether	ND	300	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	300	"	"	"	"	"	"	
4-Chloroaniline	ND	300	"	"	"	"	"	"	
2-Chloronaphthalene	ND	300	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether	ND	300	"	"		"	"	"	
Chrysene	ND	300	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	300	"	"	"	"	"	"	
Dibenzofuran	ND	300	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	300	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	300	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	300	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	1000	"	"	"	"	"	"	
Diethyl phthalate	ND	300	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	1000	"	"	"	"	"	"	
Dimethyl phthalate	ND	300	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol	ND	1000	"	"	"	"	"	"	
2,4-Dinitrophenol	ND	1000	"	"	"	"	"	"	
2,6-Dinitrotoluene	ND	1000	"	"	"	"	"	"	
Di-n-octyl phthalate	ND	300	"	"	"	"	"	"	
Fluoranthene	ND	300	"	"	"	"	"		
Fluorene	ND	300	"	"	"	"	"		
Hexachlorobenzene	ND	1500	"	"	"	"	"	"	
Hexachlorobutadiene	ND	300	"	"	"	"	"	"	
Hexachlorocyclopentadiene	ND	1000	"	"	"	"	"	"	
Hexachloroethane	ND	300	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene	ND	300	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Brusca Associates Inc. PO Box 332 Roseville CA, 95661	Project: Lathrop 48-Ac Property Project Number: 137-002 Project Manager: Joe Brusca								
	T181	V S20 234-12 (So	oil)						
Analyte Re	Reporting esult Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes	
	SunStar I	Laboratori	ies, Inc.						
Semivolatile Organic Compounds by EPA Method	8270C								
Isophorone	ND 300	ug/kg	1	8041145	04/11/18	04/13/18	EPA 8270C		
2-Methylphenol	ND 1000	"	"	"	"	"	"		
4-Methylphenol	ND 1000	"	"	"	"	"	"		
Naphthalene	ND 300		"	"	"	"	"		
2-Nitroaniline	ND 300	"	"	"	"	"	"		
3-Nitroaniline	ND 300	"	"	"	"	"	"		
4-Nitroaniline	ND 300	"	"	"	"	"	"		
Nitrobenzene	ND 1000	"	"	"	"	"	"		
2-Nitrophenol	ND 1000	"	"	"	"	"	"		
N-Nitrosodimethylamine	ND 300	"	"	"	"	"	"		
N-Nitrosodiphenylamine	ND 300	"	"	"	"	"	"		
2,3,5,6-Tetrachlorophenol	ND 300	"	"	"	"	"	"		
2,3,4,6-Tetrachlorophenol	ND 300	"	"	"	"	"	"		
Phenanthrene	ND 300	"	"	"	"	"	"		
Azobenzene	ND 300		"	"	"	"	"		
Pyridine	ND 300	"	"	"	"	"	"		
2,4,5-Trichlorophenol	ND 1000	"	"	"	"	"	"		
2,4,6-Trichlorophenol	ND 1000	"	"	"	"	"	"		
Surrogate: 2-Fluorophenol	46.1 %	15-	121	"	"	"	"		
Surrogate: Phenol-d6	49.8 %	24-	113	"	"	"	"		
Surrogate: Nitrobenzene-d5	50.7 %	21.3	-119	"	"	"	"		
Surrogate: 2-Fluorobiphenyl	63.6 %	32.4	-102	"	"	"	"		
Surrogate: 2,4,6-Tribromophenol	75.0 %	18.1	-105	"	"	"	"		
Surrogate: Terphenyl-dl4	69.3 %	29.1	-130	"	"	"	"		

SunStar Laboratories, Inc.

Brusca Associates Inc.												
PO Box 332	PO Box 332 Project Number: 137-002											
Roseville CA, 95661	1	Project Manager: Joe Brusca										
			VS21									
		T1812	234-13 (Se	oil)								
		Reporting										
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes			
		SunStar L	aborator	ies, Inc.								
Metals by EPA 6010B												
Arsenic	ND	5.0	mg/kg	1	8041304	04/13/18	04/16/18	EPA 6010b				
Lead	ND	3.0	"	"		"	"	"				

SunStar Laboratories, Inc.

Mike Jaroudi, Project Manager

Brusca Associates Inc. PO Box 332 Roseville CA, 95661	Project: Lathrop 48-Ac Property Project Number: 137-002 Project Manager: Joe Brusca VS22								:50
		T1812	234-14 (So	oil)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Extractable Petroleum Hydrocar	bons by 8015B with Silic	a Gel Cleanu	р						
C6-C12 (GRO)	ND	10	mg/kg	1	8041214	04/12/18	04/18/18	EPA 8015B	
C13-C28 (DRO)	ND	10	"	"	"	"		"	
C29-C40 (MORO)	ND	10	"	"	"	"		"	
Surrogate: p-Terphenyl		106 %	65-	135	"	"	"	"	
Metals by EPA 6010B									
Antimony	ND	3.0	mg/kg	1	8041307	04/13/18	04/13/18	EPA 6010B	
Silver	ND	2.0	"	"	"	"		"	
Arsenic	ND	5.0	"	"	"	"		"	
Barium	72	1.0	"	"	"	"		"	
Beryllium	ND	1.0	"	"	"	"		"	
Cadmium	ND	2.0	"	"	"	"		"	
Chromium	4.3	2.0	"	"	"	"		"	
Cobalt	4.0	2.0	"	"	"	"	"	"	
Copper	1.6	1.0	"	"	"	"	"	"	
Lead	ND	3.0	"	"	"	"	"	"	
Molybdenum	ND	5.0	"	"	"	"	"	"	
Nickel	4.4	2.0	"	"	"	"		"	
Selenium	ND	5.0	"	"	"	"	"	"	
Thallium	ND	2.0	"	"	"	"	"	"	
Vanadium	16	5.0	"	"	"	"	"	"	
Zinc	20	1.0	"	"	"	"	"	"	
Cold Vapor Extraction EPA 7470	/7471								
Mercury	ND	0.10	mg/kg	1	8041308	04/13/18	04/13/18	EPA 7471A Soil	

SunStar Laboratories, Inc.

Brusca Associates Inc. Project: Lathrop 48-Ac Property PO Box 332 Project Number: 137-002 Poseville CA, 95661 Project Manager: Log Brusca									
			,er: 000 B1					0 1/ 1// 10 12	
		T1812	VS22 234-14 (Sa	oil)					
		D (*		,					
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Polychlorinated Biphenyls by EPA M	lethod 8082								
PCB-1016	ND	10	ug/kg	1	8041144	04/11/18	04/14/18	EPA 8082	
PCB-1221	ND	10	"	"	"	"	"	"	
PCB-1232	ND	10	"	"	"	"	"	"	
PCB-1242	ND	10	"	"	"	"	"	"	
PCB-1248	ND	10	"	"	"	"	"	"	
PCB-1254	ND	10	"	"	"	"	"	"	
PCB-1260	ND	10	"	"	"	"	"	"	
Surrogate: Tetrachloro-meta-xylene		94.7 %	35-	140	"	"	"	"	
Surrogate: Decachlorobiphenyl		93.0 %	35-	140	"	"	"	"	
Somivolatila Organia Compounds hy	EDA Mothod 9270C								
Carbazole	ND	300	ug/kg	1	8041145	04/11/18	04/13/18	EDA 8270C	
Phenol	ND	1000	ug/Kg "	"	"	"	"	"	
Aniline	ND	300		"		"			
2-Chlorophenol	ND	1000		"		"	"		
1 4-Dichlorobenzene	ND	300	"			"			
N-Nitrosodi-n-propylamine	ND	300		"		"	"		
1.2.4-Trichlorobenzene	ND	300				"		"	
4-Chloro-3-methylphenol	ND	1000				"		"	
2-Methylnanhthalene	ND	300		"	"	"			
1-Methylnaphthalene	ND	300		"	"	"			
Acenaphthene	ND	300				"		"	
4-Nitrophenol	ND	1000		"	"	"			
2 4-Dinitrotoluene	ND	300		"	"	"			
Pentachlorophenol	ND	1000		"		"		"	
Pyrene	ND	300		"		"		"	
Acenaphthylene	ND	300	"	"		"	"	"	
Anthracene	ND	300	"	"		"	"	"	
Benzo (a) anthracene	ND	300	"	"		"	"	"	
Benzo (b) fluoranthene	ND	300	"	"		"	"	"	
Benzo (k) fluoranthene	ND	300	"	"		"	"	"	
Benzo (g,h,i) perylene	ND	1000	"	"		"	"	"	

SunStar Laboratories, Inc.

Brusca Associates Inc.Project: Lathrop 48-Ac PropertyPO Box 332Project Number: 137-002Roseville CA, 95661Project Manager: Joe Brusca									: :50
			VS22						
		T1812	34-14 (So	oil)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	ies, Inc.					
Semivolatile Organic Compounds by	y EPA Method 8270C								
Benzo (a) pyrene	ND	300	ug/kg	1	8041145	04/11/18	04/13/18	EPA 8270C	
Benzyl alcohol	ND	300	"	"	"	"		"	
Bis(2-chloroethoxy)methane	ND	300	"	"	"	"		"	
Bis(2-chloroethyl)ether	ND	300	"	"	"	"		"	
Bis(2-chloroisopropyl)ether	ND	300	"	"	"	"		"	
Bis(2-ethylhexyl)phthalate	ND	300	"	"	"	"		"	
4-Bromophenyl phenyl ether	ND	300	"	"	"	"		"	
Butyl benzyl phthalate	ND	300	"	"	"	"		"	
4-Chloroaniline	ND	300	"	"	"	"		"	
2-Chloronaphthalene	ND	300	"	"	"	"		"	
4-Chlorophenyl phenyl ether	ND	300	"	"	"	"	"	"	
Chrysene	ND	300	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	300	"	"	"	"	"	"	
Dibenzofuran	ND	300	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	300	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	300	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	300	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	1000	"	"	"	"	"	"	
Diethyl phthalate	ND	300	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	1000	"	"	"	"	"	"	
Dimethyl phthalate	ND	300	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol	ND	1000	"	"	"	"	"	"	
2,4-Dinitrophenol	ND	1000	"	"	"	"	"	"	
2,6-Dinitrotoluene	ND	1000	"	"	"	"	"	"	
Di-n-octyl phthalate	ND	300	"	"	"	"	"	"	
Fluoranthene	ND	300	"	"	"	"	"	"	
Fluorene	ND	300	"	"	"	"	"	"	
Hexachlorobenzene	ND	1500	"	"	"	"	"	"	
Hexachlorobutadiene	ND	300	"	"	"	"	"	"	
Hexachlorocyclopentadiene	ND	1000	"	"	"	"	"	"	
Hexachloroethane	ND	300	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene	ND	300	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Brusca Associates Inc. PO Box 332 Roseville CA, 95661	Project: Lathrop 48-Ac Property Project Number: 137-002 Project Manager: Joe Brusca								
	T1812	VS22 234-14 (So	oil)						
Analyte Res	Reporting ult Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes	
	SunStar L	aboratori	es, Inc.						
Semivolatile Organic Compounds by EPA Method 82	270C								
Isophorone N	ID 300	ug/kg	1	8041145	04/11/18	04/13/18	EPA 8270C		
2-Methylphenol N	D 1000	"	"	"	"	"	"		
4-Methylphenol N	D 1000	"	"	"	"	"	"		
Naphthalene N	D 300	"	"	"	"	"	"		
2-Nitroaniline N	D 300	"	"	"	"	"	"		
3-Nitroaniline N	D 300	"	"	"	"	"	"		
4-Nitroaniline N	D 300	"	"	"	"	"	"		
Nitrobenzene N	D 1000	"	"	"	"	"	"		
2-Nitrophenol N	D 1000	"	"	"	"	"	"		
N-Nitrosodimethylamine N	D 300	"	"	"	"	"	"		
N-Nitrosodiphenylamine N	D 300	"	"	"	"	"	"		
2,3,5,6-Tetrachlorophenol N	D 300	"	"	"	"	"	"		
2,3,4,6-Tetrachlorophenol N	D 300	"	"	"	"	"	"		
Phenanthrene N	D 300	"	"	"	"	"	"		
Azobenzene N	D 300	"	"	"	"	"	"		
2,4,5-Trichlorophenol N	D 1000	"	"	"	"	"	"		
Pyridine N	D 300	"	"	"	"	"	"		
2,4,6-Trichlorophenol N	D 1000	"	"	"	"	"	"		
Surrogate: 2-Fluorophenol	49.4 %	15-	121	"	"	"	"		
Surrogate: Phenol-d6	52.9 %	24-	113	"	"	"	"		
Surrogate: Nitrobenzene-d5	54.8 %	21.3	-119	"	"	"	"		
Surrogate: 2-Fluorobiphenyl	67.4 %	32.4-	-102	"	"	"	"		
Surrogate: 2,4,6-Tribromophenol	76.9 %	18.1-	-105	"	"	"	"		
Surrogate: Terphenyl-dl4	67.4 %	29.1-	-130	"	"	"	"		

SunStar Laboratories, Inc.

Brusca Associates Inc. PO Box 332 Roseville CA, 95661		Reported: 04/19/18 13	:50						
		T101	VS24	.:.)					
		1181.	234-16 (80)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Extractable Petroleum Hydrocar	bons by 8015B with Silica	Gel Cleanu	þ						
C6-C12 (GRO)	ND	10	mg/kg	1	8041214	04/12/18	04/18/18	EPA 8015B	
C13-C28 (DRO)	220	10	"	"	"	"	"	"	
C29-C40 (MORO)	310	10	"	"	"	"	"	"	
Surrogate: p-Terphenyl		109 %	65	135	"	"	"	"	
Metals by EPA 6010B									
Antimony	ND	3.0	mg/kg	1	8041307	04/13/18	04/13/18	EPA 6010B	
Silver	ND	2.0	"	"	"	"	"	"	
Arsenic	ND	5.0	"	"	"	"	"	"	
Barium	52	1.0	"	"	"	"	"	"	
Beryllium	ND	1.0	"	"	"	"	"	"	
Cadmium	ND	2.0	"	"	"	"	"	"	
Chromium	4.2	2.0	"	"	"	"	"	"	
Cobalt	3.8	2.0	"	"	"	"	"	"	
Copper	3.1	1.0	"	"	"	"	"	"	
Lead	ND	3.0	"	"	"	"	"	"	
Molybdenum	ND	5.0	"	"	"	"	"	"	
Nickel	4.9	2.0	"	"	"	"	"	"	
Selenium	ND	5.0	"	"	"	"	"	"	
Thallium	ND	2.0	"	"	"	"	"	"	
Vanadium	16	5.0	"	"	"	"	"	"	
Zinc	19	1.0	"	"	"	"	"	"	
Cold Vapor Extraction EPA 7470	/7471								
Mercury	ND	0.10	mg/kg	1	8041308	04/13/18	04/13/18	EPA 7471A Soil	

SunStar Laboratories, Inc.

Brusca Associates Inc.									
PO Box 332		Project Numb	ber: 137-00)2				Reported	:
Roseville CA, 95661		Project Manag	ger: Joe Br	usca				04/19/18 13	:50
			VS24						
		T1812	234-16 (So	oil)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
-		SunStar L	ahoratori	ies Inc		-	-		
Polychloringted Binhenyls by EPA N	Lethod 8082		abbi atbi i	ics, me.					
PCB-1016	ND	10	ug/kg	1	8041144	04/11/18	04/14/18	EPA 8082	
PCB-1221	ND	10	"	"		"			
PCB-1232	ND	10	"	"		"			
PCB-1242	ND	10	"	"		"			
PCB-1248	ND	10	"	"		"			
PCB-1254	ND	10	"	"		"	"	"	
PCB-1260	21	10	"	"		"		"	
Surrogate: Tetrachloro-meta-xylene		80.2 %	35-	140	"	"	"	"	
Surrogate: Decachlorobiphenvl		81.8 %	35-	140	"	"	"	"	
	- EDA M-41 - 1 9270C								
Semivolatile Organic Compounds by	<u>EPA Method 8270C</u>	200	л	1	0041145	04/11/10	04/12/10	ED4 9270C	
	ND	300	ug/kg	1	8041145	04/11/18	04/13/18	EPA 8270C	
	ND	1000	"						
Aniline 2 Chlorenbergh	ND	1000							
	ND	1000							
I,4-Dichlorobenzene	ND	300							
1.2.4 Trickland another	ND	300	"						
1,2,4-1richlorobenzene	ND	300							
4-Chioro-3-methylphenol	ND	1000	"						
2 Mathylnaphthalana	ND	200	"						
	ND	300	"						
4 Nitrophonol	ND	1000	"			"			
2.4 Dinitrateluana	ND	200	"			"			
Pantaghlaraphanal	ND	1000	"			"			
Prenactionophenor	ND	200	"			"			
Assessment the land	ND	300	"			"			
Acchaphthylene	ND	300	"						
Anumaterie Panza (a) anthragana		200	"						
Denzo (a) anunacene		200	"						
Denzo (b) fluoranther -	ND	300	"						
Denzo (k) huorantnene	ND	300	"						
Benzo (g,n,1) perylene	ND	1000	- 4		"				

SunStar Laboratories, Inc.

Brusca Associates Inc. PO Box 332 Roseville CA, 95661	Reported: 04/19/18 13	Reported: 04/19/18 13:50						
	T1812	VS24 34-16 (Se	oil)					
Analyte Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	SunStar I	aborator	ios Ino		1			
Somivalatile Organic Compounds by FPA Method 82700			ies, me.					
Benzo (a) pyrene ND	300	110/kg	1	8041145	04/11/18	04/13/18	EPA 8270C	
Benzyl alcohol ND	300	ug/kg "	"	"	"	"	"	
Bis(2-chloroethoxy)methane ND	300	"	"		"	"		
Bis(2-chloroethyl)ether ND	300	"	"		"	"		
Bis(2-chloroisopropyl)ether ND	300	"	"		"			
Bis(2-ethylhexyl)phthalate ND	300	"	"		"			
4-Bromophenyl phenyl ether ND	300	"	"		"	"	"	
Butyl benzyl phthalate ND	300	"	"	"	"	"	"	
4-Chloroaniline ND	300	"	"		"	"	"	
2-Chloronaphthalene ND	300	"	"		"	"	"	
4-Chlorophenyl phenyl ether ND	300	"	"		"	"	"	
Chrysene ND	300	"	"		"	"	"	
Dibenz (a,h) anthracene ND	300	"	"		"	"	"	
Dibenzofuran ND	300	"	"		"	"	"	
Di-n-butyl phthalate ND	300	"	"		"	"	"	
1,2-Dichlorobenzene ND	300	"	"	"	"	"	"	
1,3-Dichlorobenzene ND	300	"	"	"	"	"	"	
2,4-Dichlorophenol ND	1000	"	"	"	"	"	"	
Diethyl phthalate ND	300	"	"	"	"	"	"	
2,4-Dimethylphenol ND	1000	"	"	"	"	"	"	
Dimethyl phthalate ND	300	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol ND	1000	"	"		"	"	"	
2,4-Dinitrophenol ND	1000	"	"		"	"	"	
2,6-Dinitrotoluene ND	1000	"	"		"	"	"	
Di-n-octyl phthalate ND	300	"	"	"	"	"	"	
Fluoranthene ND	300	"	"		"	"	"	
Fluorene ND	300	"	"		"	"	"	
Hexachlorobenzene ND	1500	"	"		"	"	"	
Hexachlorobutadiene ND	300	"	"	"	"	"	"	
Hexachlorocyclopentadiene ND	1000	"	"	"	"	"	"	
Hexachloroethane ND	300	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene ND	300	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Brusca Associates Inc. PO Box 332 Roseville CA, 95661		Reported: 04/19/18 13:50							
		T1812	V S24 234-16 (So	oil)					
Analyte I	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar La	aboratori	ies, Inc.					
Semivolatile Organic Compounds by EPA Method	1 8270C								
Isophorone	ND	300	ug/kg	1	8041145	04/11/18	04/13/18	EPA 8270C	
2-Methylphenol	ND	1000	"	"	"	"	"	"	
4-Methylphenol	ND	1000	"	"	"	"	"	"	
Naphthalene	ND	300	"	"	"	"	"	"	
2-Nitroaniline	ND	300	"	"	"	"	"	"	
3-Nitroaniline	ND	300	"	"	"	"	"	"	
4-Nitroaniline	ND	300	"	"	"	"	"	"	
Nitrobenzene	ND	1000	"	"	"	"	"	"	
2-Nitrophenol	ND	1000	"	"	"	"	"	"	
N-Nitrosodimethylamine	ND	300	"	"	"	"	"	"	
N-Nitrosodiphenylamine	ND	300	"	"	"	"	"	"	
2,3,5,6-Tetrachlorophenol	ND	300	"	"	"	"	"	"	
2,3,4,6-Tetrachlorophenol	ND	300	"	"	"	"	"	"	
Phenanthrene	ND	300	"	"	"	"	"	"	
Azobenzene	ND	300	"	"	"	"	"	"	
Pyridine	ND	300	"	"	"	"	"	"	
2,4,5-Trichlorophenol	ND	1000	"	"	"	"	"	"	
2,4,6-Trichlorophenol	ND	1000	"	"	"	"	"	"	
Surrogate: 2-Fluorophenol		47.3 %	15-	121	"	"	"	"	
Surrogate: Phenol-d6		55.4 %	24-	113	"	"	"	"	
Surrogate: Nitrobenzene-d5		54.9 %	21.3	-119	"	"	"	"	
Surrogate: 2-Fluorobiphenyl		72.9 %	32.4	-102	"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		84.6 %	18.1	-105	"	"	"	"	
Surrogate: Terphenyl-dl4		71.4 %	29.1	-130	"	"	"	"	

SunStar Laboratories, Inc.

Brusca Associates Inc. PO Box 332 Roseville CA, 95661	F	Reported 04/19/18 13	:50						
		T1812	VS25 234-17 (So	oil)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	ies, Inc.					
Metals by EPA 6010B									
Arsenic	ND	5.0	mg/kg	1	8041304	04/13/18	04/16/18	EPA 6010b	
Lead	ND	3.0	"	"	"	"		"	

SunStar Laboratories, Inc.

Mike Jaroudi, Project Manager

Brusca Associates Inc.												
PO Box 332		Project Numl	ber: 137-00	02				Reported	:			
Roseville CA, 95661	1	Project Manager: Joe Brusca										
			VS26									
		T1812	234-18 (So	oil)								
		Reporting										
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes			
		SunStar L	aboratori	ies, Inc.								
Metals by EPA 6010B												
Arsenic	ND	5.0	mg/kg	1	8041304	04/13/18	04/16/18	EPA 6010b				
Lead	ND	3.0	"	"	"	"	"	"				

SunStar Laboratories, Inc.

Mike Jaroudi, Project Manager

Brusca Associates Inc. PO Box 332 Roseville CA, 95661	F	Reported 04/19/18 13	:50						
		T1812	VS27 234-19 (So	oil)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	ies, Inc.					
Metals by EPA 6010B									
Arsenic	ND	5.0	mg/kg	1	8041304	04/13/18	04/16/18	EPA 6010b	
Lead	ND	3.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Mike Jaroudi, Project Manager

Brusca Associates Inc. PO Box 332 Roseville CA, 95661	F	Reported 04/19/18 13	: :50						
		T1812	VS28 234-20 (So	oil)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Metals by EPA 6010B									
Arsenic	ND	5.0	mg/kg	1	8041304	04/13/18	04/16/18	EPA 6010b	
Lead	ND	3.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Mike Jaroudi, Project Manager

Brusca Associates Inc. PO Box 332 Roseville CA, 95661	F	Reported 04/19/18 13	: :50						
		T1812	VS29 234-21 (So	oil)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Metals by EPA 6010B									
Arsenic	ND	5.0	mg/kg	1	8041304	04/13/18	04/16/18	EPA 6010b	
Lead	ND	3.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Mike Jaroudi, Project Manager

Brusca Associates Inc.									
PO Box 332		Project Numl	per: 137-00)2				Reported	:
Roseville CA, 95661	1	Project Manag	ger: Joe Br	usca				04/19/18 13:50	
			VS30						
		T181 2	234-22 (So	oil)					
		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	ies, Inc.					
Metals by EPA 6010B									
Arsenic	ND	5.0	mg/kg	1	8041304	04/13/18	04/16/18	EPA 6010b	
Lead	ND	3.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Mike Jaroudi, Project Manager

Brusca Associates Inc.											
PO Box 332		Project Numl	ber: 137-00)2				Reported	:		
Roseville CA, 95661	I	Project Manager: Joe Brusca									
			VS31								
		T181 2	234-23 (So	oil)							
		Reporting									
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes		
		SunStar L	aboratori	ies, Inc.							
Metals by EPA 6010B											
Arsenic	ND	5.0	mg/kg	1	8041304	04/13/18	04/16/18	EPA 6010b			
Lead	ND	3.0	"	"	"	"	"	"			

SunStar Laboratories, Inc.

Mike Jaroudi, Project Manager

Brusca Associates Inc.										
PO Box 332		Project Numl	per: 137-00	02				Reported	:	
Roseville CA, 95661	I	Project Manag	ger: Joe Br	usca				04/19/18 13:50		
			VS33							
		T1812	234-25 (So	oil)						
		Reporting								
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes	
		SunStar L	aboratori	ies, Inc.						
Metals by EPA 6010B										
Arsenic	ND	5.0	mg/kg	1	8041304	04/13/18	04/16/18	EPA 6010b		
Lead	ND	3.0	"	"	"	"	"	"		

SunStar Laboratories, Inc.

Mike Jaroudi, Project Manager

Brusca Associates Inc.												
PO Box 332		Project Numl	per: 137-00)2				Reported	:			
Roseville CA, 95661	1	Project Manager: Joe Brusca										
			VS34									
		T1812	234-26 (So	oil)								
		Reporting										
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes			
		SunStar L	aboratori	ies, Inc.								
Metals by EPA 6010B												
Arsenic	ND	5.0	mg/kg	1	8041304	04/13/18	04/16/18	EPA 6010b				
Lead	ND	3.0	"	"	"	"	"	"				

SunStar Laboratories, Inc.

Brusca Associates Inc.	Project: Lathrop 48-Ac Property									
PO Box 332		Project Numb	ber: 137-00)2				Reported	:	
Roseville CA, 95661		Project Manag	ger: Joe Br	usca				04/19/18 13	:50	
			VS35							
		T1812	234-27 (So	oil)						
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes	
		SunStar L	aboratori	es, Inc.						
Extractable Petroleum Hydrocar	bons by 8015B with Silic	a Gel Cleanu	р							
C6-C12 (GRO)	ND	10	mg/kg	1	8041214	04/12/18	04/18/18	EPA 8015B		
C13-C28 (DRO)	ND	10	"	"	"	"	"	"		
C29-C40 (MORO)	ND	10	"	"	"	"	"	"		
Surrogate: p-Terphenyl		94.4 %	65-	135	"	"	"	"		
Metals by EPA 6010B										
Antimony	ND	3.0	mg/kg	1	8041307	04/13/18	04/13/18	EPA 6010B		
Silver	ND	2.0	"	"	"	"	"	"		
Arsenic	ND	5.0	"	"	"	"	"	"		
Barium	66	1.0	"	"	"	"	"	"		
Beryllium	ND	1.0	"	"	"	"	"	"		
Cadmium	ND	2.0	"	"	"	"	"	"		
Chromium	5.1	2.0	"	"	"	"	"	"		
Cobalt	6.3	2.0	"	"	"	"	"	"		
Copper	3.6	1.0	"	"	"	"	"	"		
Lead	ND	3.0	"	"	"	"	"	"		
Molybdenum	ND	5.0	"	"	"	"	"	"		
Nickel	6.8	2.0	"	"	"	"	"	"		
Selenium	ND	5.0	"	"	"	"	"	"		
Thallium	ND	2.0	"	"	"	"	"	"		
Vanadium	22	5.0	"	"	"	"	"	"		
Zinc	28	1.0	"	"	"	"	"	"		
Cold Vapor Extraction EPA 7470	/7471									
Mercury	ND	0.10	mg/kg	1	8041308	04/13/18	04/13/18	EPA 7471A Soil		

SunStar Laboratories, Inc.

Brusca Associates Inc.Project:Lathrop 48-Ac PropertyPO Box 332Project Number:137-002Roseville CA, 95661Project Manager:Joe Brusca0										
	T1012	VS35	·1)							
	11812	.34-27 (80	011) 							
Analyte Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes		
	SunStar L	aboratori	es, Inc.							
Polychlorinated Biphenyls by EPA Method 8082										
PCB-1016 ND	10	ug/kg	1	8041144	04/11/18	04/14/18	EPA 8082			
PCB-1221 ND	10	"	"	"	"	"	"			
PCB-1232 ND	10	"	"	"	"	"	"			
PCB-1242 ND	10	"	"	"	"	"	"			
PCB-1248 ND	10	"	"	"	"	"	"			
PCB-1254 ND	10	"	"	"	"	"	"			
PCB-1260 57	10	"	"	"	"	"	"			
Surrogate: Tetrachloro-meta-xylene	108 %	35-	140	"	"	"	"			
Surrogate: Decachlorobiphenyl	101 %	35-	140	"	"	"	"			
Semivalatile Organic Compounds by FPA Method 82700	n									
Carbazole ND	300	110/kg	1	8041145	04/11/18	04/13/18	EPA 8270C			
Phenol ND	1000	"		"	"	"	"			
Aniline ND	300	"	"		"		"			
2-Chlorophenol ND	1000	"	"		"	"	"			
1.4-Dichlorobenzene ND	300	"	"		"		"			
N-Nitrosodi-n-propylamine ND	300	"	"		"	"	"			
1,2.4-Trichlorobenzene ND	300	"	"		"					
4-Chloro-3-methylphenol ND	1000	"	"		"					
1-Methylnaphthalene ND	300	"	"		"	"	"			
2-Methylnaphthalene ND	300	"	"		"	"	"			
Acenaphthene ND	300	"	"		"	"	"			
4-Nitrophenol ND	1000	"	"		"	"	"			
2,4-Dinitrotoluene ND	300	"	"	"	"	"	"			
Pentachlorophenol ND	1000	"	"	"	"	"	"			
Pyrene ND	300	"	"	"	"	"	"			
Acenaphthylene ND	300	"	"	"	"	"	"			
Anthracene ND	300	"	"		"	"	"			
Benzo (a) anthracene ND	300	"	"		"	"	"			
Benzo (b) fluoranthene ND	300	"	"		"	"	"			
Benzo (k) fluoranthene ND	300	"	"		"	"	"			
Benzo (g,h,i) perylene ND	1000	"	"	"	"	"	"			

SunStar Laboratories, Inc.

Brusca Associates Inc. PO Box 332 Roseville CA, 95661		Proje Project Numb Project Manag	ect: Lathro per: 137-00 ger: Joe Br	op 48-Ac Pro)2 usca	perty			Reported 04/19/18 13	: :50
		T1812	VS35 234-27 (Se	oil)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	ies, Inc.					
Semivolatile Organic Compounds by	EPA Method 8270C								
Benzo (a) pyrene	ND	300	119/kg	1	8041145	04/11/18	04/13/18	EPA 8270C	
Benzyl alcohol	ND	300	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	300	"	"		"	"	"	
Bis(2-chloroethyl)ether	ND	300	"	"		"	"	"	
Bis(2-chloroisopropyl)ether	ND	300	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	300	"	"		"		"	
4-Bromophenyl phenyl ether	ND	300	"	"		"			
Butyl benzyl phthalate	ND	300	"	"		"	"	"	
4-Chloroaniline	ND	300	"	"		"		"	
2-Chloronaphthalene	ND	300	"	"		"		"	
4-Chlorophenyl phenyl ether	ND	300	"	"		"			
Chrysene	ND	300	"	"		"		"	
Dibenz (a,h) anthracene	ND	300	"	"		"		"	
Dibenzofuran	ND	300	"	"		"	"	"	
Di-n-butyl phthalate	ND	300	"	"		"	"	"	
1,2-Dichlorobenzene	ND	300	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	300	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	1000	"	"	"	"	"	"	
Diethyl phthalate	ND	300	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	1000	"	"	"	"	"	"	
Dimethyl phthalate	ND	300	"	"		"	"	"	
4,6-Dinitro-2-methylphenol	ND	1000	"	"		"	"	"	
2,4-Dinitrophenol	ND	1000	"	"		"	"	"	
2,6-Dinitrotoluene	ND	1000	"	"		"	"	"	
Di-n-octyl phthalate	ND	300	"	"	"	"	"	"	
Fluoranthene	ND	300	"	"		"	"	"	
Fluorene	ND	300	"	"	"	"	"	"	
Hexachlorobenzene	ND	1500	"	"	"	"	"	"	
Hexachlorobutadiene	ND	300	"	"	"	"	"	"	
Hexachlorocyclopentadiene	ND	1000	"	"	"	"	"	"	
Hexachloroethane	ND	300	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene	ND	300	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Brusca Associates Inc. PO Box 332 Roseville CA, 95661	Project: Lathrop 48-Ac Property Project Number: 137-002 Project Manager: Joe Brusca							
	T181	V 835 234-27 (So	oil)					
Analyte Re	Reporting esult Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	SunStar I	Laboratori	es, Inc.					
Semivolatile Organic Compounds by EPA Method	8270C							
Isophorone	ND 300	ug/kg	1	8041145	04/11/18	04/13/18	EPA 8270C	
2-Methylphenol	ND 1000	"	"	"	"	"	"	
4-Methylphenol	ND 1000		"	"	"	"	"	
Naphthalene	ND 300		"	"	"	"	"	
2-Nitroaniline	ND 300		"	"	"	"	"	
3-Nitroaniline	ND 300	"	"	"	"	"	"	
4-Nitroaniline	ND 300	"	"	"	"	"	"	
Nitrobenzene	ND 1000	"	"	"	"	"	"	
2-Nitrophenol	ND 1000	"	"	"	"	"	"	
N-Nitrosodimethylamine	ND 300	"	"	"	"	"	"	
N-Nitrosodiphenylamine	ND 300	"	"	"	"	"	"	
2,3,5,6-Tetrachlorophenol	ND 300	"	"	"	"	"	"	
2,3,4,6-Tetrachlorophenol	ND 300	"	"	"	"	"	"	
Phenanthrene	ND 300	"	"	"	"	"	"	
Azobenzene	ND 300	"	"	"	"	"	"	
Pyridine	ND 300	"	"	"	"	"	"	
2,4,5-Trichlorophenol	ND 1000	"	"	"	"	"	"	
2,4,6-Trichlorophenol	ND 1000	"	"	"	"	"	"	
Surrogate: 2-Fluorophenol	51.1 %	15-	121	"	"	"	"	
Surrogate: Phenol-d6	55.2 %	24-	113	"	"	"	"	
Surrogate: Nitrobenzene-d5	56.5 %	21.3	-119	"	"	"	"	
Surrogate: 2-Fluorobiphenyl	68.9 %	32.4-	-102	"	"	"	"	
Surrogate: 2,4,6-Tribromophenol	78.7 %	18.1-	-105	"	"	"	"	
Surrogate: Terphenyl-dl4	73.4 %	29.1-	-130	"	"	"	"	

SunStar Laboratories, Inc.

Brusca Associates Inc.										
PO Box 332		Project Numl	per: 137-00)2				Reported:		
Roseville CA, 95661	1		04/19/18 13:50							
			VS36							
		T1812	234-28 (So	oil)						
		Reporting								
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes	
		SunStar L	aboratori	ies, Inc.						
Metals by EPA 6010B										
Arsenic	ND	5.0	mg/kg	1	8041304	04/13/18	04/16/18	EPA 6010b		
Lead	ND	3.0	"	"	"	"	"	"		

SunStar Laboratories, Inc.

Brusca Associates Inc.										
PO Box 332		Project Number: 137-002								
Roseville CA, 95661		Project Manager: Joe Brusca								
			VS37							
		T1812	234-29 (So	oil)						
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes	
		SunStar L	aboratori	es, Inc.						
Extractable Petroleum Hydrocarb	oons by 8015B with Silic	a Gel Cleanu	p							
C6-C12 (GRO)	ND	10	mg/kg	1	8041214	04/12/18	04/18/18	EPA 8015B		
C13-C28 (DRO)	ND	10	"	"	"	"	"	"		
C29-C40 (MORO)	ND	10	"	"	"	"	"	"		
Surrogate: p-Terphenyl		105 %	65-	135	"	"	"	"		
Metals by EPA 6010B										
Antimony	ND	3.0	mg/kg	1	8041307	04/13/18	04/13/18	EPA 6010B		
Silver	ND	2.0	"	"	"	"	"	"		
Arsenic	ND	5.0	"	"	"	"	"	"		
Barium	77	1.0	"	"	"	"	"	"		
Beryllium	ND	1.0	"	"	"	"	"	"		
Cadmium	ND	2.0	"	"	"	"	"	"		
Chromium	5.9	2.0	"	"	"	"	"	"		
Cobalt	6.4	2.0	"	"	"	"	"	"		
Copper	4.1	1.0	"	"	"	"	"	"		
Lead	ND	3.0	"	"	"	"	"	"		
Molybdenum	ND	5.0	"	"	"	"	"	"		
Nickel	7.5	2.0	"	"	"	"	"	"		
Selenium	ND	5.0	"	"	"	"	"	"		
Thallium	ND	2.0	"	"	"	"	"	"		
Vanadium	18	5.0	"	"	"	"	"	"		
Zinc	26	1.0	"	"	"	"		"		
Cold Vapor Extraction EPA 7470/	7471									
Mercury	ND	0.10	mg/kg	1	8041308	04/13/18	04/13/18	EPA 7471A Soil		

SunStar Laboratories, Inc.

Brusca Associates Inc.	Project: Lathrop 48-Ac Property									
PO Box 332	Project Numb	ber: 137-0	02				Reported:			
Roseville CA, 95661	Project Manag	ger: Joe Bi	rusca				04/19/18 13	:50		
		VS37								
	T1812	234-29 (S	oil)							
Analyte Resul	Reporting t Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes		
	SunStar L	aborator	ies, Inc.							
Polychlorinated Biphenyls by EPA Method 8082										
PCB-1016 NE) 10	ug/kg	1	8041144	04/11/18	04/14/18	EPA 8082			
PCB-1221 NE) 10	"	"	"	"	"	"			
PCB-1232 NE) 10	"	"	"	"	"	"			
PCB-1242 NE) 10	"	"	"	"	"	"			
PCB-1248 NE) 10	"	"	"	"	"	"			
PCB-1254 NE) 10	"	"	"	"	"	"			
PCB-1260 NE) 10	"	"	"	"	"	"			
Surrogate: Tetrachloro-meta-xylene	93.7 %	35-	140	"	"	"	"			
Surrogate: Decachlorobiphenyl	97.2 %	35-	140	"	"	"	"			
Semivalatile Organic Compounds by EPA Method 82'	70C									
Carbazole NC	300	119/kg	1	8041145	04/11/18	04/13/18	EPA 8270C			
Phenol NC	1000	"	"	"	"	"	"			
Aniline NC	300		"		"		"			
2-Chlorophenol) 1000		"		"		"			
1,4-Dichlorobenzene NE	300	"	"		"	"	"			
N-Nitrosodi-n-propylamine NE	300	"	"		"		"			
1,2.4-Trichlorobenzene NE	300	"	"		"					
4-Chloro-3-methylphenol NE	1000	"	"		"	"	"			
1-Methylnaphthalene NE	300	"	"		"	"	"			
2-Methylnaphthalene NE	300	"	"		"	"	"			
Acenaphthene NE	300	"	"		"	"	"			
4-Nitrophenol NE	1000	"	"		"	"	"			
2,4-Dinitrotoluene NE	300	"	"		"	"	"			
Pentachlorophenol NE	1000	"	"		"	"	"			
Pyrene NE	300	"	"	"	"	"	"			
Acenaphthylene NE	300	"	"	"	"	"	"			
Anthracene NE	300	"	"	"	"	"	"			
Benzo (a) anthracene NE	300	"	"	"	"	"	"			
Benzo (b) fluoranthene NE	300	"	"		"	"	"			
Benzo (k) fluoranthene NE	300	"	"	"	"	"	"			
Benzo (g,h,i) perylene NE	1000	"	"	"	"	"	"			

SunStar Laboratories, Inc.

SunStar Laboratories, Inc. PROVIDING QUALITY ANALYTICAL SERVICES NATIONWIDE

25712 Commercentre Drive Lake Forest, California 92630 949.297.5020 Phone 949.297.5027 Fax

Brusca Associates Inc. PO Box 332 Roseville CA, 95661		Proje Project Numb Project Manag	ect: Lathro per: 137-00 ger: Joe Br	op 48-Ac Pro 02 usca	perty			Reported 04/19/18 13	:50
		T1812	VS37 234-29 (Se	oil)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	ies, Inc.					
Semivolatile Organic Compounds by	EPA Method 8270C								
Benzo (a) pyrene	ND	300	ug/kg	1	8041145	04/11/18	04/13/18	EPA 8270C	
Benzyl alcohol	ND	300	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	300	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	300	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	300	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	300	"	"	"	"	"	"	
4-Bromophenyl phenyl ether	ND	300	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	300	"	"	"	"	"	"	
4-Chloroaniline	ND	300	"	"	"	"	"	"	
2-Chloronaphthalene	ND	300	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether	ND	300	"	"	"	"	"	"	
Chrysene	ND	300	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	300	"	"	"	"	"	"	
Dibenzofuran	ND	300	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	300	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	300	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	300	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	1000	"	"	"	"	"	"	
Diethyl phthalate	ND	300	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	1000	"	"	"	"	"	"	
Dimethyl phthalate	ND	300	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol	ND	1000	"	"	"	"	"	"	
2,4-Dinitrophenol	ND	1000	"	"	"	"	"	"	
2,6-Dinitrotoluene	ND	1000	"	"	"	"	"	"	
Di-n-octyl phthalate	ND	300	"	"	"	"	"	"	
Fluoranthene	ND	300	"	"	"	"	"	"	
Fluorene	ND	300	"	"	"	"	"	"	
Hexachlorobenzene	ND	1500	"	"	"	"	"	"	
Hexachlorobutadiene	ND	300	"	"		"	"	"	
Hexachlorocyclopentadiene	ND	1000	"	"		"	"	"	
Hexachloroethane	ND	300	"	"		"	"	"	
Indeno (1,2,3-cd) pyrene	ND	300	"	"	"		"	"	

SunStar Laboratories, Inc.

Brusca Associates Inc. Project: Lathrop 48-Ac Property PO Box 332 Project Number: 137-002 R Roseville CA, 95661 Project Manager: Joe Brusca 04/1 VS37 T181234-29 (Soil)										
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes	
		SunStar L	aboratori	ies, Inc.						
Semivolatile Organic Compounds by EPA M	1ethod 82700	2								
Isophorone	ND	300	ug/kg	1	8041145	04/11/18	04/13/18	EPA 8270C		
2-Methylphenol	ND	1000	"	"	"	"	"	"		
4-Methylphenol	ND	1000	"	"	"	"	"	"		
Naphthalene	ND	300	"	"	"	"	"	"		
2-Nitroaniline	ND	300	"	"	"	"	"	"		
3-Nitroaniline	ND	300	"	"	"	"	"	"		
4-Nitroaniline	ND	300	"	"	"	"	"	"		
Nitrobenzene	ND	1000	"	"	"	"	"	"		
2-Nitrophenol	ND	1000	"	"	"	"	"	"		
N-Nitrosodimethylamine	ND	300	"	"	"	"	"	"		
N-Nitrosodiphenylamine	ND	300	"	"	"	"	"	"		
2,3,5,6-Tetrachlorophenol	ND	300	"	"	"	"	"	"		
2,3,4,6-Tetrachlorophenol	ND	300	"	"	"	"	"	"		
Phenanthrene	ND	300	"	"	"	"	"	"		
Azobenzene	ND	300	"	"	"	"	"	"		
Pyridine	ND	300	"	"	"	"	"	"		
2,4,5-Trichlorophenol	ND	1000	"	"	"	"	"	"		
2,4,6-Trichlorophenol	ND	1000	"	"	"	"	"	"		
Surrogate: 2-Fluorophenol		52.8 %	15-	121	"	"	"	"		
Surrogate: Phenol-d6		57.0 %	24-	113	"	"	"	"		
Surrogate: Nitrobenzene-d5		62.0 %	21.3	-119	"	"	"	"		
Surrogate: 2-Fluorobiphenyl		75.8 %	32.4	-102	"	"	"	"		
Surrogate: 2,4,6-Tribromophenol		84.8 %	18.1	-105	"	"	"	"		
Surrogate: Terphenyl-dl4		77.9 %	29.1	-130	"	"	"	"		

SunStar Laboratories, Inc.

Brusca Associates Inc.	sociates Inc. Project: Lathrop 48-Ac Property										
PO Box 332	32 Project Number: 137-002										
Roseville CA, 95661	1		04/19/18 13:50								
			VS38								
		T1812	234-30 (So	oil)							
		Reporting									
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes		
		SunStar L	aboratori	ies, Inc.							
Metals by EPA 6010B											
Arsenic	ND	5.0	mg/kg	1	8041305	04/13/18	04/17/18	EPA 6010b			
Lead	ND	3.0	"	"	"	"	"	"			

SunStar Laboratories, Inc.

Mike Jaroudi, Project Manager

Brusca Associates Inc.										
PO Box 332		Project Number: 137-002								
Roseville CA, 95661		Project Manager: Joe Brusca								
			VS39							
		T1812	234-31 (So	oil)						
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes	
		SunStar L	aboratori	ies, Inc.						
Extractable Petroleum Hydrocar	bons by 8015B with Silic	a Gel Cleanu	p							
C6-C12 (GRO)	ND	10	mg/kg	1	8041214	04/12/18	04/18/18	EPA 8015B		
C13-C28 (DRO)	ND	10	"	"	"	"	"	"		
C29-C40 (MORO)	ND	10	"	"	"	"	"	"		
Surrogate: p-Terphenyl		106 %	65-	135	"	"	"	"		
Metals by EPA 6010B										
Antimony	ND	3.0	mg/kg	1	8041307	04/13/18	04/13/18	EPA 6010B		
Silver	ND	2.0	"	"	"	"	"	"		
Arsenic	ND	5.0	"	"	"	"	"	"		
Barium	66	1.0	"	"	"	"	"	"		
Beryllium	ND	1.0	"	"	"	"	"	"		
Cadmium	ND	2.0	"	"	"	"	"	"		
Chromium	4.7	2.0	"	"	"	"	"	"		
Cobalt	4.8	2.0	"	"	"	"	"	"		
Copper	4.5	1.0	"	"	"	"	"	"		
Lead	ND	3.0	"	"	"	"	"	"		
Molybdenum	ND	5.0	"	"	"	"	"	"		
Nickel	7.6	2.0	"	"	"	"	"	"		
Selenium	ND	5.0	"	"	"	"	"	"		
Thallium	ND	2.0	"	"	"	"	"	"		
Vanadium	15	5.0	"	"	"	"	"	"		
Zinc	20	1.0	"	"	"	"	"	"		
Cold Vapor Extraction EPA 7470/	/7471									
Mercury	ND	0.10	mg/kg	1	8041308	04/13/18	04/13/18	EPA 7471A Soil		

SunStar Laboratories, Inc.

PO Box 332 Project Number: 137-002 Reported: Roseville CA, 95661 Project Manager: Joe Brusca 04/19/18 13:5 VS39 T181234-31 (Soil)	0 Notes
Roseville CA, 95661 Project Manager: Joe Brusca 04/19/18 13:5 VS39 T181234-31 (Soil)	0 Notes
VS39 T181234-31 (Soil)	Notes
T181234-31 (Soil)	Notes
	Notes
Reporting Analyte Result Limit Units Dilution Batch Prepared Analyzed Method	
SunStar Laboratories, Inc.	
Polychlorinated Biphenyls by EPA Method 8082	
PCB-1016 ND 10 ug/kg 1 8041144 04/11/18 04/14/18 EPA 8082	
PCB-1221 ND 10 " " " " " "	
PCB-1232 ND 10 " " " " " "	
PCB-1242 ND 10 " " " " " "	
PCB-1248 ND 10 " " " " " "	
PCB-1254 ND 10 " " " " " "	
PCB-1260 ND 10 " " " " " "	
Surrogate: Tetrachloro-meta-xylene 89.1 % 35-140 " " " "	
Surrogate: Decachlorobiphenyl 100 % 35-140 " " " " "	
Semivolatile Organic Compounds by EPA Method 8270C	
Carbazole ND 300 µg/kg 1 8041145 04/11/18 04/13/18 EPA 8270C	
Phenol ND 1000 " " " " " "	
Aniline ND 300 " " " " " "	
2-Chlorophenol ND 1000 " " " " " "	
1.4-Dichlorobenzene ND 300 " " " " " "	
N-Nitrosodi-n-propylamine ND 300 " " " " " "	
1.2.4-Trichlorobenzene ND 300 " " " " " "	
4-Chloro-3-methylphenol ND 1000 " " " " " " "	
2-Methylnaphthalene ND 300 " " " " " "	
1-Methylnaphthalene ND 300 " " " " " "	
Acenaphthene ND 300 " " " " " "	
4-Nitrophenol ND 1000 " " " " " " "	
2,4-Dinitrotoluene ND 300 " " " " " " "	
Pentachlorophenol ND 1000 " " " " " "	
Pyrene ND 300 " " " " " "	
Acenaphthylene ND 300 " " " " " "	
Anthracene ND 300 " " " " " " "	
Benzo (a) anthracene ND 300 " " " " " " "	
Benzo (b) fluoranthene ND 300 " " " " " " "	
Benzo (k) fluoranthene ND 300 " " " " " " "	
Benzo (g,h,i) perylene ND 1000 " " " " " " "	

SunStar Laboratories, Inc.

Brusca Associates Inc. PO Box 332 Roseville CA, 95661		Proje Project Numb Project Manag	eet: Lathro per: 137-00 ger: Joe Bi	op 48-Ac Pro 02 rusca	perty			Reported 04/19/18 13	: :50
		T1812	VS39 34-31 (Se	oil)					
Analyte	Result	Reporting	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	ahorator	ies Inc					
Semivolatile Organic Compounds by	FPA Method 8270C								
Benzo (a) pyrene	ND	300	ug/kg	1	8041145	04/11/18	04/13/18	EPA 8270C	
Benzyl alcohol	ND	300	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	300	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	300	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	300	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	300	"	"	"	"	"	"	
4-Bromophenyl phenyl ether	ND	300	"	"	"	"		"	
Butyl benzyl phthalate	ND	300	"	"	"	"	"	"	
4-Chloroaniline	ND	300	"	"	"	"		"	
2-Chloronaphthalene	ND	300	"	"	"	"		"	
4-Chlorophenyl phenyl ether	ND	300	"	"	"	"			
Chrysene	ND	300	"	"	"	"		"	
Dibenz (a,h) anthracene	ND	300	"	"	"	"		"	
Dibenzofuran	ND	300	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	300	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	300	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	300	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	1000	"	"	"	"	"	"	
Diethyl phthalate	ND	300	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	1000	"	"	"	"	"	"	
Dimethyl phthalate	ND	300	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol	ND	1000	"	"	"	"	"	"	
2,4-Dinitrophenol	ND	1000	"	"	"	"	"	"	
2,6-Dinitrotoluene	ND	1000	"	"	"	"	"	"	
Di-n-octyl phthalate	ND	300	"	"	"	"	"	"	
Fluoranthene	ND	300	"	"	"	"	"	"	
Fluorene	ND	300	"	"	"	"	"	"	
Hexachlorobenzene	ND	1500	"	"	"	"	"	"	
Hexachlorobutadiene	ND	300	"	"	"	"	"	"	
Hexachlorocyclopentadiene	ND	1000	"	"	"	"	"	"	
Hexachloroethane	ND	300	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene	ND	300	"	"		"	"	"	

SunStar Laboratories, Inc.

Brusca Associates Inc. PO Box 332 Roseville CA, 95661		Reported 04/19/18 13	l: 3:50						
		T1812	234-31 (So	oil)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	ies, Inc.					
Semivolatile Organic Compounds by E	CPA Method 8270C								
Isophorone	ND	300	ug/kg	1	8041145	04/11/18	04/13/18	EPA 8270C	
2-Methylphenol	ND	1000	"	"	"	"	"		
4-Methylphenol	ND	1000	"	"	"	"	"		
Naphthalene	ND	300	"	"	"	"	"		
2-Nitroaniline	ND	300	"	"	"	"	"		
3-Nitroaniline	ND	300	"	"	"	"	"		
4-Nitroaniline	ND	300	"	"	"	"	"		
Nitrobenzene	ND	1000	"	"	"	"	"		
2-Nitrophenol	ND	1000	"	"	"	"	"		
N-Nitrosodimethylamine	ND	300	"	"	"	"	"		
N-Nitrosodiphenylamine	ND	300	"	"	"	"	"		
2,3,5,6-Tetrachlorophenol	ND	300	"	"	"	"	"		
2,3,4,6-Tetrachlorophenol	ND	300	"	"	"	"	"		
Phenanthrene	ND	300	"	"	"	"	"		
Azobenzene	ND	300	"	"	"	"	"		
Pyridine	ND	300	"	"	"	"	"		
2,4,5-Trichlorophenol	ND	1000	"	"	"	"	"		
2,4,6-Trichlorophenol	ND	1000	"	"	"	"	"	"	
Surrogate: 2-Fluorophenol		60.7 %	15-	121	"	"	"	"	
Surrogate: Phenol-d6		66.0 %	24-	113	"	"	"	"	
Surrogate: Nitrobenzene-d5		69.4 %	21.3	-119	"	"	"	"	
Surrogate: 2-Fluorobiphenyl		81.2 %	32.4	-102	"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		96.1 %	18.1	-105	"	"	"	"	
Surrogate: Terphenyl-dl4		74.8 %	29.1	-130	"	"	"	"	

SunStar Laboratories, Inc.

Brusca Associates Inc. PO Box 332 Roseville CA, 95661		Proje Project Numl Project Manag	ect: Lathro ber: 137-00 ger: Joe Br VS41	p 48-Ac Pro)2 usca	operty			Reported : 04/19/18 13	:50
		T1812	234-33 (So	oil)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	ies, Inc.					
Extractable Petroleum Hydrocar	bons by 8015B with Silic	a Gel Cleanu	р						
C6-C12 (GRO)	ND	10	mg/kg	1	8041214	04/12/18	04/18/18	EPA 8015B	
C13-C28 (DRO)	ND	10	"	"	"	"	"	"	
C29-C40 (MORO)	ND	10	"	"	"	"	"	"	
Surrogate: p-Terphenyl		110 %	65-	135	"	"	"	"	
Metals by EPA 6010B									
Antimony	ND	3.0	mg/kg	1	8041307	04/13/18	04/13/18	EPA 6010B	
Silver	ND	2.0	"	"	"	"	"	"	
Arsenic	ND	5.0	"	"	"	"	"	"	
Barium	53	1.0	"	"	"	"	"	"	
Beryllium	ND	1.0	"	"	"	"	"	"	
Cadmium	ND	2.0	"	"	"	"	"	"	
Chromium	4.3	2.0	"	"	"	"	"	"	
Cobalt	4.1	2.0	"	"	"	"	"	"	
Copper	3.2	1.0	"	"	"	"	"	"	
Lead	ND	3.0	"	"	"	"	"	"	
Molybdenum	ND	5.0	"	"	"	"	"	"	
Nickel	4.9	2.0	"	"	"	"	"	"	
Selenium	ND	5.0	"	"	"	"	"	"	
Thallium	ND	2.0	"	"	"	"	"	"	
Vanadium	16	5.0	"	"	"	"	"	"	
Zinc	18	1.0	"	"	"	"	"	"	
Cold Vapor Extraction EPA 7470	/7471								
Mercury	ND	0.10	mg/kg	1	8041308	04/13/18	04/13/18	EPA 7471A Soil	

SunStar Laboratories, Inc.

Brusca Associates Inc. PO Box 332 Roseville CA, 95661		Proje Project Numb Project Manag	ect: Lathro per: 137-00 ger: Joe Br	p 48-Ac Pro)2 usca	operty			Reported 04/19/18 13	: 5:50
		T1812	VS41 234-33 (So	oil)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.		-			
Polychlorinated Biphenyls by EPA M	1ethod 8082								
PCB-1016	ND	10	ug/kg	1	8041144	04/11/18	04/14/18	EPA 8082	
PCB-1221	ND	10	"	"	"	"	"	"	
PCB-1232	ND	10	"	"	"	"	"	"	
PCB-1242	ND	10	"	"	"	"	"	"	
PCB-1248	ND	10	"	"	"	"	"	"	
PCB-1254	ND	10	"	"	"	"	"	"	
PCB-1260	ND	10	"	"	"	"	"	"	
Surrogate: Tetrachloro-meta-xylene		88.2 %	35-	140	"	"	"	"	
Surrogate: Decachlorobiphenyl		89.5 %	35-	140	"	"	"	"	
	EDA M. (L. 10070C)								
Semivolatile Organic Compounds by	<u>EPA Method 82/0C</u>	200	Л		0041145	04/11/10	04/10/10		
	ND	300	ug/kg	1	8041145	04/11/18	04/13/18	EPA 8270C	
Phenol	ND	1000							
Aniline 2 Chlorenhenel	ND	300							
2-Chiorophenoi	ND	1000							
1,4-Dichlorobenzene	ND	300							
N-Nitrosodi-n-propylamine	ND	300							
1,2,4-1richlorobenzene	ND	300							
2. Mathala and the land	ND	1000		"					
2-Methylnaphthalana	ND	300		"				"	
	ND	300							
4 Nitrophonal	ND	1000		"					
2.4 Dinitrateluene	ND	200		"					
2,4-Dimuotoituene	ND	1000							
Purana	ND	200		"				"	
Aconomhthylana	ND	300		"				"	
Archaphthylene	ND	300		"				"	
Renzo (a) anthracene		200					"	"	
Benzo (b) fluoranthero		200					"	"	
Benzo (k) fluoranthera		200				"			
Benzo (g, h, i) perulence		1000					"	"	
Denzo (g,ii,i) peryiene	ND	1000							

SunStar Laboratories, Inc.

Brusca Associates Inc. PO Box 332 Roseville CA 95661		Proje Project Numb Project Manag	ect: Lathro ber: 137-00 ger: Joe Br	op 48-Ac Pro 02 usca	perty			Reported : 04/19/18 13	: ·50
			VS/1						
		T1812	234-33 (Se	oil)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	ies, Inc.					
Semivolatile Organic Compounds by	EPA Method 8270C								
Benzo (a) pyrene	ND	300	ug/kg	1	8041145	04/11/18	04/13/18	EPA 8270C	
Benzyl alcohol	ND	300	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	300	"	"		"		"	
Bis(2-chloroethyl)ether	ND	300	"	"		"		"	
Bis(2-chloroisopropyl)ether	ND	300	"	"		"		"	
Bis(2-ethylhexyl)phthalate	ND	300	"	"		"	"	"	
4-Bromophenyl phenyl ether	ND	300	"	"		"		"	
Butyl benzyl phthalate	ND	300	"	"	"	"	"	"	
4-Chloroaniline	ND	300	"	"	"	"	"	"	
2-Chloronaphthalene	ND	300	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether	ND	300	"	"		"	"	"	
Chrysene	ND	300	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	300	"	"	"	"	"	"	
Dibenzofuran	ND	300	"	"		"	"	"	
Di-n-butyl phthalate	ND	300	"	"		"	"	"	
1,2-Dichlorobenzene	ND	300	"	"		"	"	"	
1,3-Dichlorobenzene	ND	300	"	"		"	"	"	
2,4-Dichlorophenol	ND	1000	"	"		"	"	"	
Diethyl phthalate	ND	300	"	"		"	"	"	
2,4-Dimethylphenol	ND	1000	"	"		"	"	"	
Dimethyl phthalate	ND	300	"	"		"	"	"	
4,6-Dinitro-2-methylphenol	ND	1000	"	"		"	"	"	
2,4-Dinitrophenol	ND	1000	"	"		"	"	"	
2,6-Dinitrotoluene	ND	1000	"	"		"	"	"	
Di-n-octyl phthalate	ND	300	"	"		"	"	"	
Fluoranthene	ND	300	"	"	"	"	"	"	
Fluorene	ND	300	"	"		"	"	"	
Hexachlorobenzene	ND	1500	"	"		"	"	"	
Hexachlorobutadiene	ND	300	"	"	"	"	"	"	
Hexachlorocyclopentadiene	ND	1000	"	"	"	"	"	"	
Hexachloroethane	ND	300	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene	ND	300	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Brusca Associates Inc. PO Box 332 Roseville CA, 95661	Project: Lathrop 48-Ac Property Project Number: 137-002 Project Manager: Joe Brusca								
	T181	V S4 I 234-33 (So	il)						
Analyte Re	Reporting sult Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes	
	SunStar L	aboratori	es, Inc.						
Semivolatile Organic Compounds by EPA Method 8	8270C								
Isophorone	ND 300	ug/kg	1	8041145	04/11/18	04/13/18	EPA 8270C		
2-Methylphenol	ND 1000	"		"	"	"	"		
4-Methylphenol	ND 1000	"	"	"	"	"	"		
Naphthalene	ND 300	"	"	"	"	"	"		
2-Nitroaniline	ND 300	"	"	"	"	"	"		
3-Nitroaniline	ND 300	"	"	"	"	"	"		
4-Nitroaniline	ND 300	"	"	"	"	"	"		
Nitrobenzene	ND 1000	"	"	"	"	"	"		
2-Nitrophenol	ND 1000	"	"	"	"	"	"		
N-Nitrosodimethylamine	ND 300	"	"	"	"	"	"		
N-Nitrosodiphenylamine	ND 300	"	"	"	"	"	"		
2,3,5,6-Tetrachlorophenol	ND 300	"	"	"	"	"	"		
2,3,4,6-Tetrachlorophenol	ND 300	"	"	"	"	"	"		
Phenanthrene	ND 300	"	"	"	"	"	"		
Azobenzene	ND 300	"	"	"	"	"	"		
Pyridine	ND 300	"	"	"	"	"	"		
2,4,5-Trichlorophenol	ND 1000	"	"	"	"	"	"		
2,4,6-Trichlorophenol	ND 1000	"	"	"	"	"	"		
Surrogate: 2-Fluorophenol	53.8 %	15-1	121	"	"	"	"		
Surrogate: Phenol-d6	58.1 %	24-1	113	"	"	"	"		
Surrogate: Nitrobenzene-d5	58.6 %	21.3-	-119	"	"	"	"		
Surrogate: 2-Fluorobiphenyl	72.4 %	32.4-	-102	"	"	"	"		
Surrogate: 2,4,6-Tribromophenol	80.4 %	18.1-	-105	"	"	"	"		
Surrogate: Terphenyl-dl4	73.5 %	29.1-	-130	"	"	"	"		

SunStar Laboratories, Inc.

Brusca Associates Inc. PO Box 332 Roseville CA, 95661	I	Reported 04/19/18 13	:50						
		T1812	VS43 234-35 (So	oil)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	ies, Inc.					
Metals by EPA 6010B									
Arsenic	ND	5.0	mg/kg	1	8041305	04/13/18	04/17/18	EPA 6010b	
Lead	ND	3.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Mike Jaroudi, Project Manager

Brusca Associates Inc.										
PO Box 332		Project Numl	per: 137-00)2				Reported:		
Roseville CA, 95661	I		04/19/18 13	:50						
			VS45							
		T1812	234-37 (So	oil)						
		Reporting								
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes	
		SunStar L	aboratori	ies, Inc.						
Metals by EPA 6010B										
Arsenic	ND	5.0	mg/kg	1	8041305	04/13/18	04/17/18	EPA 6010b		
Lead	ND	3.0	"	"	"	"	"	"		

SunStar Laboratories, Inc.

Brusca Associates Inc.									
PO Box 332		Project Numl	ber: 137-00	02				Reported:	
Roseville CA, 95661	I		04/19/18 13:50						
			VS47						
		T1812	234-39 (So	oil)					
		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aborator	ies, Inc.					
Metals by EPA 6010B									
Arsenic	ND	5.0	mg/kg	1	8041305	04/13/18	04/17/18	EPA 6010b	
Lead	ND	3.0	"	"		"	"	"	

SunStar Laboratories, Inc.

Mike Jaroudi, Project Manager

Brusca Associates Inc.									
PO Box 332		Project Numl	ber: 137-00	02				Reported:	
Roseville CA, 95661	I		04/19/18 13:50						
			VS49						
		T1812	234-41 (So	oil)					
		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	ies, Inc.					
Metals by EPA 6010B									
Arsenic	ND	5.0	mg/kg	1	8041305	04/13/18	04/17/18	EPA 6010b	
Lead	ND	3.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Mike Jaroudi, Project Manager

Brusca Associates Inc. PO Box 332 Roseville CA, 95661	Project: Lathrop 48-Ac Property Project Number: 137-002 Project Manager: Joe Brusca								
		T1812	VS51 234-43 (So	oil)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Metals by EPA 6010B									
Arsenic	ND	4.5	mg/kg	1	8041305	04/13/18	04/17/18	EPA 6010b	
Lead	ND	2.7	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Mike Jaroudi, Project Manager

Brusca Associates Inc.	Project: Lathrop 48-Ac Property	
PO Box 332	Project Number: 137-002	Reported:
Roseville CA, 95661	Project Manager: Joe Brusca	04/19/18 13:50

Extractable Petroleum Hydrocarbons by 8015B with Silica Gel Cleanup - Quality Control

SunStar Laboratories, Inc.

		Reporting		Snike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 8041214 - EPA 3550B GC										
Blank (8041214-BLK1)				Prepared: (04/12/18 A	nalyzed: 04	/18/18			
C6-C12 (GRO)	ND	10	mg/kg							
C13-C28 (DRO)	ND	10	"							
C29-C40 (MORO)	ND	10	"							
Surrogate: p-Terphenyl	97.8		"	99.0		98.8	65-135			
LCS (8041214-BS1)	Prepared: 04/12/18 Analyzed: 04/18/18									
C13-C28 (DRO)	500	10	mg/kg	495		101	75-125			
Surrogate: p-Terphenyl	101		"	99.0		102	65-135			
Matrix Spike (8041214-MS1)	Sou	rce: T181265-	01	Prepared: (04/12/18 A	nalyzed: 04	/18/18			
C13-C28 (DRO)	560	10	mg/kg	505	53	100	75-125			
Surrogate: p-Terphenyl	106		"	101		105	65-135			
Matrix Spike Dup (8041214-MSD1)	Sou	rce: T181265-	01	Prepared: (04/12/18 A	nalyzed: 04	/18/18			
C13-C28 (DRO)	590	10	mg/kg	500	53	108	75-125	5.92	20	
Surrogate: p-Terphenyl	104		"	100		104	65-135			

SunStar Laboratories, Inc.

SunStar Laboratories, Inc. Providing Quality Analytical Services Nationwide

25712 Commercentre Drive Lake Forest, California 92630 949.297.5020 Phone 949.297.5027 Fax

Brusca Associates Inc.	Project: Lathrop 48-Ac Property	
PO Box 332	Project Number: 137-002	Reported:
Roseville CA, 95661	Project Manager: Joe Brusca	04/19/18 13:50

Metals by EPA 6010B - Quality Control

SunStar Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 8041304 - EPA 3050B										
Blank (8041304-BLK1)				Prepared:	04/13/18 A	nalyzed: 04	/16/18			
Arsenic	ND	5.0	mg/kg							
Lead	ND	3.0	"							
LCS (8041304-BS1)				Prepared:	04/13/18 A	nalyzed: 04	/16/18			
Arsenic	103	5.0	mg/kg	100		103	75-125			
Lead	108	3.0	"	100		108	75-125			
Matrix Spike (8041304-MS1)	Sourc	e: T181234-	01	Prepared:	04/13/18 A	nalyzed: 04	/16/18			
Arsenic	94.4	5.0	mg/kg	94.3	ND	100	75-125			
Lead	94.7	3.0	"	94.3	0.0883	100	75-125			
Matrix Spike Dup (8041304-MSD1)	Source: T181234-01			Prepared: 04/13/18 Analyzed: 04/16/18						
Arsenic	96.3	5.0	mg/kg	94.3	ND	102	75-125	1.96	20	
Lead	101	3.0	"	94.3	0.0883	107	75-125	6.06	20	
Batch 8041305 - EPA 3050B										
Blank (8041305-BLK1)				Prepared:	04/13/18 A	nalyzed: 04	/17/18			
Arsenic	ND	5.0	mg/kg							
Lead	ND	3.0	"							
LCS (8041305-BS1)				Prepared:	04/13/18 A	nalyzed: 04	/17/18			
Arsenic	106	5.0	mg/kg	100		106	75-125			
Lead	112	3.0	"	100		112	75-125			
Matrix Spike (8041305-MS1)	Sourc	ce: T181234-	30	Prepared:	04/13/18 A	nalyzed: 04	/17/18			
Arsenic	100	5.0	mg/kg	95.2	ND	105	75-125			
Lead	105	3.0	"	95.2	ND	110	75-125			

SunStar Laboratories, Inc.

SunStar Laboratories, Inc. Providing Quality Analytical Services Nationwide

Brusca Associates Inc.		Р	roject: La	throp 48-Ac	Property						
PO Box 332		Project Nu	imber: 13	7-002					Report	ed:	
Roseville CA, 95661		Project Ma	nager: Jo	e Brusca					04/19/18	13:50	
	Meta	ls by EPA	6010B	- Quality	Control						
SunStar Laboratories, Inc.											
		Reporting		Spike	Source		%REC		RPD		
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes	
Batch 8041305 - EPA 3050B											
Matrix Spike Dup (8041305-MSD1)	Sourc	e: T181234-	30	Prepared:	04/13/18 A	nalyzed: 04	/17/18				
Arsenic	100	5.0	mg/kg	91.7	ND	109	75-125	0.0163	20		
Lead	107	3.0	"	91.7	ND	116	75-125	1.55	20		
Batch 8041307 - EPA 3050B											
Blank (8041307-BLK1)				Prepared &	& Analyzed:	04/13/18					
Antimony	ND	3.0	mg/kg								
Silver	ND	2.0	"								
Arsenic	ND	5.0	"								
Barium	ND	1.0	"								
Beryllium	ND	1.0	"								
Cadmium	ND	2.0	"								
Chromium	ND	2.0	"								
Cobalt	ND	2.0	"								
Copper	ND	1.0	"								
Lead	ND	3.0	"								
Molybdenum	ND	5.0	"								
Nickel	ND	2.0	"								
Selenium	ND	5.0	"								
Thallium	ND	2.0	"								
Vanadium	ND	5.0	"								
Zinc	ND	1.0	"								
LCS (8041307-BS1)				Prepared &	& Analyzed:	04/13/18					
Arsenic	94.3	5.0	mg/kg	100		94.3	75-125				
Barium	101	1.0	"	100		101	75-125				
Cadmium	99.6	2.0	"	100		99.6	75-125				
Chromium	101	2.0	"	100		101	75-125				
Lead	98.8	3.0	"	100		98.8	75-125				

SunStar Laboratories, Inc.

SunStar Laboratories, Inc. Providing Quality Analytical Services Nationwide

25712 Commercentre Drive Lake Forest, California 92630 949.297.5020 Phone 949.297.5027 Fax

Brusca Associates Inc.	Project: Lathrop 48-Ac Property	
PO Box 332	Project Number: 137-002	Reported:
Roseville CA, 95661	Project Manager: Joe Brusca	04/19/18 13:50

Metals by EPA 6010B - Quality Control

SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 8041307 - EPA 3050B										
Matrix Spike (8041307-MS1)	Sourc	e: T181234-	10	Prepared &	& Analyzed:	04/13/18				
Arsenic	95.1	5.0	mg/kg	100	1.26	93.9	75-125			
Barium	137	1.0	"	100	44.3	92.6	75-125			
Cadmium	93.6	2.0	"	100	ND	93.6	75-125			
Chromium	98.9	2.0	"	100	3.82	95.0	75-125			
Lead	95.6	3.0	"	100	1.54	94.1	75-125			

Matrix Spike Dup (8041307-MSD1)	Source:	T181234-	10	Prepared &	Analyzed:	04/13/18				
Arsenic	83.2	5.0	mg/kg	100	1.26	81.9	75-125	13.4	20	
Barium	125	1.0	"	100	44.3	80.8	75-125	9.07	20	
Cadmium	84.9	2.0	"	100	ND	84.9	75-125	9.84	20	
Chromium	89.0	2.0	"	100	3.82	85.2	75-125	10.5	20	
Lead	83.0	3.0	"	100	1.54	81.5	75-125	14.1	20	

SunStar Laboratories, Inc.

Brusca Associates Inc.	Project: Lathrop 48-Ac Property	
PO Box 332	Project Number: 137-002	Reported:
Roseville CA, 95661	Project Manager: Joe Brusca	04/19/18 13:50

Cold Vapor Extraction EPA 7470/7471 - Quality Control

SunStar Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 8041308 - EPA 7471A Soil										
Blank (8041308-BLK1)				Prepared &	Analyzed:	04/13/18				
Mercury	ND	0.10	mg/kg							
LCS (8041308-BS1)				Prepared &	Analyzed:	04/13/18				
Mercury	0.427	0.10	mg/kg	0.417		103	80-120			
Matrix Spike (8041308-MS1)	Sourc	e: T181234-	10	Prepared & Analyzed: 04/13/18						
Mercury	0.399	0.10	mg/kg	0.417	ND	95.7	75-125			
Matrix Spike Dup (8041308-MSD1)	Source: T181234-10			Prepared & Analyzed: 04/13/18						
Mercury	0.399	0.10	mg/kg	0.417	ND	95.9	75-125	0.195	20	

SunStar Laboratories, Inc.

Brusca Associates Inc.	Project: Lathrop 48-Ac Property	
PO Box 332	Project Number: 137-002	Reported:
Roseville CA, 95661	Project Manager: Joe Brusca	04/19/18 13:50

Polychlorinated Biphenyls by EPA Method 8082 - Quality Control

SunStar Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 8041144 - EPA 3550 ECD/GCMS										
Blank (8041144-BLK1)				Prepared: ()4/11/18 Ai	nalyzed: 04	/13/18			
PCB-1016	ND	10	ug/kg							
PCB-1221	ND	10	"							
PCB-1232	ND	10	"							
PCB-1242	ND	10	"							
PCB-1248	ND	10	"							
PCB-1254	ND	10	"							
PCB-1260	ND	10	"							
Surrogate: Tetrachloro-meta-xylene	9.99		"	10.0		99.9	35-140			
Surrogate: Decachlorobiphenyl	10.9		"	10.0		109	35-140			
LCS (8041144-BS1)				Prepared: (04/11/18 Ai	nalyzed: 04	/13/18			
PCB-1016	85.4	10	ug/kg	100		85.4	40-130			
PCB-1260	66.4	10	"	100		66.4	40-130			
Surrogate: Tetrachloro-meta-xylene	8.79		"	10.0		87.9	35-140			
Surrogate: Decachlorobiphenyl	10.4		"	10.0		104	35-140			
LCS Dup (8041144-BSD1)				Prepared: (04/11/18 Ai	nalyzed: 04	/13/18			
PCB-1016	87.6	10	ug/kg	100		87.6	40-130	2.54	30	
PCB-1260	73.8	10	"	100		73.8	40-130	10.6	30	
Surrogate: Tetrachloro-meta-xylene	8.32		"	10.0		83.2	35-140			
Surrogate: Decachlorobiphenyl	10.5		"	10.0		105	35-140			

SunStar Laboratories, Inc.

Brusca Associates Inc.	Project: Lathrop 48-Ac Property	
PO Box 332	Project Number: 137-002	Reported:
Roseville CA, 95661	Project Manager: Joe Brusca	04/19/18 13:50

Semivolatile Organic Compounds by EPA Method 8270C - Quality Control

SunStar Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch 8041145 - EPA 3550 ECD/GCMS

Blank (8041145-BLK1)				Prepared: 04/11/18 Analyzed: 04/13/18
Carbazole	ND	300	ug/kg	
Aniline	ND	300	"	
Phenol	ND	1000	"	
2-Chlorophenol	ND	1000	"	
1,4-Dichlorobenzene	ND	300	"	
N-Nitrosodi-n-propylamine	ND	300	"	
1,2,4-Trichlorobenzene	ND	300	"	
4-Chloro-3-methylphenol	ND	1000	"	
1-Methylnaphthalene	ND	300	"	
2-Methylnaphthalene	ND	300	"	
Acenaphthene	ND	300	"	
4-Nitrophenol	ND	1000	"	
2,4-Dinitrotoluene	ND	300	"	
Pentachlorophenol	ND	1000	"	
Pyrene	ND	300	"	
Acenaphthylene	ND	300	"	
Anthracene	ND	300	"	
Benzo (a) anthracene	ND	300	"	
Benzo (b) fluoranthene	ND	300	"	
Benzo (k) fluoranthene	ND	300	"	
Benzo (g,h,i) perylene	ND	1000	"	
Benzo (a) pyrene	ND	300	"	
Benzyl alcohol	ND	300	"	
Bis(2-chloroethoxy)methane	ND	300	"	
Bis(2-chloroethyl)ether	ND	300	"	
Bis(2-chloroisopropyl)ether	ND	300	"	
Bis(2-ethylhexyl)phthalate	ND	300	"	
4-Bromophenyl phenyl ether	ND	300	"	
Butyl benzyl phthalate	ND	300	"	
4-Chloroaniline	ND	300	"	
2-Chloronaphthalene	ND	300	"	
4-Chlorophenyl phenyl ether	ND	300	"	
Chrysene	ND	300	"	
Dibenz (a,h) anthracene	ND	300	"	
Dibenzofuran	ND	300	"	
Di-n-butyl phthalate	ND	300	"	

SunStar Laboratories, Inc.

Brusca Associates Inc.	Project: Lathrop 48-Ac Property	
PO Box 332	Project Number: 137-002	Reported:
Roseville CA, 95661	Project Manager: Joe Brusca	04/19/18 13:50

Semivolatile Organic Compounds by EPA Method 8270C - Quality Control

SunStar Laboratories, Inc.

	reporting		Spike	Source		%REC		RPD	
Analyte Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch 8041145 - EPA 3550 ECD/GCMS

Blank (8041145-BLK1)				Prepared: 04/11/18 Analyzed: 04/13/18
1,2-Dichlorobenzene	ND	300	ug/kg	
1,3-Dichlorobenzene	ND	300	"	
2,4-Dichlorophenol	ND	1000	"	
Diethyl phthalate	ND	300	"	
2,4-Dimethylphenol	ND	1000	"	
Dimethyl phthalate	ND	300	"	
4,6-Dinitro-2-methylphenol	ND	1000	"	
2,4-Dinitrophenol	ND	1000	"	
2,6-Dinitrotoluene	ND	1000	"	
Di-n-octyl phthalate	ND	300	"	
Fluoranthene	ND	300	"	
Fluorene	ND	300	"	
Hexachlorobenzene	ND	1500	"	
Hexachlorobutadiene	ND	300	"	
Hexachlorocyclopentadiene	ND	1000	"	
Hexachloroethane	ND	300	"	
Indeno (1,2,3-cd) pyrene	ND	300	"	
Isophorone	ND	300	"	
2-Methylphenol	ND	1000	"	
4-Methylphenol	ND	1000	"	
Naphthalene	ND	300	"	
2-Nitroaniline	ND	300	"	
3-Nitroaniline	ND	300	"	
4-Nitroaniline	ND	300	"	
Nitrobenzene	ND	1000	"	
2-Nitrophenol	ND	1000	"	
N-Nitrosodimethylamine	ND	300	"	
N-Nitrosodiphenylamine	ND	300	"	
2,3,5,6-Tetrachlorophenol	ND	300	"	
2,3,4,6-Tetrachlorophenol	ND	300	"	
Phenanthrene	ND	300	"	
Azobenzene	ND	300	"	
Pyridine	ND	300	"	
2,4,5-Trichlorophenol	ND	1000	"	
2,4,6-Trichlorophenol	ND	1000	"	

SunStar Laboratories, Inc.

Brusca Associates Inc.	Project: Lathrop 48-Ac Property	
PO Box 332	Project Number: 137-002	Reported:
Roseville CA, 95661	Project Manager: Joe Brusca	04/19/18 13:50

Semivolatile Organic Compounds by EPA Method 8270C - Quality Control

SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 8041145 - EPA 3550 ECD/GCMS										
Blank (8041145-BLK1)				Prepared: 0	04/11/18 Ar	nalyzed: 04	/13/18			
Surrogate: 2-Fluorophenol	1400		ug/kg	3240		43.4	15-121			
Surrogate: Phenol-d6	1560		"	3240		48.1	24-113			
Surrogate: Nitrobenzene-d5	1750		"	3240		53.9	21.3-119			
Surrogate: 2-Fluorobiphenyl	2060		"	3240		63.8	32.4-102			
Surrogate: 2,4,6-Tribromophenol	2450		"	3240		75.8	18.1-105			
Surrogate: Terphenyl-dl4	2410		"	3240		74.5	29.1-130			
LCS (8041145-BS1)				Prepared: 0	04/11/18 Ar	nalyzed: 04	/13/18			
Phenol	1600	1000	ug/kg	3390		47.1	34-114			
2-Chlorophenol	1750	1000	"	3390		51.8	34-114			
1,4-Dichlorobenzene	1860	300	"	3390		55.0	34-114			
N-Nitrosodi-n-propylamine	2140	300	"	3390		63.3	30-110			
1,2,4-Trichlorobenzene	2100	300	"	3390		62.0	39-119			
4-Chloro-3-methylphenol	2340	1000	"	3390		69.1	50-130			
Acenaphthene	1860	300	"	3390		55.0	34-114			
Pentachlorophenol	2320	1000	"	3390		68.4	50-130			
Pyrene	1570	300	"	3390		46.2	30-110			
Surrogate: 2-Fluorophenol	1340		"	3390		39.6	15-121			
Surrogate: Phenol-d6	1550		"	3390		45.6	24-113			
Surrogate: Nitrobenzene-d5	1770		"	3390		52.4	21.3-119			
Surrogate: 2-Fluorobiphenyl	2070		"	3390		61.0	32.4-102			
Surrogate: 2,4,6-Tribromophenol	2440		"	3390		72.0	18.1-105			
Surrogate: Terphenyl-dl4	2350		"	3390		69.2	29.1-130			
LCS Dup (8041145-BSD1)				Prepared: 0	04/11/18 Ar	nalyzed: 04	/13/18			
Phenol	1670	1000	ug/kg	3400		49.1	34-114	4.50	42	
2-Chlorophenol	1830	1000	"	3400		53.8	34-114	4.28	40	
1,4-Dichlorobenzene	1910	300	"	3400		56.3	34-114	2.69	28	
N-Nitrosodi-n-propylamine	2220	300	"	3400		65.2	30-110	3.36	38	
1,2,4-Trichlorobenzene	2220	300	"	3400		65.4	39-119	5.60	28	
4-Chloro-3-methylphenol	2500	1000	"	3400		73.4	50-130	6.42	42	
Acenaphthene	2010	300	"	3400		59.1	34-114	7.55	31	
Pentachlorophenol	2530	1000	"	3400		74.3	50-130	8.67	50	
Pyrene	1780	300	"	3400		52.4	30-110	12.9	31	
Surrogate: 2-Fluorophenol	1410		"	3400		41.4	15-121			
Surrogate: Phenol-d6	1600		"	3400		47.1	24-113			

SunStar Laboratories, Inc.

Brusca Associates Inc.	Project: Lathrop 48-Ac Property	
PO Box 332	Project Number: 137-002	Reported:
Roseville CA, 95661	Project Manager: Joe Brusca	04/19/18 13:50

Semivolatile Organic Compounds by EPA Method 8270C - Quality Control

SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 8041145 - EPA 3550 ECD/GCMS										
LCS Dup (8041145-BSD1)				Prepared: 0)4/11/18 Ar	alyzed: 04	/13/18			
Surrogate: Nitrobenzene-d5	1800		ug/kg	3400		52.9	21.3-119			
Surrogate: 2-Fluorobiphenyl	2170		"	3400		63.7	32.4-102			
Surrogate: 2,4,6-Tribromophenol	2630		"	3400		77.2	18.1-105			
Surrogate: Terphenyl-dl4	2580		"	3400		76.0	29.1-130			

SunStar Laboratories, Inc.

Brusca Associates Inc.	Project: Lathrop 48-Ac Property	
PO Box 332	Project Number: 137-002	Reported:
Roseville CA, 95661	Project Manager: Joe Brusca	04/19/18 13:50

Notes and Definitions

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

- dry Sample results reported on a dry weight basis
- RPD Relative Percent Difference

SunStar Laboratories, Inc.

Mike Jaroudi, Project Manager

|--|

23 April 2018

Joe Brusca Brusca Associates Inc. PO Box 332 Roseville, CA 95661 RE: Lathrop 48-Ac Property

Enclosed are the results of analyses for samples received by the laboratory on 04/14/18 08:10. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Mike Jaroudi Project Manager

Brusca Associates Inc.	Project: Lathrop 48-Ac Property	
PO Box 332	Project Number: 137-002	Reported:
Roseville CA, 95661	Project Manager: Joe Brusca	04/23/18 10:43

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
VS53	T181266-02	Soil	04/13/18 10:44	04/14/18 08:10
VS55	T181266-04	Soil	04/13/18 10:49	04/14/18 08:10
VS57	T181266-06	Soil	04/13/18 10:54	04/14/18 08:10
VS59	T181266-08	Soil	04/13/18 10:57	04/14/18 08:10
VS61	T181266-10	Soil	04/13/18 11:14	04/14/18 08:10
VS63	T181266-12	Soil	04/13/18 11:19	04/14/18 08:10
VS65	T181266-14	Soil	04/13/18 11:23	04/14/18 08:10
VS66	T181266-15	Soil	04/13/18 11:27	04/14/18 08:10
VS68	T181266-17	Soil	04/13/18 11:32	04/14/18 08:10
VS70	T181266-19	Soil	04/13/18 11:35	04/14/18 08:10

SunStar Laboratories, Inc.

Brusca Associates Inc.	Project: Lathrop 48-Ac Property	
PO Box 332	Project Number: 137-002	Reported:
Roseville CA, 95661	Project Manager: Joe Brusca	04/23/18 10:43

DETECTIONS SUMMARY

Sample ID: VS53	Laborat	Laboratory ID:			
Analyte	Result	Limit	Units	Method	Notes
Barium	80	1.0	mg/kg	EPA 6010B	
Chromium	7.1	2.0	mg/kg	EPA 6010B	
Cobalt	6.6	2.0	mg/kg	EPA 6010B	
Copper	6.8	1.0	mg/kg	EPA 6010B	
Nickel	8.8	2.0	mg/kg	EPA 6010B	
Vanadium	23	5.0	mg/kg	EPA 6010B	
Zinc	28	1.0	mg/kg	EPA 6010B	

Sample ID: VS55	Laborate	T181266-04			
		Reporting			
Analyte	Result	Limit	Units	Method	Notes
C13-C28 (DRO)	21	10	mg/kg	EPA 8015B	
C29-C40 (MORO)	26	10	mg/kg	EPA 8015B	
Barium	65	1.0	mg/kg	EPA 6010B	
Chromium	7.7	2.0	mg/kg	EPA 6010B	
Cobalt	5.8	2.0	mg/kg	EPA 6010B	
Copper	4.1	1.0	mg/kg	EPA 6010B	
Nickel	8.2	2.0	mg/kg	EPA 6010B	
Vanadium	24	5.0	mg/kg	EPA 6010B	
Zinc	27	1.0	mg/kg	EPA 6010B	

Sample ID:	V857	Laboratory ID:		T181266-06		
			Reporting			
Analyte		Result	Limit	Units	Method	Notes
Barium		49	1.0	mg/kg	EPA 6010B	
Chromium		6.6	2.0	mg/kg	EPA 6010B	
Cobalt		4.7	2.0	mg/kg	EPA 6010B	
Copper		3.0	1.0	mg/kg	EPA 6010B	
Nickel		5.8	2.0	mg/kg	EPA 6010B	
Vanadium		21	5.0	mg/kg	EPA 6010B	
Zinc		32	1.0	mg/kg	EPA 6010B	

SunStar Laboratories, Inc.

Brusca Associates Inc PO Box 332		Project: Project Number:	Project: Lathrop 48-Ac Property						
Roseville CA, 95661		Project Manager:	Joe Brusca			04/23/18 10:43			
Sample ID:	VS59	Lat	ooratory ID:	T181266-08					
			Reporting						
Analyte		Result	Limit	Units	Method	Notes			
Barium		62	1.0	mg/kg	EPA 6010B				
Chromium		6.0	2.0	mg/kg	EPA 6010B				
Cobalt		5.0	2.0	mg/kg	EPA 6010B				
Copper		3.5	1.0	mg/kg	EPA 6010B				
Nickel		7.2	2.0	mg/kg	EPA 6010B				
Vanadium		20	5.0	mg/kg	EPA 6010B				
Zinc		22	1.0	mg/kg	EPA 6010B				
Sample ID:	VS61	Lat	ooratory ID:	T181266-10					
Sample ID:	VS63	Lat	Laboratory ID:						
No Results De	etected								
Sample ID:	VS65	Lat	ooratory ID:	T181266-14					
			Reporting						
Analyte		Result	Limit	Units	Method	Notes			
Barium		26	1.0	mg/kg	EPA 6010B				
Chromium		3.7	2.0	mg/kg	EPA 6010B				
Cobalt		2.7	2.0	mg/kg	EPA 6010B				
Copper		1.9	1.0	mg/kg	EPA 6010B				
Nickel		3.4	2.0	mg/kg	EPA 6010B				
Vanadium		11	5.0	mg/kg	EPA 6010B				
Zinc		11	1.0	mg/kg	EPA 6010B				
Sample ID:	VS66	Lat	poratory ID:	T181266-15					
_			•						

No Results Detected

SunStar Laboratories, Inc.

Brusca Associates Inc PO Box 332 Roseville CA, 95661		Project: Lathrop Project Number: 137-002 Project Manager: Joe Brus		Reported: 04/23/18 10:43				
Sample ID:	Sample ID: VS68 Laboratory ID: T181266-17							
Analyte		Result	Limit	Units	Method	Notes		
Lead		12	3.0	mg/kg	EPA 6010b			
Sample ID:	VS70	Laboratory	TD:	T181266-19				

No Results Detected

SunStar Laboratories, Inc.

Mike Jaroudi, Project Manager

Brusca Associates Inc.	Brusca Associates Inc. Project: Lathrop 48-Ac Property								
PO Box 332		Project Number: 137-002							:
Roseville CA, 95661		Project Manag	ger: Joe Br	usca				04/23/18 10	:43
			VS53						
		T1812	266-02 (So	oil)					
Analyta	Docult	Reporting	Unita	Dilution	Datah	Droporod	Analyzad	Mathad	Nataa
Analyte	Kesuit	Liiiit	Units	Dilution	Batch	Flepaled	Anaryzeu	Method	INOLES
		SunStar L	aboratori	es, Inc.					
Extractable Petroleum Hydrocart	oons by 8015B with Silica	Gel Cleanu	p						
C6-C12 (GRO)	ND	10	mg/kg	1	8041214	04/18/18	04/18/18	EPA 8015B	
C13-C28 (DRO)	ND	10	"	"	"	"	"	"	
C29-C40 (MORO)	ND	10	"	"	"	"	"	"	
Surrogate: p-Terphenyl		106 %	65-	135	"	"	"	"	
Metals by EPA 6010B									
Antimony	ND	3.0	mg/kg	1	8041623	04/16/18	04/16/18	EPA 6010B	
Silver	ND	2.0	"	"	"	"	"	"	
Arsenic	ND	5.0	"	"	"	"	"	"	
Barium	80	1.0	"	"	"	"	"	"	
Beryllium	ND	1.0	"	"	"	"	"	"	
Cadmium	ND	2.0	"	"	"	"	"	"	
Chromium	7.1	2.0	"	"	"	"	"	"	
Cobalt	6.6	2.0	"	"	"	"	"	"	
Copper	6.8	1.0	"	"	"	"	"	"	
Lead	ND	3.0	"	"	"	"	"	"	
Molybdenum	ND	5.0	"	"	"	"	"	"	
Nickel	8.8	2.0	"	"	"	"	"	"	
Selenium	ND	5.0	"	"	"	"	"	"	
Thallium	ND	2.0	"	"	"	"	"	"	
Vanadium	23	5.0	"	"	"	"	"	"	
Zinc	28	1.0	"	"		"	"	"	
Cold Vapor Extraction EPA 7470/	7471								
Mercury	ND	0.10	mg/kg	1	8041624	04/16/18	04/16/18	EPA 7471A Soil	

SunStar Laboratories, Inc.

Brusca Associates Inc. PO Box 332 Roseville CA, 95661		Proje Project Numb Project Manag	ect: Lathro per: 137-00 ger: Joe Br	p 48-Ac Pro)2 usca	perty			Reported 04/23/18 10	:):43
			VS53						
T181266-02 (Soil)									
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Polychlorinated Biphenyls by EPA M	ethod 8082								
PCB-1016	ND	10	ug/kg	1	8041633	04/16/18	04/18/18	EPA 8082	
PCB-1221	ND	10	"	"	"	"			
PCB-1232	ND	10	"	"	"	"			
PCB-1242	ND	10	"	"	"	"			
PCB-1248	ND	10	"	"	"	"			
PCB-1254	ND	10	"	"	"	"	"	"	
PCB-1260	ND	10	"	"		"	"	"	
Surrogate: Tetrachloro-meta-xylene		91.3 %	35-	140	"	"	"	"	
Surrogate: Decachlorobiphenvl		93.8 %	35-	140	"	"	"	"	
Semivolatile Organic Compounds by	EPA Method 8270C	200							
Carbazole	ND	300	ug/kg	1	8041634	04/16/18	04/17/18	EPA 8270C	
Phenol	ND	1000						"	
Aniline	ND	300						"	
2-Chlorophenol	ND	1000						"	
I,4-Dichlorobenzene	ND	300						"	
N-Nitrosodi-n-propylamine	ND	300							
1,2,4-Trichlorobenzene	ND	300							
4-Chloro-3-methylphenol	ND	1000						"	
2-Methylnaphthalene	ND	300							
1-Methylnaphthalene	ND	300							
Acenaphthene	ND	300						"	
4-Nitrophenol	ND	1000						"	
2,4-Dinitrotoluene	ND	300						"	
Pentachlorophenol	ND	1000						"	
Pyrene	ND	300						"	
Acenaphthylene	ND	300		"	"	"	"	"	
Anthracene	ND	300		"	"	"	"	"	
Benzo (a) anthracene	ND	300		"	"	"	"	"	
Benzo (b) fluoranthene	ND	300		"	"	"	"	"	
Benzo (k) fluoranthene	ND	300		"	"	"	"	"	
Benzo (g,h,1) perylene	ND	1000		"	"	"	"	"	

SunStar Laboratories, Inc.

SunStar Laboratories, Inc. Providing Quality Analytical Services Nationwide

25712 Commercentre Drive Lake Forest, California 92630 949.297.5020 Phone 949.297.5027 Fax

Brusca Associates Inc. PO Box 332 Roseville CA, 95661		Proje Project Numb Project Manag	ect: Lathro per: 137-00 ger: Joe Br	op 48-Ac Pro 02 usca	perty			Reported 04/23/18 10	:43
VS53 T181266-02 (Soil)									
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	ies, Inc.					
Semivolatile Organic Compounds by	EPA Method 8270C								
Benzo (a) pyrene	ND	300	ug/kg	1	8041634	04/16/18	04/17/18	EPA 8270C	
Benzyl alcohol	ND	300	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	300	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	300	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	300	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	300	"	"	"	"	"	"	
4-Bromophenyl phenyl ether	ND	300	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	300	"	"	"	"	"	"	
4-Chloroaniline	ND	300	"	"	"	"	"	"	
2-Chloronaphthalene	ND	300	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether	ND	300	"	"	"	"	"	"	
Chrysene	ND	300	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	300	"	"	"	"	"	"	
Dibenzofuran	ND	300	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	300	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	300	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	300	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	1000	"	"	"	"	"	"	
Diethyl phthalate	ND	300	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	1000	"	"	"	"	"	"	
Dimethyl phthalate	ND	300	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol	ND	1000	"	"	"	"	"	"	
2,4-Dinitrophenol	ND	1000	"	"	"	"	"	"	
2,6-Dinitrotoluene	ND	1000	"	"	"	"	"	"	
Di-n-octyl phthalate	ND	300	"	"	"	"	"	"	
Fluoranthene	ND	300	"	"	"	"	"	"	
Fluorene	ND	300	"	"	"	"	"	"	
Hexachlorobenzene	ND	1500	"	"	"	"	"	"	
Hexachlorobutadiene	ND	300	"	"	"	"	"	"	
Hexachlorocyclopentadiene	ND	1000	"	"	"	"	"		
Hexachloroethane	ND	300	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene	ND	300	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Brusca Associates Inc. PO Box 332 Roseville CA, 95661	Project: Lathrop 48-Ac Property Project Number: 137-002 Project Manager: Joe Brusca							Reported 04/23/18 10	Reported: 04/23/18 10:43	
VS53 T181266-02 (Soil)										
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes	
		SunStar L	aboratori	es, Inc.						
Semivolatile Organic Compounds by EPA	Method 8270C									
Isophorone	ND	300	ug/kg	1	8041634	04/16/18	04/17/18	EPA 8270C		
2-Methylphenol	ND	1000	"	"		"	"	"		
4-Methylphenol	ND	1000	"	"	"	"	"	"		
Naphthalene	ND	300	"	"	"	"	"	"		
2-Nitroaniline	ND	300	"	"	"	"	"	"		
3-Nitroaniline	ND	300	"	"	"	"	"	"		
4-Nitroaniline	ND	300	"	"	"	"	"	"		
Nitrobenzene	ND	1000	"	"	"	"	"	"		
2-Nitrophenol	ND	1000	"	"	"	"	"	"		
N-Nitrosodimethylamine	ND	300	"	"	"	"	"	"		
N-Nitrosodiphenylamine	ND	300	"	"	"	"	"	"		
2,3,5,6-Tetrachlorophenol	ND	300	"	"	"	"	"	"		
2,3,4,6-Tetrachlorophenol	ND	300	"	"	"	"	"	"		
Phenanthrene	ND	300	"	"	"	"	"	"		
Azobenzene	ND	300		"	"	"	"	"		
Pyridine	ND	300		"	"	"	"	"		
2,4,5-Trichlorophenol	ND	1000		"	"	"	"	"		
2,4,6-Trichlorophenol	ND	1000	"	"	"	"	"	"		
Surrogate: 2-Fluorophenol		62.3 %	15-	121	"	"	"	"		
Surrogate: Phenol-d6		71.0 %	24-	113	"	"	"	"		
Surrogate: Nitrobenzene-d5		72.1 %	21.3	-119	"	"	"	"		
Surrogate: 2-Fluorobiphenyl		82.5 %	32.4-	-102	"	"	"	"		
Surrogate: 2,4,6-Tribromophenol		99.9 %	18.1-	-105	"	"	"	"		
Surrogate: Terphenyl-dl4		84.7 %	29.1-	-130	"	"	"	"		

SunStar Laboratories, Inc.

Brusca Associates Inc. PO Box 332		Reported:							
Roseville CA, 95661		Project Manag	ger: Joe Br	usca				04/23/18 10	:43
			VS55						
		T1812	266-04 (So	oil)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Extractable Petroleum Hydrocar	bons by 8015B with Silica	Gel Cleanu	þ						
C6-C12 (GRO)	ND	10	mg/kg	1	8041214	04/18/18	04/18/18	EPA 8015B	
C13-C28 (DRO)	21	10	"	"	"	"	"	"	
C29-C40 (MORO)	26	10	"	"	"	"	"	"	
Surrogate: p-Terphenyl		104 %	65-	135	"	"	"	"	
Metals by EPA 6010B									
Antimony	ND	3.0	mg/kg	1	8041623	04/16/18	04/16/18	EPA 6010B	
Silver	ND	2.0	"	"	"	"	"	"	
Arsenic	ND	5.0	"	"	"	"	"	"	
Barium	65	1.0	"	"	"	"	"	"	
Beryllium	ND	1.0	"	"	"	"	"	"	
Cadmium	ND	2.0	"	"	"	"	"	"	
Chromium	7.7	2.0	"	"	"	"	"	"	
Cobalt	5.8	2.0	"	"	"	"	"	"	
Copper	4.1	1.0	"	"	"	"	"	"	
Lead	ND	3.0	"	"	"	"	"	"	
Molybdenum	ND	5.0	"	"	"	"	"	"	
Nickel	8.2	2.0	"	"	"	"	"	"	
Selenium	ND	5.0	"	"	"	"	"	"	
Thallium	ND	2.0	"	"	"	"	"	"	
Vanadium	24	5.0	"	"	"	"	"	"	
Zinc	27	1.0	"	"		"	"	"	
Cold Vapor Extraction EPA 7470	/7471								
Mercury	ND	0.10	mg/kg	1	8041624	04/16/18	04/16/18	EPA 7471A Soil	

SunStar Laboratories, Inc.

Brusca Associates Inc. Project: Lathrop 48-Ac Property										
PO Box 332		Reported	:							
Roseville CA, 95661		Project Manag	ger: Joe Br	usca				04/23/18 10	:43	
			VS55							
		T1812	266-04 (So	oil)						
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes	
		SunStar L	aboratori	ies, Inc.						
Polychlorinated Biphenyls by EPA M	Iethod 8082									
PCB-1016	ND	10	ug/kg	1	8041633	04/16/18	04/18/18	EPA 8082		
PCB-1221	ND	10	"	"	"	"	"	"		
PCB-1232	ND	10	"	"	"	"	"	"		
PCB-1242	ND	10	"	"	"	"	"	"		
PCB-1248	ND	10	"	"	"	"	"	"		
PCB-1254	ND	10	"	"	"	"	"	"		
PCB-1260	ND	10	"	"	"	"	"	"		
Surrogate: Tetrachloro-meta-xylene		89.9 %	35-	140	"	"	"	"		
Surrogate: Decachlorobiphenyl		93.0 %	35-	140	"	"	"	"		
Semivolatile Organic Compounds by	FPA Method 8270C									
Carbazole	ND	300	110/kg	1	8041634	04/16/18	04/17/18	EPA 8270C		
Phenol	ND	1000	"	"	"	"	"	"		
Aniline	ND	300	"	"		"				
2-Chlorophenol	ND	1000	"	"		"		"		
1 4-Dichlorobenzene	ND	300	"	"		"		"		
N-Nitrosodi-n-propylamine	ND	300	"	"		"		"		
1 2 4-Trichlorobenzene	ND	300	"	"		"	"	"		
4-Chloro-3-methylphenol	ND	1000	"	"		"	"	"		
2-Methylnaphthalene	ND	300	"	"		"	"	"		
1-Methylnaphthalene	ND	300	"	"	"	"	"	"		
Acenaphthene	ND	300	"	"		"	"	"		
4-Nitrophenol	ND	1000	"	"		"	"	"		
2.4-Dinitrotoluene	ND	300	"	"	"	"	"	"		
Pentachlorophenol	ND	1000	"	"	"	"	"	"		
Pyrene	ND	300	"	"	"	"	"	"		
Acenaphthylene	ND	300	"	"		"	"			
Anthracene	ND	300	"	"		"	"			
Benzo (a) anthracene	ND	300	"	"		"	"			
Benzo (b) fluoranthene	ND	300	"	"		"	"			
Benzo (k) fluoranthene	ND	300	"	"		"	"	"		
Benzo (g,h,i) perylene	ND	1000	"	"	"	"	"	"		

SunStar Laboratories, Inc.

SunStar Laboratories, Inc. Providing Quality Analytical Services Nationwide

25712 Commercentre Drive Lake Forest, California 92630 949.297.5020 Phone 949.297.5027 Fax

Brusca Associates Inc.		Proje							
PO Box 332		Project Numb	ber: 137-00	02				Reported:	
Roseville CA, 95661		Project Manag	ger: Joe Br	usca				04/23/18 10:43	
			VS55						
		T1812	266-04 (So	oil)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	ies, Inc.					
Semivolatile Organic Compounds by	EPA Method 8270C								
Benzo (a) pyrene	ND	300	ug/kg	1	8041634	04/16/18	04/17/18	EPA 8270C	
Benzyl alcohol	ND	300	"	"	"	"		"	
Bis(2-chloroethoxy)methane	ND	300	"	"	"	"		"	
Bis(2-chloroethyl)ether	ND	300	"	"	"	"		"	
Bis(2-chloroisopropyl)ether	ND	300	"	"	"	"		"	
Bis(2-ethylhexyl)phthalate	ND	300	"	"	"	"		"	
4-Bromophenyl phenyl ether	ND	300	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	300	"	"	"	"	"	"	
4-Chloroaniline	ND	300	"	"	"	"	"	"	
2-Chloronaphthalene	ND	300	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether	ND	300	"	"	"	"	"	"	
Chrysene	ND	300	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	300	"	"	"	"	"	"	
Dibenzofuran	ND	300	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	300	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	300	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	300	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	1000	"	"	"	"	"	"	
Diethyl phthalate	ND	300	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	1000	"	"	"	"	"	"	
Dimethyl phthalate	ND	300	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol	ND	1000	"	"	"	"	"	"	
2,4-Dinitrophenol	ND	1000	"	"	"	"	"	"	
2,6-Dinitrotoluene	ND	1000	"	"	"	"	"	"	
Di-n-octyl phthalate	ND	300	"	"	"	"	"	"	
Fluoranthene	ND	300	"	"	"	"	"	"	
Fluorene	ND	300	"	"	"	"	"	"	
Hexachlorobenzene	ND	1500	"	"	"	"	"	"	
Hexachlorobutadiene	ND	300	"	"	"	"	"	"	
Hexachlorocyclopentadiene	ND	1000	"	"	"	"	"	"	
Hexachloroethane	ND	300	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene	ND	300	"	"	"	"		"	

SunStar Laboratories, Inc.

Brusca Associates Inc. PO Box 332 Roseville CA, 95661		Project: Lathrop 48-Ac Property Project Number: 137-002 Project Manager: Joe Brusca VS55								
		T1812	266-04 (So	oil)						
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes	
		SunStar L	aboratori	ies, Inc.						
Semivolatile Organic Compounds by E	PA Method 8270C									
Isophorone	ND	300	ug/kg	1	8041634	04/16/18	04/17/18	EPA 8270C		
2-Methylphenol	ND	1000	"	"	"	"	"	"		
4-Methylphenol	ND	1000	"	"	"	"	"	"		
Naphthalene	ND	300	"	"	"	"	"	"		
2-Nitroaniline	ND	300	"	"	"	"	"	"		
3-Nitroaniline	ND	300	"	"	"	"	"	"		
4-Nitroaniline	ND	300	"	"	"	"	"	"		
Nitrobenzene	ND	1000	"	"	"	"	"	"		
2-Nitrophenol	ND	1000	"	"	"	"	"	"		
N-Nitrosodimethylamine	ND	300	"	"	"	"	"			
N-Nitrosodiphenylamine	ND	300	"	"	"	"	"			
2,3,5,6-Tetrachlorophenol	ND	300	"	"	"	"	"			
2,3,4,6-Tetrachlorophenol	ND	300	"	"	"	"	"			
Phenanthrene	ND	300	"	"	"	"	"			
Azobenzene	ND	300	"	"	"	"	"	"		
Pyridine	ND	300	"	"	"	"	"			
2,4,5-Trichlorophenol	ND	1000	"	"	"	"	"			
2,4,6-Trichlorophenol	ND	1000	"	"	"	"	"	"		
Surrogate: 2-Fluorophenol		51.4 %	15-	121	"	"	"	"		
Surrogate: Phenol-d6		62.4 %	24-	113	"	"	"	"		
Surrogate: Nitrobenzene-d5		64.5 %	21.3	-119	"	"	"	"		
Surrogate: 2-Fluorobiphenyl		76.7 %	32.4	-102	"	"	"	"		
Surrogate: 2,4,6-Tribromophenol		91.4 %	91.4 % 18.1-105			"	"	"		
Surrogate: Terphenyl-dl4		85.7 %	29.1	-130	"	"	"	"		

SunStar Laboratories, Inc.

Brusca Associates Inc.											
PO Box 332		Project Number: 137-002									
Roseville CA, 95661		Project Manag	ger: Joe Br	usca				04/23/18 10:43			
			VS57								
		T1812	266-06 (Sa	oil)							
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes		
		SunStar L	aboratori	ies, Inc.							
Extractable Petroleum Hydrocar	bons by 8015B with Silic	a Gel Cleanu	þ								
C6-C12 (GRO)	ND	10	mg/kg	1	8041214	04/18/18	04/18/18	EPA 8015B			
C13-C28 (DRO)	ND	10	"	"	"	"		"			
C29-C40 (MORO)	ND	10	"	"	"	"		"			
Surrogate: p-Terphenyl		106 %	65-	135	"	"	"	"			
Metals by EPA 6010B											
Antimony	ND	3.0	mg/kg	1	8041623	04/16/18	04/16/18	EPA 6010B			
Silver	ND	2.0	"	"	"	"		"			
Arsenic	ND	5.0	"	"	"	"	"	"			
Barium	49	1.0	"	"	"	"		"			
Beryllium	ND	1.0	"	"	"	"	"	"			
Cadmium	ND	2.0	"	"	"	"	"	"			
Chromium	6.6	2.0	"	"	"	"	"	"			
Cobalt	4.7	2.0	"	"	"	"	"	"			
Copper	3.0	1.0	"	"	"	"	"	"			
Lead	ND	3.0	"	"	"	"	"	"			
Molybdenum	ND	5.0	"	"	"	"	"	"			
Nickel	5.8	2.0	"	"	"	"	"	"			
Selenium	ND	5.0	"	"	"	"	"	"			
Thallium	ND	2.0	"	"	"	"	"	"			
Vanadium	21	5.0	"	"	"	"	"	"			
Zinc	32	1.0	"	"	"	"	"	"			
Cold Vapor Extraction EPA 7470	/7471										
Mercury	ND	0.10	mg/kg	1	8041624	04/16/18	04/16/18	EPA 7471A Soil			

SunStar Laboratories, Inc.

Brusca Associates Inc. Project: Lathrop 48-Ac Property									
PO Box 332		Reported:							
Roseville CA, 95661		Project Manag	ger: Joe Br	usca				04/23/18 10:43	
			VS57						
		T1812	266-06 (Sa	oil)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Polychlorinated Biphenyls by EPA M	lethod 8082								
PCB-1016	ND	10	ug/kg	1	8041633	04/16/18	04/18/18	EPA 8082	
PCB-1221	ND	10	"	"	"	"	"	"	
PCB-1232	ND	10	"	"	"	"	"	"	
PCB-1242	ND	10	"	"	"	"	"	"	
PCB-1248	ND	10	"	"	"	"	"	"	
PCB-1254	ND	10	"	"	"	"	"	"	
PCB-1260	ND	10	"	"	"	"	"	"	
Surrogate: Tetrachloro-meta-xylene		96.3 %	35-	140	"	"	"	"	
Surrogate: Decachlorobiphenyl		101 %	35-	140	"	"	"	"	
Semivolatile Organic Compounds by	FPA Method 8270C								
Carbazole	ND	300	ug/kg	1	80/163/	04/16/18	04/17/18	EPA 8270C	
Aniline	ND	300	" "	"	"	"	"	"	
Phenol	ND	1000		"		"	"		
2-Chlorophenol	ND	1000		"		"	"		
1 4-Dichlorobenzene	ND	300	"	"		"		"	
N-Nitrosodi-n-propylamine	ND	300		"		"		"	
1 2 4-Trichlorobenzene	ND	300	"	"		"		"	
4-Chloro-3-methylphenol	ND	1000		"		"		"	
2-Methylnanhthalene	ND	300		"	"	"		"	
1-Methylnaphthalene	ND	300		"		"		"	
Acenaphthene	ND	300		"	"	"		"	
4-Nitrophenol	ND	1000		"	"	"		"	
2 4-Dinitrotoluene	ND	300		"		"		"	
Pentachlorophenol	ND	1000		"		"		"	
Pyrene	ND	300	"	"		"	"	"	
Acenaphthylene	ND	300	"	"		"	"	"	
Anthracene	ND	300	"	"		"	"	"	
Benzo (a) anthracene	ND	300	"	"		"	"		
Benzo (b) fluoranthene	ND	300	"	"		"	"		
Benzo (k) fluoranthene	ND	300	"	"		"	"		
Benzo (g,h,i) perylene	ND	1000	"	"		"	"		

SunStar Laboratories, Inc.

SunStar Laboratories, Inc. PROVIDING QUALITY ANALYTICAL SERVICES NATIONWIDE

25712 Commercentre Drive Lake Forest, California 92630 949.297.5020 Phone 949.297.5027 Fax

Brusca Associates Inc. PO Box 332 Roseville CA, 95661		Proje Project Numb Project Manag		Reported: 04/23/18 10:43					
		T1812	VS57 266-06 (Se	oil)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aborator	ies, Inc.					
Semivolatile Organic Compounds by	EPA Method 8270C								
Benzo (a) pyrene	ND	300	ug/kg	1	8041634	04/16/18	04/17/18	EPA 8270C	
Benzyl alcohol	ND	300	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	300	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	300	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	300	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	300	"	"	"	"	"	"	
4-Bromophenyl phenyl ether	ND	300	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	300	"	"	"	"	"	"	
4-Chloroaniline	ND	300	"	"	"	"	"	"	
2-Chloronaphthalene	ND	300	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether	ND	300	"	"	"	"	"	"	
Chrysene	ND	300	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	300	"	"	"	"	"	"	
Dibenzofuran	ND	300	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	300	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	300	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	300	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	1000	"	"	"	"	"	"	
Diethyl phthalate	ND	300	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	1000	"	"	"	"	"	"	
Dimethyl phthalate	ND	300	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol	ND	1000	"	"	"	"	"	"	
2,4-Dinitrophenol	ND	1000	"	"	"	"	"	"	
2,6-Dinitrotoluene	ND	1000	"	"	"	"	"	"	
Di-n-octyl phthalate	ND	300	"	"	"	"	"	"	
Fluoranthene	ND	300	"	"	"	"	"	"	
Fluorene	ND	300	"	"	"	"	"	"	
Hexachlorobenzene	ND	1500	"	"	"	"	"	"	
Hexachlorobutadiene	ND	300	"	"	"	"	"		
Hexachlorocyclopentadiene	ND	1000	"	"	"	"	"	"	
Hexachloroethane	ND	300	"	"	"	"	"		
Indeno (1,2,3-cd) pyrene	ND	300	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Brusca Associates Inc. PO Box 332 Roseville CA, 95661		Reported: 04/23/18 10:43							
		T1812	V 857 266-06 (Sa	oil)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Semivolatile Organic Compounds by EPA M	lethod 8270C								
Isophorone	ND	300	ug/kg	1	8041634	04/16/18	04/17/18	EPA 8270C	
2-Methylphenol	ND	1000	"	"	"	"	"	"	
4-Methylphenol	ND	1000	"	"	"	"	"	"	
Naphthalene	ND	300	"	"	"	"	"	"	
2-Nitroaniline	ND	300	"	"	"	"	"	"	
3-Nitroaniline	ND	300		"	"	"	"	"	
4-Nitroaniline	ND	300	"	"	"	"	"	"	
Nitrobenzene	ND	1000	"	"	"	"	"	"	
2-Nitrophenol	ND	1000		"	"	"	"	"	
N-Nitrosodimethylamine	ND	300		"	"	"	"	"	
N-Nitrosodiphenylamine	ND	300		"	"	"	"	"	
2,3,5,6-Tetrachlorophenol	ND	300		"	"	"	"	"	
2,3,4,6-Tetrachlorophenol	ND	300		"	"	"	"	"	
Phenanthrene	ND	300	"	"	"	"	"	"	
Azobenzene	ND	300	"	"	"	"	"	"	
2,4,5-Trichlorophenol	ND	1000	"	"	"	"	"	"	
Pyridine	ND	300	"	"	"	"	"	"	
2,4,6-Trichlorophenol	ND	1000	"	"	"	"	"	"	
Surrogate: 2-Fluorophenol		52.0 %	15-	121	"	"	"	"	
Surrogate: Phenol-d6		62.5 %	24-	113	"	"	"	"	
Surrogate: Nitrobenzene-d5		62.2 %	21.3	-119	"	"	"	"	
Surrogate: 2-Fluorobiphenyl		72.2 %	32.4	-102	"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		86.9 %	18.1	-105	"	"	"	"	
Surrogate: Terphenyl-dl4		83.8 %	29.1	-130	"	"	"	"	

SunStar Laboratories, Inc.

Brusca Associates Inc. PO Box 332 Roseville CA, 95661		Project: Lathrop 48-Ac Property Project Number: 137-002 Project Manager: Joe Brusca							
		T1812	V 859 266-08 (Sa	oil)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Extractable Petroleum Hydrocar	bons by 8015B with Silic	a Gel Cleanu	p						
C6-C12 (GRO)	ND	10	mg/kg	1	8041214	04/18/18	04/18/18	EPA 8015B	
C13-C28 (DRO)	ND	10	"	"	"	"	"	"	
C29-C40 (MORO)	ND	10	"	"	"	"		"	
Surrogate: p-Terphenyl		99.9 %	65-	135	"	"	"	"	
Metals by EPA 6010B									
Antimony	ND	3.0	mg/kg	1	8041623	04/16/18	04/16/18	EPA 6010B	
Silver	ND	2.0	"	"	"	"		"	
Arsenic	ND	5.0	"	"	"	"		"	
Barium	62	1.0	"	"	"	"		"	
Beryllium	ND	1.0	"	"	"	"		"	
Cadmium	ND	2.0	"	"	"	"		"	
Chromium	6.0	2.0	"	"	"	"		"	
Cobalt	5.0	2.0	"	"	"	"		"	
Copper	3.5	1.0	"	"	"	"	"	"	
Lead	ND	3.0	"	"	"	"	"	"	
Molybdenum	ND	5.0	"	"	"	"	"	"	
Nickel	7.2	2.0	"	"	"	"		"	
Selenium	ND	5.0	"	"	"	"	"	"	
Thallium	ND	2.0	"	"	"	"	"	"	
Vanadium	20	5.0	"	"	"	"		"	
Zinc	22	1.0	"	"	"	"	"	"	
Cold Vapor Extraction EPA 7470	/7471								
Mercury	ND	0.10	mg/kg	1	8041624	04/16/18	04/16/18	EPA 7471A Soil	

SunStar Laboratories, Inc.

Brusca Associates Inc. Project: Lathrop 48-Ac Property									
PO Box 332		Reported	:						
Roseville CA, 95661		Project Manag	ger: Joe Br	usca				04/23/18 10:43	
			VS59						
		T1812	266-08 (So	oil)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	ies, Inc.					
Polychlorinated Biphenyls by EPA M	lethod 8082								
PCB-1016	ND	10	ug/kg	1	8041633	04/16/18	04/18/18	EPA 8082	
PCB-1221	ND	10	"	"	"	"		"	
PCB-1232	ND	10	"	"	"	"		"	
PCB-1242	ND	10	"	"	"	"		"	
PCB-1248	ND	10	"	"	"	"		"	
PCB-1254	ND	10	"	"	"	"		"	
PCB-1260	ND	10	"	"	"	"	"	"	
Surrogate: Tetrachloro-meta-xylene		92.7 %	35-	140	"	"	"	"	
Surrogate: Decachlorobiphenyl		109 %	35-	140	"	"	"	"	
Somivolatila Organia Compounda hy	EDA Mothed 9770C								
Semivolatile Organic Compounds by	ND	200	ug/kg	1	90/162/	04/16/19	04/17/19	EDA 9270C	
Phanal	ND	1000	ug/kg	1	8041034	04/10/18	04/1//18	EFA 8270C	
Anilino	ND	200	"	"		"		"	
2 Chlorophonol	ND	1000	"	"		"		"	
1.4 Dichlorobenzene	ND	300	"	"		"		"	
N Nitrosodi n propulamine	ND	300	"	"		"		"	
1.2.4 Trichlorobenzene	ND	300	"	"		"			
4 Chloro 3 methylphenol	ND	1000	"	"		"			
1-Methylnanhthalene	ND	300	"	"		"			
2-Methylnaphthalene	ND	300	"	"		"			
Acenanhthene	ND	300	"	"		"			
4-Nitrophenol	ND	1000	"	"		"			
2 4-Dinitrotoluene	ND	300	"	"		"			
Pentachlorophenol	ND	1000	"	"		"			
Pyrene	ND	300	"	"		"		"	
Acenaphthylene	ND	300	"	"		"		"	
Anthracene	ND	300	"	"		"		"	
Benzo (a) anthracene	ND	300	"	"				"	
Benzo (b) fluoranthene	ND	300	"	"				"	
Benzo (k) fluoranthene	ND	300	"	"				"	
Benzo (g h i) pervlene	ND	1000	"	"				"	
Series (S,ii,i) perficie	112	1000							

SunStar Laboratories, Inc.

SunStar Laboratories, Inc. Providing Quality Analytical Services Nationwide

25712 Commercentre Drive Lake Forest, California 92630 949.297.5020 Phone 949.297.5027 Fax

Brusca Associates Inc. PO Box 332 Roseville CA, 95661		Project: Lathrop 48-Ac Property Project Number: 137-002 Project Manager: Joe Brusca								
		T1812	VS59 266-08 (Se	oil)						
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes	
		SunStar L	aboratori	ies, Inc.						
Semivolatile Organic Compounds by	EPA Method 8270C									
Benzo (a) pyrene	ND	300	ug/kg	1	8041634	04/16/18	04/17/18	EPA 8270C		
Benzyl alcohol	ND	300	"	"	"	"	"	"		
Bis(2-chloroethoxy)methane	ND	300	"	"	"	"	"	"		
Bis(2-chloroethyl)ether	ND	300	"	"	"	"	"	"		
Bis(2-chloroisopropyl)ether	ND	300	"	"	"	"	"	"		
Bis(2-ethylhexyl)phthalate	ND	300	"	"	"	"	"	"		
4-Bromophenyl phenyl ether	ND	300	"	"	"	"	"	"		
Butyl benzyl phthalate	ND	300	"	"	"	"	"	"		
4-Chloroaniline	ND	300	"	"	"	"	"	"		
2-Chloronaphthalene	ND	300	"	"	"	"	"	"		
4-Chlorophenyl phenyl ether	ND	300	"	"	"	"	"	"		
Chrysene	ND	300	"	"	"	"	"	"		
Dibenz (a,h) anthracene	ND	300	"	"	"	"	"	"		
Dibenzofuran	ND	300	"	"	"	"	"	"		
Di-n-butyl phthalate	ND	300	"	"	"	"	"	"		
1,2-Dichlorobenzene	ND	300	"	"	"	"	"	"		
1,3-Dichlorobenzene	ND	300	"	"	"	"	"	"		
2,4-Dichlorophenol	ND	1000	"	"	"	"	"	"		
Diethyl phthalate	ND	300	"	"	"	"	"	"		
2,4-Dimethylphenol	ND	1000	"	"	"	"	"	"		
Dimethyl phthalate	ND	300	"	"	"	"	"	"		
4,6-Dinitro-2-methylphenol	ND	1000	"	"	"	"	"	"		
2,4-Dinitrophenol	ND	1000	"	"	"	"	"	"		
2,6-Dinitrotoluene	ND	1000	"	"	"	"	"	"		
Di-n-octyl phthalate	ND	300	"	"	"	"	"	"		
Fluoranthene	ND	300	"	"	"	"	"	"		
Fluorene	ND	300	"	"	"	"	"	"		
Hexachlorobenzene	ND	1500	"	"	"	"	"	"		
Hexachlorobutadiene	ND	300	"	"	"	"	"	"		
Hexachlorocyclopentadiene	ND	1000	"	"	"	"	"	"		
Hexachloroethane	ND	300	"	"	"	"	"	"		
Indeno (1,2,3-cd) pyrene	ND	300	"		"	"	"	"		

SunStar Laboratories, Inc.

Brusca Associates Inc. PO Box 332 Roseville CA, 95661		Reported: 04/23/18 10:43							
		T1812	266-08 (So	oil)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	ies, Inc.					
Semivolatile Organic Compounds by E	PA Method 8270C								
Isophorone	ND	300	ug/kg	1	8041634	04/16/18	04/17/18	EPA 8270C	
2-Methylphenol	ND	1000	"	"	"	"	"	"	
4-Methylphenol	ND	1000	"	"	"	"	"	"	
Naphthalene	ND	300	"	"	"	"	"	"	
2-Nitroaniline	ND	300	"	"	"	"	"	"	
3-Nitroaniline	ND	300	"	"	"	"	"	"	
4-Nitroaniline	ND	300	"	"	"	"	"	"	
Nitrobenzene	ND	1000	"	"	"	"	"	"	
2-Nitrophenol	ND	1000	"	"	"	"	"	"	
N-Nitrosodimethylamine	ND	300	"	"	"	"	"	"	
N-Nitrosodiphenylamine	ND	300	"	"	"	"	"	"	
2,3,5,6-Tetrachlorophenol	ND	300	"	"	"	"	"	"	
2,3,4,6-Tetrachlorophenol	ND	300	"	"	"	"	"	"	
Phenanthrene	ND	300	"	"	"	"	"	"	
Azobenzene	ND	300	"	"	"	"	"	"	
Pyridine	ND	300	"	"	"	"	"	"	
2,4,5-Trichlorophenol	ND	1000	"	"	"	"	"	"	
2,4,6-Trichlorophenol	ND	1000	"	"	"	"	"	"	
Surrogate: 2-Fluorophenol		61.1 %	15-	121	"	"	"	"	
Surrogate: Phenol-d6		70.9 %	24-	113	"	"	"	"	
Surrogate: Nitrobenzene-d5		69.8 %	21.3	-119	"	"	"	"	
Surrogate: 2-Fluorobiphenyl		79.6 %	32.4	-102	"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		93.8 %	93.8 % 18.1-105		"	"	"	"	
Surrogate: Terphenyl-dl4		90.0 %	29.1	-130	"	"	"	"	

SunStar Laboratories, Inc.

custody document. This analyti

Brusca Associates Inc.										
PO Box 332		Project Numl	ber: 137-00	02				Reported:		
Roseville CA, 95661	I	04/23/18 10:43								
			VS61							
		T1812	266-10 (So	oil)						
		Reporting								
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes	
		SunStar L	aboratori	ies, Inc.						
Metals by EPA 6010B										
Arsenic	ND	5.0	mg/kg	1	8041623	04/16/18	04/16/18	EPA 6010b		
Lead	ND	3.0	"	"	"	"	"	"		

SunStar Laboratories, Inc.

Mike Jaroudi, Project Manager

Brusca Associates Inc.		Proj	ect: Lathro	p 48-Ac Pro	perty					
PO Box 332		Project Numl	per: 137-00)2				Reported:		
Roseville CA, 95661	I	Project Manager: Joe Brusca								
			VS63							
		T1812	266-12 (So	oil)						
		Reporting								
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes	
		SunStar L	aboratori	ies, Inc.						
Metals by EPA 6010B										
Arsenic	ND	5.0	mg/kg	1	8041623	04/16/18	04/16/18	EPA 6010b		
Lead	ND	3.0	"	"	"	"	"	"		

SunStar Laboratories, Inc.

Mike Jaroudi, Project Manager

Brusca Associates Inc.		Proj	ect: Lathro	p 48-Ac Pro	operty				
PO Box 332		Project Numb	ber: 137-00)2				Reported:	
Roseville CA, 95661		Project Manag	ger: Joe Br	usca				04/23/18 10	:43
			VS65						
		T1812	266-14 (So	oil)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	ies, Inc.					
Extractable Petroleum Hydrocar	bons by 8015B with Silic	a Gel Cleanu	p						
C6-C12 (GRO)	ND	10	mg/kg	1	8041214	04/18/18	04/18/18	EPA 8015B	
C13-C28 (DRO)	ND	10	"	"	"	"	"	"	
C29-C40 (MORO)	ND	10	"	"	"	"	"	"	
Surrogate: p-Terphenyl		100 %	65-	135	"	"	"	"	
Metals by EPA 6010B									
Antimony	ND	3.0	mg/kg	1	8041623	04/16/18	04/16/18	EPA 6010B	
Silver	ND	2.0	"	"	"	"	"	"	
Arsenic	ND	5.0	"	"	"	"	"	"	
Barium	26	1.0	"	"	"	"	"	"	
Beryllium	ND	1.0	"	"	"	"	"	"	
Cadmium	ND	2.0	"	"	"	"	"	"	
Chromium	3.7	2.0	"	"	"	"	"	"	
Cobalt	2.7	2.0	"	"	"	"	"	"	
Copper	1.9	1.0	"	"	"	"	"	"	
Lead	ND	3.0	"	"	"	"	"	"	
Molybdenum	ND	5.0	"	"	"	"	"	"	
Nickel	3.4	2.0	"	"	"	"	"	"	
Selenium	ND	5.0	"	"	"	"	"	"	
Thallium	ND	2.0	"	"	"	"	"	"	
Vanadium	11	5.0	"	"	"	"	"	"	
Zinc	11	1.0	"	"	"	"	"	"	
Cold Vapor Extraction EPA 7470	/7471								
Mercury	ND	0.10	mg/kg	1	8041624	04/16/18	04/16/18	EPA 7471A Soil	

SunStar Laboratories, Inc.

IPSICIPATION CONSTRUCTAnayaReporting Inter<InterInterInterInterInterInterInterInterInterInterInterInterInterInterInterInterInt	Brusca Associates Inc. PO Box 332 Roseville CA, 95661		Proje Project Numb Project Manag	ect: Lathro per: 137-00 ger: Joe Br	p 48-Ac Pro)2 usca	operty			Reported 04/23/18 10	:):43
Analyse Reporting Limit Ditution Batch Prepared Analyzed Method Notes SunStar Laboratories, Inc. POL9-1016 ND 10 ug/kg 1 8041633 04/1018 04/18/18 EPA 8082 PCB-121 ND 10 " -			T1812	VS65 266-14 (So	oil)					
SunStar Laboratories, Inc. SunStar Laboratories, Inc. POrt-horinated Biphenvis by EPA Method 8082 PCB-1016 ND 10 ug/kg 1 8041633 04/16/18 04/18/18 EPA 8082 PCB-1221 ND 10 " " " " " " " PCB-1232 ND 10 "	Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Pocholorinated Biphenvis by EPA Method 8082 ND 10 ug/kg 1 8041633 04/16/18 04/18/18 EPA 8082 PCB-1221 ND 10 " - " " " PCB-1232 ND 10 " - " " " PCB-1242 ND 10 " - " " " PCB-1248 ND 10 " - " " " " PCB-1248 ND 10 " - " " " " " PCB-1248 ND 10 " - "	,		SunStar L	aboratori	es, Inc.		1			
PCB-1016 ND 10 ug/kg 1 804/633 04/16/18 04/18/18 EPA 8082 PCB-1232 ND 10 " <t< td=""><td>Polychlorinated Biphenyls by EPA M</td><td>lethod 8082</td><td></td><td></td><td>,</td><td></td><td></td><td></td><td></td><td></td></t<>	Polychlorinated Biphenyls by EPA M	lethod 8082			,					
PCB-1221 ND 10 "	PCB-1016	ND	10	ug/kg	1	8041633	04/16/18	04/18/18	EPA 8082	
PCB-1232ND10""	PCB-1221	ND	10	"	"	"	"	"		
PCB-1242 ND 10 "	PCB-1232	ND	10	"	"	"	"	"		
PCB-1248NDND10""	PCB-1242	ND	10	"	"	"	"	"	"	
PCB-1254 ND 10 " <th"< td=""><td>PCB-1248</td><td>ND</td><td>10</td><td>"</td><td>"</td><td>"</td><td>"</td><td>"</td><td>"</td><td></td></th"<>	PCB-1248	ND	10	"	"	"	"	"	"	
PCB-1260ND10""	PCB-1254	ND	10	"	"	"	"	"	"	
Surrogate: 98.5 % $35-140$ " " <td>PCB-1260</td> <td>ND</td> <td>10</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td></td>	PCB-1260	ND	10	"	"	"	"	"	"	
Surrogate: Decachlorobiphenyl 113 % 35-140 " " " " " " " " " Semiolatile Organic Compounds by EPA Method 8270C Carbazole ND 300 ugkg 1 8041634 04/16/18 04/17/18 EPA 8270C Phenol ND 1000 " <td>Surrogate: Tetrachloro-meta-xylene</td> <td></td> <td>98.5 %</td> <td>35-</td> <td>140</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td></td>	Surrogate: Tetrachloro-meta-xylene		98.5 %	35-	140	"	"	"	"	
Semivolatile Organic Compounds by EPA Method 8270C Carbazole ND 300 ug/kg 1 8041634 04/16/18 04/17/18 EPA 8270C Phenol ND 1000 " " " " " " Aniline ND 300 " " " " " " 2-Chlorophenol ND 300 " " " " " " 1,4-Dichlorobenzene ND 300 " " " " " " NN-Nitrosodi-n-propylamine ND 300 " " " " " " 1,2,4-Trichlorobenzene ND 300 " " " " " " 2.4-Choro-3-methylphenol ND 300 " " " " " " 2.4-Choro-3-methylphenol ND 300 " " " " " 2.4-Methylphenol ND	Surrogate: Decachlorobiphenvl		113 %	35-	140	"	"	"	"	
Schriftvardine Organic Componings by ETA Method 62/4C. Carbazole ND 300 ug/kg 1 8041634 04/16/18 04/17/18 EPA 8270C Phenol ND 1000 " <th< td=""><td>Somivalatila Argania Compounds by</td><td>FDA Mathad 8270C</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	Somivalatila Argania Compounds by	FDA Mathad 8270C								
Carlos of log Bob <	Carbazola	ND	300	ug/kg	1	80/162/	04/16/18	04/17/18	EDA 8270C	
Andine ND 300 "	Phenol	ND	1000	ug/kg "	"	8041034	"	"	EFA 8270C	
Animac ND 1000 " " " " " " 2-Chlorophenol ND 300 " " " " " N-Nitrosodi-n-propylamine ND 300 " " " " " 1,2,4-Trichlorobenzene ND 300 " " " " " 4-Chloro-3-methylphenol ND 1000 " " " " " " 2-Methylnaphthalene ND 300 " " " " " " " 1-Methylnaphthalene ND 300 "	Aniline	ND	300		"	"	"	"		
1,4-Dichlorobenzene ND 300 " <td>2-Chlorophenol</td> <td>ND</td> <td>1000</td> <td></td> <td>"</td> <td></td> <td>"</td> <td>"</td> <td></td> <td></td>	2-Chlorophenol	ND	1000		"		"	"		
N-Nitrosodi-n-propylamine ND 300 " <td< td=""><td>1 4-Dichlorobenzene</td><td>ND</td><td>300</td><td></td><td>"</td><td>"</td><td>"</td><td>"</td><td></td><td></td></td<>	1 4-Dichlorobenzene	ND	300		"	"	"	"		
1,2,4-Trichlorober neprogramme ND 300 " " " " " " 4-Chloro-3-methylphenol ND 1000 " " " " " " 2-Methylnaphthalene ND 300 " " " " " " " 1-Methylnaphthalene ND 300 " " " " " " " 4-Nitrophenol ND 300 " " " " " " " 2,4-Dinitrotoluene ND 300 "	N-Nitrosodi-n-propylamine	ND	300		"		"	"	"	
4-Chloro-3-methylphenol ND 1000 "	1.2.4-Trichlorobenzene	ND	300		"	"	"		"	
2-Methylnaphthalene ND 300 " <td>4-Chloro-3-methylphenol</td> <td>ND</td> <td>1000</td> <td></td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td></td>	4-Chloro-3-methylphenol	ND	1000		"	"	"	"	"	
1-Methylnaphthalene ND 300 " <td>2-Methylnaphthalene</td> <td>ND</td> <td>300</td> <td></td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td></td>	2-Methylnaphthalene	ND	300		"	"	"	"	"	
Acenaphthene ND 300 "	1-Methylnaphthalene	ND	300		"	"	"	"		
4-Nitrophenol ND 1000 "	Acenaphthene	ND	300		"	"	"	"	"	
2,4-Dinitrotoluene ND 300 "	4-Nitrophenol	ND	1000		"	"	"	"		
Pentachlorophenol ND 1000 "	2.4-Dinitrotoluene	ND	300		"	"	"	"		
Pyrene ND 300 "	Pentachlorophenol	ND	1000		"	"	"	"		
Acenaphthylene ND 300 "	Pyrene	ND	300	"	"	"	"	"	"	
Anthracene ND 300 " " " " " " " Benzo (a) anthracene ND 300 "	Acenaphthylene	ND	300	"	"	"	"	"	"	
Benzo (a) anthraceneND300""""""""Benzo (b) fluorantheneND300""""""""Benzo (k) fluorantheneND300""""""""Benzo (g,h,i) peryleneND1000"""""""	Anthracene	ND	300	"	"	"	"	"	"	
Benzo (b) fluoranthene ND 300 " <td>Benzo (a) anthracene</td> <td>ND</td> <td>300</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td></td>	Benzo (a) anthracene	ND	300	"	"	"	"	"	"	
Benzo (k) fluoranthene ND 300 " <td>Benzo (b) fluoranthene</td> <td>ND</td> <td>300</td> <td></td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td></td>	Benzo (b) fluoranthene	ND	300		"	"	"	"	"	
Benzo (g,h,i) perylene ND 1000 " " " " " " "	Benzo (k) fluoranthene	ND	300	"	"	"	"	"	"	
	Benzo (g,h,i) perylene	ND	1000		"		"	"	"	

SunStar Laboratories, Inc.

SunStar Laboratories, Inc. Providing Quality Analytical Services Nationwide

25712 Commercentre Drive Lake Forest, California 92630 949.297.5020 Phone 949.297.5027 Fax

Brusca Associates Inc. PO Box 332 Roseville CA, 95661		Proje Project Numb Project Manag	ect: Lathro ber: 137-00 ger: Joe Br	op 48-Ac Pro 02 usca	perty			Reported 04/23/18 10	:43
		T1812	VS65 266-14 (Se	oil)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	ies, Inc.					
Semivolatile Organic Compounds by	EPA Method 8270C								
Benzo (a) pyrene	ND	300	ug/kg	1	8041634	04/16/18	04/17/18	EPA 8270C	
Benzyl alcohol	ND	300	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	300	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	300	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	300	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	300	"	"	"	"	"	"	
4-Bromophenyl phenyl ether	ND	300	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	300	"	"	"	"	"	"	
4-Chloroaniline	ND	300	"	"	"	"	"	"	
2-Chloronaphthalene	ND	300	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether	ND	300	"	"	"	"	"	"	
Chrysene	ND	300	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	300	"	"	"	"	"	"	
Dibenzofuran	ND	300	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	300	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	300	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	300	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	1000	"	"	"	"	"	"	
Diethyl phthalate	ND	300	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	1000	"	"	"	"	"	"	
Dimethyl phthalate	ND	300	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol	ND	1000	"	"	"	"	"	"	
2,4-Dinitrophenol	ND	1000	"	"	"	"	"	"	
2,6-Dinitrotoluene	ND	1000	"	"	"	"	"	"	
Di-n-octyl phthalate	ND	300	"	"	"	"	"	"	
Fluoranthene	ND	300	"	"	"	"	"	"	
Fluorene	ND	300	"	"	"	"	"	"	
Hexachlorobenzene	ND	1500	"	"	"	"	"	"	
Hexachlorobutadiene	ND	300	"	"	"	"	"	"	
Hexachlorocyclopentadiene	ND	1000	"	"	"	"	"	"	
Hexachloroethane	ND	300	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene	ND	300	"		"	"	"	"	

SunStar Laboratories, Inc.

Brusca Associates Inc. PO Box 332 Roseville CA, 95661		Reported 04/23/18 10	::):43						
		T1812	266-14 (Sa	oil)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Semivolatile Organic Compounds by E	PA Method 8270C								
Isophorone	ND	300	ug/kg	1	8041634	04/16/18	04/17/18	EPA 8270C	
2-Methylphenol	ND	1000	"	"	"	"	"	"	
4-Methylphenol	ND	1000	"	"	"	"	"	"	
Naphthalene	ND	300	"	"	"	"	"	"	
2-Nitroaniline	ND	300	"	"	"	"	"	"	
3-Nitroaniline	ND	300	"	"	"	"	"	"	
4-Nitroaniline	ND	300	"	"	"	"	"	"	
Nitrobenzene	ND	1000	"	"	"	"	"	"	
2-Nitrophenol	ND	1000	"	"	"	"	"	"	
N-Nitrosodimethylamine	ND	300	"	"	"	"	"	"	
N-Nitrosodiphenylamine	ND	300	"	"		"	"	"	
2,3,5,6-Tetrachlorophenol	ND	300	"	"		"	"	"	
2,3,4,6-Tetrachlorophenol	ND	300	"	"		"	"	"	
Phenanthrene	ND	300	"	"	"	"	"	"	
Azobenzene	ND	300	"	"	"	"	"	"	
Pyridine	ND	300	"	"	"	"	"	"	
2,4,5-Trichlorophenol	ND	1000	"	"	"	"	"	"	
2,4,6-Trichlorophenol	ND	1000	"	"	"	"	"		
Surrogate: 2-Fluorophenol		56.7 %	15-	121	"	"	"	"	
Surrogate: Phenol-d6		68.1 %	24-	113	"	"	"	"	
Surrogate: Nitrobenzene-d5		67.2 %	21.3	-119	"	"	"	"	
Surrogate: 2-Fluorobiphenyl		81.1 %	32.4	-102	"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		97.1 %	18.1	-105	"	"	"	"	
Surrogate: Terphenyl-dl4		92.1 %	29.1	-130	"	"	"	"	

SunStar Laboratories, Inc.

Brusca Associates Inc.		Proj	ect: Lathro	p 48-Ac Pro	perty					
PO Box 332		Project Numl	ber: 137-00	02				Reported:		
Roseville CA, 95661	1	Project Manager: Joe Brusca								
			VS66							
		T1812	266-15 (Se	oil)						
		Reporting								
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes	
		SunStar L	aborator	ies, Inc.						
Metals by EPA 6010B										
Arsenic	ND	5.0	mg/kg	1	8041623	04/16/18	04/16/18	EPA 6010b		
Lead	ND	3.0	"	"		"	"	"		

SunStar Laboratories, Inc.

Mike Jaroudi, Project Manager

Brusca Associates Inc. PO Box 332 Roseville CA, 95661	1	Proj Project Numl Project Manag	ect: Lathro per: 137-00 ger: Joe Br	p 48-Ac Pro)2 usca	perty			Reported 04/23/18 10	: 1:43
		T1812	VS68 266-17 (So	oil)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Metals by EPA 6010B									
Arsenic	ND	5.0	mg/kg	1	8041623	04/16/18	04/16/18	EPA 6010b	
Lead	12	3.0	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Mike Jaroudi, Project Manager

Brusca Associates Inc.		Proj	ect: Lathro	p 48-Ac Pro	perty					
PO Box 332		Project Numl	ber: 137-00	02				Reported:		
Roseville CA, 95661	Ι	Project Manager: Joe Brusca								
			VS70							
		T1812	266-19 (Se	oil)						
		Reporting								
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes	
		SunStar L	aborator	ies, Inc.						
Metals by EPA 6010B										
Arsenic	ND	5.0	mg/kg	1	8041623	04/16/18	04/16/18	EPA 6010b		
Lead	ND	3.0	"	"		"	"	"		

SunStar Laboratories, Inc.

Mike Jaroudi, Project Manager

Brusca Associates Inc.	Project: Lathrop 48-Ac Property	
PO Box 332	Project Number: 137-002	Reported:
Roseville CA, 95661	Project Manager: Joe Brusca	04/23/18 10:43

Extractable Petroleum Hydrocarbons by 8015B with Silica Gel Cleanup - Quality Control

SunStar Laboratories, Inc.

		Reporting		Snike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 8041214 - EPA 3550B GC										
Blank (8041214-BLK1)				Prepared: (04/12/18 A	nalyzed: 04	/18/18			
C6-C12 (GRO)	ND	10	mg/kg							
C13-C28 (DRO)	ND	10	"							
C29-C40 (MORO)	ND	10	"							
Surrogate: p-Terphenyl	97.8		"	99.0		98.8	65-135			
LCS (8041214-BS1)	Prepared: 04/12/18 Analyzed: 04/18/18									
C13-C28 (DRO)	500	10	mg/kg	495		101	75-125			
Surrogate: p-Terphenyl	101		"	99.0		102	65-135			
Matrix Spike (8041214-MS1)	Sou	rce: T181265-	01	Prepared: (04/12/18 A	nalyzed: 04	/18/18			
C13-C28 (DRO)	560	10	mg/kg	505	53	100	75-125			
Surrogate: p-Terphenyl	106		"	101		105	65-135			
Matrix Spike Dup (8041214-MSD1)	Sou	rce: T181265-	01	Prepared: (04/12/18 A	nalyzed: 04	/18/18			
C13-C28 (DRO)	590	10	mg/kg	500	53	108	75-125	5.92	20	
Surrogate: p-Terphenyl	104		"	100		104	65-135			

SunStar Laboratories, Inc.

SunStar Laboratories, Inc. Providing Quality Analytical Services Nationwide

25712 Commercentre Drive Lake Forest, California 92630 949.297.5020 Phone 949.297.5027 Fax

Brusca Associates Inc.	Project: Lathrop 48-Ac Property	
PO Box 332	Project Number: 137-002	Reported:
Roseville CA, 95661	Project Manager: Joe Brusca	04/23/18 10:43

Metals by EPA 6010B - Quality Control

SunStar Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch 8041623 - EPA 3050B

Blank (8041623-BLK1)				Prepared & Analyzed: 04/16/18
Antimony	ND	3.0	mg/kg	
Antimony	ND	3.0	"	
Silver	ND	2.0	"	
Arsenic	ND	5.0	"	
Arsenic	ND	5.0	"	
Barium	ND	1.0	"	
Barium	ND	1.0	"	
Beryllium	ND	1.0	"	
Beryllium	ND	1.0	"	
Cadmium	ND	2.0	"	
Cadmium	ND	2.0	"	
Chromium	ND	2.0	"	
Cobalt	ND	2.0	"	
Chromium	ND	2.0	"	
Copper	ND	1.0	"	
Cobalt	ND	2.0	"	
Lead	ND	3.0	"	
Copper	ND	1.0	"	
Molybdenum	ND	5.0	"	
Nickel	ND	2.0	"	
Lead	ND	3.0	"	
Selenium	ND	5.0	"	
Thallium	ND	2.0	"	
Vanadium	ND	5.0	"	
Zinc	ND	1.0	"	
Molybdenum	ND	5.0	"	
Nickel	ND	2.0	"	
Selenium	ND	5.0	"	
Silver	ND	2.0	"	
Thallium	ND	2.0	"	
Vanadium	ND	5.0	"	
Zinc	ND	1.0	"	

SunStar Laboratories, Inc.

SunStar Laboratories, Inc. PROVIDING QUALITY ANALYTICAL SERVICES NATIONWIDE

25712 Commercentre Drive Lake Forest, California 92630 949.297.5020 Phone 949.297.5027 Fax

Brusca Associates Inc.	Project: Lathrop 48-Ac Property	
PO Box 332	Project Number: 137-002	Reported:
Roseville CA, 95661	Project Manager: Joe Brusca	04/23/18 10:43

Metals by EPA 6010B - Quality Control

SunStar Laboratories, Inc.

	Sunstar Laboratories, inc.									
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 8041623 - EPA 3050B										
LCS (8041623-BS1)				Prepared &	analyzed:	04/16/18				
Arsenic	92.9	5.0	mg/kg	100		92.9	75-125			
Arsenic	92.9	5.0	"	100		92.9	75-125			
Barium	91.6	1.0	"	100		91.6	75-125			
Barium	91.6	1.0	"	100		91.6	75-125			
Cadmium	88.7	2.0	"	100		88.7	75-125			
Cadmium	88.7	2.0	"	100		88.7	75-125			
Chromium	90.3	2.0	"	100		90.3	75-125			
Chromium	90.3	2.0	"	100		90.3	75-125			
Lead	96.9	3.0	"	100		96.9	75-125			
Lead	96.9	3.0	"	100		96.9	75-125			
Matrix Spike (8041623-MS1)	Sour	ce: T181256-	·01	Prepared &	k Analyzed:	04/16/18				
Arsenic	88.5	5.0	mg/kg	100	1.81	86.7	75-125			
Arsenic	88.5	5.0	"	100	1.81	86.7	75-125			
Barium	119	1.0	"	100	37.7	81.1	75-125			
Barium	119	1.0	"	100	37.7	81.1	75-125			
Cadmium	83.2	2.0	"	100	0.425	82.8	75-125			
Cadmium	83.2	2.0	"	100	0.425	82.8	75-125			
Chromium	89.3	2.0	"	100	5.37	84.0	75-125			
Chromium	89.3	2.0	"	100	5.37	84.0	75-125			
Lead	93.3	3.0	"	100	ND	93.3	75-125			
Lead	93.3	3.0	"	100	6.15	87.1	75-125			
Matrix Spike Dup (8041623-MSD1)	Sour	ce: T181256-	·01	Prepared &	analyzed:	04/16/18				
Arsenic	95.2	5.0	mg/kg	100	1.81	93.4	75-125	7.37	20	
Arsenic	95.2	5.0	"	100	1.81	93.4	75-125	7.37	20	
Barium	123	1.0	"	100	37.7	85.1	75-125	3.25	20	
Barium	123	1.0	"	100	37.7	85.1	75-125	3.25	20	
Cadmium	85.4	2.0	"	100	0.425	85.0	75-125	2.67	20	
Cadmium	85.4	2.0	"	100	0.425	85.0	75-125	2.67	20	
Chromium	91.3	2.0	"	100	5.37	86.0	75-125	2.21	20	
Chromium	91.3	2.0	"	100	5.37	86.0	75-125	2.21	20	
Lead	99.2	3.0	"	100	ND	99.2	75-125	6.14	20	
Lead	99.2	3.0	"	100	6.15	93.0	75-125	6.14	20	

SunStar Laboratories, Inc.

Brusca Associates Inc.	Project: Lathrop 48-Ac Property	
PO Box 332	Project Number: 137-002	Reported:
Roseville CA, 95661	Project Manager: Joe Brusca	04/23/18 10:43

Cold Vapor Extraction EPA 7470/7471 - Quality Control

SunStar Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 8041624 - EPA 7471A Soil										
Blank (8041624-BLK1)				Prepared &	Analyzed:	04/16/18				
Mercury	ND	0.10	mg/kg							
LCS (8041624-BS1)				Prepared &	Analyzed:	04/16/18				
Mercury	0.405	0.10	mg/kg	0.417		97.2	80-120			
Matrix Spike (8041624-MS1)	Source	: T181256-	01	Prepared & Analyzed: 04/16/18						
Mercury	0.408	0.10	mg/kg	0.417	ND	98.0	75-125			
Matrix Spike Dup (8041624-MSD1)	Source	: T181256-	01	Prepared &	Analyzed:	04/16/18				
Mercury	0.428	0.10	mg/kg	0.417	ND	103	75-125	4.64	20	

SunStar Laboratories, Inc.

Brusca Associates Inc.	Project: Lathrop 48-Ac Property	
PO Box 332	Project Number: 137-002	Reported:
Roseville CA, 95661	Project Manager: Joe Brusca	04/23/18 10:43

Polychlorinated Biphenyls by EPA Method 8082 - Quality Control

SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 8041633 - EPA 3550 ECD/GCMS										
Blank (8041633-BLK1)				Prepared:	04/16/18 A	nalyzed: 04	/18/18			
PCB-1016	ND	10	ug/kg							
PCB-1221	ND	10	"							
PCB-1232	ND	10	"							
PCB-1242	ND	10	"							
PCB-1248	ND	10	"							
PCB-1254	ND	10	"							
PCB-1260	ND	10	"							
Surrogate: Tetrachloro-meta-xylene	8.65		"	9.90		87.3	35-140			
Surrogate: Decachlorobiphenyl	10.1		"	9.90		102	35-140			
LCS (8041633-BS1)				Prepared:	04/16/18 A	nalyzed: 04	/18/18			
PCB-1016	70.1	10	ug/kg	99.0		70.8	40-130			
PCB-1260	66.8	10	"	99.0		67.5	40-130			
Surrogate: Tetrachloro-meta-xylene	9.51		"	9.90		96.0	35-140			
Surrogate: Decachlorobiphenyl	11.0		"	9.90		112	35-140			
Matrix Spike (8041633-MS1)	Sou	rce: T181265-	01	Prepared:	04/16/18 A	nalyzed: 04	/18/18			
PCB-1016	60.2	10	ug/kg	101	ND	59.6	40-130			
PCB-1260	60.1	10	"	101	ND	59.5	40-130			
Surrogate: Tetrachloro-meta-xylene	8.99		"	10.1		89.0	35-140			
Surrogate: Decachlorobiphenyl	9.25		"	10.1		91.5	35-140			
Matrix Spike Dup (8041633-MSD1)	Sou	rce: T181265-	01	Prepared:	04/16/18 A	nalyzed: 04	/18/18			
PCB-1016	64.2	10	ug/kg	101	ND	63.6	40-130	6.49	30	
PCB-1260	62.7	10	"	101	ND	62.1	40-130	4.28	30	
Surrogate: Tetrachloro-meta-xylene	9.14		"	10.1		90.5	35-140			
Surrogate: Decachlorobiphenyl	9.02		"	10.1		89.3	35-140			

SunStar Laboratories, Inc.

Brusca Associates Inc.	Project: Lathrop 48-Ac Property	
PO Box 332	Project Number: 137-002	Reported:
Roseville CA, 95661	Project Manager: Joe Brusca	04/23/18 10:43

Semivolatile Organic Compounds by EPA Method 8270C - Quality Control

SunStar Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch 8041634 - EPA 3550 ECD/GCMS

Blank (8041634-BLK1)				Prepared: 04/16/18 Analyzed: 04/17/18
Carbazole	ND	300	ug/kg	
Aniline	ND	300	"	
Phenol	ND	1000	"	
2-Chlorophenol	ND	1000	"	
1,4-Dichlorobenzene	ND	300	"	
N-Nitrosodi-n-propylamine	ND	300	"	
1,2,4-Trichlorobenzene	ND	300	"	
4-Chloro-3-methylphenol	ND	1000	"	
2-Methylnaphthalene	ND	300	"	
1-Methylnaphthalene	ND	300	"	
Acenaphthene	ND	300	"	
4-Nitrophenol	ND	1000	"	
2,4-Dinitrotoluene	ND	300	"	
Pentachlorophenol	ND	1000	"	
Pyrene	ND	300	"	
Acenaphthylene	ND	300	"	
Anthracene	ND	300	"	
Benzo (a) anthracene	ND	300	"	
Benzo (b) fluoranthene	ND	300	"	
Benzo (k) fluoranthene	ND	300	"	
Benzo (g,h,i) perylene	ND	1000	"	
Benzo (a) pyrene	ND	300	"	
Benzyl alcohol	ND	300	"	
Bis(2-chloroethoxy)methane	ND	300	"	
Bis(2-chloroethyl)ether	ND	300	"	
Bis(2-chloroisopropyl)ether	ND	300	"	
Bis(2-ethylhexyl)phthalate	ND	300	"	
4-Bromophenyl phenyl ether	ND	300	"	
Butyl benzyl phthalate	ND	300	"	
4-Chloroaniline	ND	300	"	
2-Chloronaphthalene	ND	300	"	
4-Chlorophenyl phenyl ether	ND	300	"	
Chrysene	ND	300	"	
Dibenz (a,h) anthracene	ND	300	"	
Dibenzofuran	ND	300	"	
Di-n-butyl phthalate	ND	300	"	

SunStar Laboratories, Inc.

Brusca Associates Inc.	Project: Lathrop 48-Ac Property	
PO Box 332	Project Number: 137-002	Reported:
Roseville CA, 95661	Project Manager: Joe Brusca	04/23/18 10:43

Semivolatile Organic Compounds by EPA Method 8270C - Quality Control

SunStar Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch 8041634 - EPA 3550 ECD/GCMS

Blank (8041634-BLK1)				Prepared: 04/16/18 Analyzed: 04/17/18
1,2-Dichlorobenzene	ND	300	ug/kg	
1,3-Dichlorobenzene	ND	300		
2,4-Dichlorophenol	ND	1000	"	
Diethyl phthalate	ND	300	"	
2,4-Dimethylphenol	ND	1000	"	
Dimethyl phthalate	ND	300	"	
4,6-Dinitro-2-methylphenol	ND	1000		
2,4-Dinitrophenol	ND	1000		
2,6-Dinitrotoluene	ND	1000	"	
Di-n-octyl phthalate	ND	300	"	
Fluoranthene	ND	300	"	
Fluorene	ND	300	"	
Hexachlorobenzene	ND	1500	"	
Hexachlorobutadiene	ND	300	"	
Hexachlorocyclopentadiene	ND	1000		
Hexachloroethane	ND	300		
Indeno (1,2,3-cd) pyrene	ND	300	"	
Isophorone	ND	300	"	
2-Methylphenol	ND	1000	"	
4-Methylphenol	ND	1000	"	
Naphthalene	ND	300	"	
2-Nitroaniline	ND	300		
3-Nitroaniline	ND	300		
4-Nitroaniline	ND	300		
Nitrobenzene	ND	1000		
2-Nitrophenol	ND	1000		
N-Nitrosodimethylamine	ND	300		
N-Nitrosodiphenylamine	ND	300		
2,3,5,6-Tetrachlorophenol	ND	300		
2,3,4,6-Tetrachlorophenol	ND	300		
Phenanthrene	ND	300		
Azobenzene	ND	300		
2,4,5-Trichlorophenol	ND	1000		
Pyridine	ND	300		
2,4,6-Trichlorophenol	ND	1000	"	

SunStar Laboratories, Inc.

25712 Commercentre Drive Lake Forest, California 92630 949.297.5020 Phone 949.297.5027 Fax

Brusca Associates Inc.	Project: Lathrop 48-Ac Property	
PO Box 332	Project Number: 137-002	Reported:
Roseville CA, 95661	Project Manager: Joe Brusca	04/23/18 10:43

Semivolatile Organic Compounds by EPA Method 8270C - Quality Control

SunStar Laboratories, Inc.

Analyta	Pagult	Reporting	Unita	Spike	Source	0/DEC	%REC	חקק	RPD Limit	Notas
Analyte	Kesuit	Liinit	Units	Level	Kesuit	70KEC	Linits	KPD	Liinit	INOLES
Batch 8041634 - EPA 3550 ECD/GCMS										
Blank (8041634-BLK1)				Prepared: (04/16/18 A	nalyzed: 04	/17/18			
Surrogate: 2-Fluorophenol	1790		ug/kg	3380		53.0	15-121			
Surrogate: Phenol-d6	1920		"	3380		56.9	24-113			
Surrogate: Nitrobenzene-d5	2150		"	3380		63.5	21.3-119			
Surrogate: 2-Fluorobiphenyl	2510		"	3380		74.3	32.4-102			
Surrogate: 2,4,6-Tribromophenol	3160		"	3380		93.4	18.1-105			
Surrogate: Terphenyl-dl4	2960		"	3380		87.6	29.1-130			
LCS (8041634-BS1)				Prepared: (04/16/18 A	nalyzed: 04	/17/18			
Phenol	1490	1000	ug/kg	3280		45.6	34-114			
2-Chlorophenol	1620	1000	"	3280		49.4	34-114			
1,4-Dichlorobenzene	1680	300	"	3280		51.4	34-114			
N-Nitrosodi-n-propylamine	1700	300	"	3280		51.9	30-110			
1,2,4-Trichlorobenzene	1900	300	"	3280		58.0	39-119			
4-Chloro-3-methylphenol	2150	1000	"	3280		65.6	50-130			
Acenaphthene	1720	300	"	3280		52.6	34-114			
Pentachlorophenol	2280	1000	"	3280		69.7	50-130			
Pyrene	1530	300	"	3280		46.8	30-110			
Surrogate: 2-Fluorophenol	1450		"	3280		44.3	15-121			
Surrogate: Phenol-d6	1650		"	3280		50.4	24-113			
Surrogate: Nitrobenzene-d5	1790		"	3280		54.7	21.3-119			
Surrogate: 2-Fluorobiphenyl	2130		"	3280		65.1	32.4-102			
Surrogate: 2,4,6-Tribromophenol	2810		"	3280		85.6	18.1-105			
Surrogate: Terphenyl-dl4	2600		"	3280		79.4	29.1-130			
Matrix Spike (8041634-MS1)	Sou	rce: T181265-	01	Prepared: (04/16/18 A	nalyzed: 04	/17/18			
Phenol	1750	1000	ug/kg	3390	ND	51.7	34-114			
2-Chlorophenol	1860	1000	"	3390	ND	54.9	34-114			
1,4-Dichlorobenzene	1830	300	"	3390	ND	54.0	34-114			
N-Nitrosodi-n-propylamine	1880	300	"	3390	ND	55.4	30-110			
1,2,4-Trichlorobenzene	2190	300	"	3390	ND	64.5	39-119			
4-Chloro-3-methylphenol	2550	1000	"	3390	ND	75.3	50-130			
Acenaphthene	1960	300	"	3390	ND	57.8	34-114			
Pentachlorophenol	2620	1000	"	3390	ND	77.3	50-130			
Pyrene	1980	300	"	3390	160	53.7	30-110			
Surrogate: 2-Fluorophenol	1600		"	3390		47.3	15-121			
Surrogate: Phenol-d6	1890		"	3390		55.8	24-113			

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Brusca Associates Inc.	Project: Lathrop 48-Ac Property	
PO Box 332	Project Number: 137-002	Reported:
Roseville CA, 95661	Project Manager: Joe Brusca	04/23/18 10:43

Semivolatile Organic Compounds by EPA Method 8270C - Quality Control

SunStar Laboratories, Inc.

				,						
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 8041634 - EPA 3550 ECD/GCMS										
Matrix Spike (8041634-MS1)	Sou	ırce: T181265-	01	Prepared: (04/16/18 A	nalyzed: 04	4/17/18			
Surrogate: Nitrobenzene-d5	2040		ug/kg	3390		60.1	21.3-119			
Surrogate: 2-Fluorobiphenyl	2310		"	3390		68.1	32.4-102			
Surrogate: 2,4,6-Tribromophenol	3090		"	3390		91.2	18.1-105			
Surrogate: Terphenyl-dl4	2670		"	3390		78.7	29.1-130			
Matrix Spike Dup (8041634-MSD1)	Sou	ırce: T181265-	01	Prepared: (04/16/18 A	nalyzed: 04	4/17/18			
Phenol	1720	1000	ug/kg	3410	ND	50.4	34-114	2.00	42	
2-Chlorophenol	1840	1000	"	3410	ND	53.9	34-114	1.32	40	
1,4-Dichlorobenzene	1760	300	"	3410	ND	51.7	34-114	3.82	28	
N-Nitrosodi-n-propylamine	1840	300	"	3410	ND	54.0	30-110	1.82	38	
1,2,4-Trichlorobenzene	2090	300	"	3410	ND	61.4	39-119	4.29	28	
4-Chloro-3-methylphenol	2560	1000	"	3410	ND	74.9	50-130	0.108	42	
Acenaphthene	1960	300	"	3410	ND	57.3	34-114	0.119	31	
Pentachlorophenol	2860	1000	"	3410	ND	83.9	50-130	8.97	50	
Pyrene	1940	300		3410	160	52.1	30-110	2.05	31	
Surrogate: 2-Fluorophenol	1630		"	3410		47.8	15-121			
Surrogate: Phenol-d6	1870		"	3410		54.8	24-113			
Surrogate: Nitrobenzene-d5	1870		"	3410		54.9	21.3-119			
Surrogate: 2-Fluorobiphenyl	2210		"	3410		64.7	32.4-102			
Surrogate: 2,4,6-Tribromophenol	3080		"	3410		90.1	18.1-105			
Surrogate: Terphenyl-dl4	2940		"	3410		86.0	29.1-130			

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

25712 Commercentre Drive Lake Forest, California 92630 949.297.5020 Phone 949.297.5027 Fax

Brusca Associates Inc.	Project: Lathrop 48-Ac Property	
PO Box 332	Project Number: 137-002	Reported:
Roseville CA, 95661	Project Manager: Joe Brusca	04/23/18 10:43

Notes and Definitions

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

- dry Sample results reported on a dry weight basis
- RPD Relative Percent Difference

SunStar Laboratories, Inc.

Mike Jaroudi, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Sample ID Sample ID Sample ID Sample ID Sample ID Sample ID Signaple ID Sample ID Samp	The Drive, Lake Forest, CA 92690 The Drive, Lake Forest, CA 92690 The Security LL CA 95444 3322 Reversion of the Project Name $\frac{1}{132}$ reversion of the Project $\frac{1}{132}$ reversion			7	ORMA	19. 	nd tin	arour	Turn			i			20+					5		2			
Sample D Date Time Sample D Sample D Sampl	are Drive, Lake Forrest, CA 92630 are Drive, Lake Forrest, CA 92630 are Drive, Lake Forrest, CA 92630 are drived and the formation of the			_	-		Ċ				Time	Date			ignature) : yo by	Receive		me	Date / T		ature)	y: (signa	ished b	Relinqu
Interface Sample D Sample D Interface Interface Interface Interface Interface Interface Interface Interface Interface Interface Interface Interface Interface Interface Interface Interface Interface Interface Interface Interface Interface Interface Interface Interface Interface Interface Interface Interface Interface Interface Interface Interface Interface Interface Interface Interface Interface Interface Interface Interface Interface Interface Interface Interface Interface Interface Interface Interface Interface Interface Interface Interface Interface Interface Interface Interface Interface Interface Interface Interface Interface Interface Interface Interface	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			55	tion/cold	cond	good	ceived	Re		Ĭ		R1-14	r V V					ē			8:10	31-14-15	680	Ć
Image Image Sample Image Image Image Sample Image Image Image Image Image Sample Image Image Image Image Sample Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image <td< td=""><td>and proved the second second</td><td></td><td>-</td><td></td><td>ANNA</td><td>y seals</td><td>ustody</td><td>n of C</td><td>Chai</td><td>Į</td><td></td><td></td><td>L</td><td></td><td></td><td>d hy fo</td><td>Pereive</td><td></td><td></td><td></td><td>112</td><td>ihire)</td><td>v. (sinna</td><td>ished by</td><td></td></td<>	and proved the second		-		ANNA	y seals	ustody	n of C	Chai	Į			L			d hy fo	Pereive				112	ihire)	v. (sinna	ished by	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	and provide a series of the formation of the series of the		Notes		ontainers	# of c	Total))	Time	Date	2	ت ،	ignature	V V V V V	Ş		me I ? ? A	Jate / T	1	⇒ A	y: (signa	Shed b	
Sound of the second of the	and proved as the forest, CA 2000 $\frac{4}{12}$ $\frac{4}{12}$ $\frac{4}{12}$ $\frac{1}{12}$ $\frac{1}{12$			15		X	┢	ŀ			i	'		-				14			[566	k
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	and the prover the prove the p			14				X						X				3		-				565	V
Sample Determines $Sample Determines Sample De$	ante Drive, Lake Forest, CA 92630 A A.S.Soc.zartes, TAC. 332, Rosentrature, CA 92630 1332, Rosentrature, CA 92630 1332, Rosentrature, CA 95661 $1332, Rosentrature, CA 956611332, Rosentrature, CA 95661 105, 14, 10, 14, 10, 15, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10$		140LD	2				$\left - \right $			ة 							2	E				+	1261	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	and prive Lake Forest, CA 92630 A $Association Construction CA 92630$ The Drive Lake Forest, CA 92630 A Association Chained Contained Contain			ā		X												19						56.	V
Some particular interval in the second state of the second state	ante Drive, Lake Forest, CA 92630 A ASSOCTATES, T.N. 332, Roseuratic CA 95661 332, Roseuratic CA 95670 332, Roseuratic CA 95670 342, Carbon Chain Biologic Container $350, Carbon Chain Biologic Container 350, Carbon Chain Biologic Carbon Chain Biologic Container 350, Carbon Chain Biologic Container$	_	HULD	=	_													16	11:				`	295	V
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $			d i		X		-			_				-		-	4	:]]		•			561	<
North State Sample	$\frac{4 \text{ Assocrates}}{322, \text{ Restruct}} \text{ Lake Forest, CA 99630}$ $\frac{4 \text{ Assocrates}}{322, \text{ Restruct}} \frac{1}{\sqrt{4}} \frac{1}{\sqrt{5}} \frac{1}{\sqrt{6}} \frac{1}{\sqrt{5}} \frac{1}{\sqrt{6}} \frac{1}{\sqrt{5}} \frac{1}{\sqrt{6}} $		40.2	20	_		1	-			-	:			, <u>,</u>			3	0	-				6	2
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\frac{A}{12} \frac{A}{12} \frac$			200				X		-	7			X	_		_	4-4-	0					2	2
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $		ニマフ	2 U U			ť	┦		+	-	-		-	_	_		<u>بر</u>	3					J J	ផ
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	antre Drive, Lake Forest, CA 92630 A $\frac{4}{332}$, $\frac{1}{10}$, $\frac{1}{12}$, \frac			2 00			7	X	_					X	_			(J) (†)	0)	4	5
Sample Sampl	$\frac{4 \text{ Acsocrates}}{322, \text{ Roservative}} \text{ Laboratory ID #} \\ \frac{4 \text{ Acsocrates}}{322, \text{ Roservative}} \text{ Laboratory ID #} \\ \frac{4 \text{ Acsocrates}}{322, \text{ Roservative}} \text{ Laboratory ID #} \\ \frac{4 \text{ Acsocrates}}{322, \text{ Roservative}} \text{ Laboratory ID #} \\ \frac{4 \text{ Acsocrates}}{322, \text{ Roservative}} \text{ Laboratory ID #} \\ \frac{4 \text{ Acsocrates}}{322, \text{ Roservative}} \text{ Laboratory ID #} \\ \frac{4 \text{ Acsocrates}}{322, \text{ Roservative}} \text{ Laboratory ID #} \\ \frac{4 \text{ Acsocrates}}{322, \text{ Roservative}} \text{ Laboratory ID #} \\ \frac{4 \text{ Acsocrates}}{322, \text{ Roservative}} \text{ Laboratory ID #} \\ \frac{4 \text{ Acsocrates}}{322, \text{ Roservative}} \text{ Laboratory ID #} \\ \frac{4 \text{ Acsocrates}}{322, \text{ Roservative}} \text{ Laboratory ID #} \\ \frac{4 \text{ Acsocrates}}{322, \text{ Roservative}} \text{ Laboratory ID #} \\ \frac{4 \text{ Acsocrates}}{322, \text{ Roservative}} \text{ Laboratory ID #} \\ \frac{4 \text{ Acsocrates}}{322, \text{ Roservative}} \text{ Laboratory ID #} \\ \frac{4 \text{ Acsocrates}}{322, \text{ Roservative}} \text{ Laboratory ID #} \\ \frac{4 \text{ Acsocrates}}{322, \text{ Roservative}} \text{ Laboratory ID #} \\ \frac{4 \text{ Acsocrates}}{322, \text{ Roservative}} \text{ Laboratory ID #} \\ \frac{4 \text{ Acsocrates}}{322, \text{ Roservative}} \text{ Laboratory ID #} \\ \frac{4 \text{ Acsocrates}}{322, \text{ Roservative}} \text{ Laboratory ID #} \\ \frac{4 \text{ Roservative}}{322, \text{ Roservative}} \text{ Laboratory ID #} \\ \frac{4 \text{ Roservative}}{322, \text{ Roservative}} \text{ Laboratory ID #} \\ \frac{4 \text{ Roservative}}{322, \text{ Roservative}} \text{ Laboratory ID #} \\ \frac{4 \text{ Roservative}}{322, \text{ Roservative}} \text{ Laboratory ID #} \\ \frac{4 \text{ Roservative}}{322, \text{ Roservative}} \text{ Laboratory ID #} \\ \frac{4 \text{ Roservative}}{322, \text{ Roservative}} \text{ Laboratory ID #} \\ \frac{4 \text{ Roservative}}{322, \text{ Roservative}} \text{ Locates} \text{ Roservative} \\ \frac{4 \text{ Roservative}}{322, \text{ Roservative}} \text{ Roservative} \text{ Roservative} \text{ Roservative} \text{ Roservative} \\ \frac{4 \text{ Roservative}}{322, \text{ Roservative}} \text{ Roservative} Ro$	_	1410	2			ſ	-						-		_		2	2					2	S
Sample \Box Sample \Box Sampl	$\frac{4}{3} \frac{4}{3} \frac{1}{3} \frac{1}{10} \frac{1}$			24				N X			$\widehat{}$			Z				24	0					ハア	S
Sample Sample	antre Drive, Lake Forest, CA 92630 A $ASSoccarES, INC.$ 3372, Roseurater, CA 95661 $3372, Roseurater, CA 95661102^{-1}R_{TV} 100^{-1}R_{TV} 100^{-$		H-S	03			-1				-1			- 1	-			47	:01					54	
Sample Sample	antre Drive, Lake Forest, CA 32630 A $ASSoccares, Tr(C, A 32630)$ 332, Rosewatt, CA 32661 $332, Rosewatt, CA 32661332, Rosewatt, CA 32670332, Rosewatt, Carbon Chain Contain Con$			02				X			\mathbf{X}			X				4	10%	11	-			Y	< S
Sample D Sample D Sample D Time Date Time Sample Type Container Secon SVOCS CS27 8260 + OXY 8260 BTEX, OXY only 8270 PCBS BOBZ 8021 BTEX 8015M (gasoline) 8015M (diesel) 8015M (diesel) 8015M (diesel) 8015M (diesel) 8015M Ext./Carbon Chain C 6020 ICP-MS Metals LIEAS J ARSENT	$\frac{P_{ASSoc_{ITES}}{P_{2}} = \frac{P_{ASS}}{P_{2}} = \frac{P_{2}}{P_{2}} $		いい	- 10											502		Sot	t,	0.	3/14	1			57	2
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		Comments/Preservative	Laboratory ID #		LEAS + ARSENS	6020 ICP-MS Metals	8015M Ext./Carbon Chain	8015M (diesel)	8015M (gasoline)	8220 PCBS 9092 8021 BTEX	8260 BTEX, OXY only	8260 + OXY	8260 SILA(C CA77	Containe		Samp	a Te	Ę	npled	Sar D		ple ID	Sam	
	Intre Drive, Lake Forest, CA 92630 A ASSoctates, Twc. Date: $4/13/18$ Page: 1 of 2 332, Roseutice, CA 9566/ Project Name: LATHENP 40-AC Property 17-1470 Fax: (916) 677-1471 Collector: Revere Client Project # 137-007		:#	EDF		81266	1	ip 1		.# 	Batch	_		1					4	ens.	R	JOE	ger:	Mana	roject
roject Manager: Jue Blous un	a Assocrates Inc. 222 Rocentrice CA 92630 222 Rocentrice CA 92630	N	nt Project #: 137-00			' {	14		2	Ön a		<u> </u>	• .	1	-14	- t t	6	611	Fax:	+ 0 0	-14	た	6) 6	$\frac{\overline{(41)}}{}$	hone
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Intre Drive, Lake Forest, CA 92630		te: 1 of Z	Pac	40	D		214			Date:			ľ	127	22	14	E H		S F	225	× N	B B	P D D	Slient:
Silent: SRUS OF A ASSOCTATES, INC. Date: 4/13/18 Page: 1 of Z vidress: Po Bux 332, Reservance, CA 45661 Project Name: LATHRUP 40-AC Propert Name: LATHRUP 40-AC Project Name: LATHRUP 40-AC Project Name: 137-002 Project Manager: Jus: Secure G160 677-1471 Collector: SRUSCA EDF #: 137-002						.1		•	т								92630	t, CA (Fores	Lake	Drive	rcentre	ommei 5020	9-297	94 94
25712 Commercentre Drive, Lake Forest, CA 92630 949-297-5020 Nient: $Brus ch 4ssoc = 1 condition of the second state of the$	Chain of Custody Record								ord	leco	יע R	stoc	Cu	of	Chair	0			P S	9	ratio	bo		53	

April 17, 2018

FAL Project ID: 11414

Mr. Joe Brusca Brusca Associates 7633 Stonewood Court Granite Bay, CA 95746

Dear Mr. Brusca,

The following results are associated with Frontier Analytical Laboratory project **11414**. This corresponds to your **Lathrop 48-Ac Property** project under project number **137-002**. Four solid samples were received on 4/2/2018 in good condition. These samples were extracted and analyzed by EPA Method 1613 for tetra through octa chlorinated dibenzo dioxins and furans. The Toxic Equivalency (TEQ) for your samples has been calculated using the 2005 World Health Organization's (WHO's) toxic equivalency factors (TEFs). The total TEQ is reported on the upper right hand corner of each sample data sheet. Brusca Associates requested a turnaround time of ten business days for project **11414**.

The following report consists of an Analytical Data section and a Sample Receipt section. The Analytical Data section contains our sample tracking log and the analytical results. The Sample Receipt section contains your chain of custody, our sample login form and a sample photo. The attached results are specifically for the samples referenced in this report only. These results meet all NELAC requirements and shall not be reproduced except in full. Frontier Analytical Laboratory's State of Oregon NELAP certificate number is **4041**. Our State of California ELAP certificate number is **2934**. This report has been emailed to you as a portable document format (PDF) file. A hardcopy will not be sent to you unless specifically requested.

If you have any questions regarding project **11414**, please contact me at (916) 934-0900. Thank you for choosing Frontier Analytical Laboratory for your analytical testing needs.

Sincerely,

onas C. Cralitree

Thomas C. Crabtree Director

Frontier Analytical Laboratory

Sample Tracking Log

FAL Project ID: 11414

Received on: 04/02/2018 Project Due: 04/17/2018 Storage: <u>R-4</u> Sampling FAL Client Client Requested Sampling Hold Time Sample ID Dup Project ID Sample ID Method Matrix Date Time Due Date EPA 1613 D/F 11414-001-SA 0 137-002 VS1 Soil 04/02/2018 11:45 am 04/02/2019 11414-002-SA EPA 1613 D/F 04/02/2018 0 137-002 VS3 Soil 11:52 am 04/02/2019 11414-003-SA 0 137-002 VS5 EPA 1613 D/F 04/02/2018 11:57 am 04/02/2019 Soil 11414-004-SA 0 137-002 VS7 EPA 1613 D/F 04/02/2018 12:03 pm 04/02/2019 Soil

FAL ID: 11414-001-MB Client ID: Method Blank Matrix: Soil Batch No: X4472	Date Ex Date Re Amount	ktracted: 04-13 eceived: NA :: 5.00 g	3-2018	ICal: PCDI GC Colum Units: pg/g	DFAL3-12-2 n: DB5MS	22-17	Acquired: 04 2005 WHO 1 Basis: Dry W	-16-2018 ГEQ: 0.0 /eight	
Compound	Conc	DL (Qual	2005 WHO Tox	MDL	Compound	Conc	DL	Qual
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD 0CDD	ND ND ND ND ND	0.111 0.210 0.390 0.391 0.378 0.379 0.662			0.0315 0.0468 0.0503 0.0490 0.0488 0.0541 0.0888	Total TCDD Total PeCDD Total HxCDD Total HxCDD	ND ND ND	0.111 0.210 0.391 0.379	
2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF 0CDF	ND ND ND ND ND ND ND ND	0.0839 0.107 0.105 0.172 0.176 0.194 0.231 0.178 0.248 0.277			0.0243 0.0285 0.0298 0.0255 0.0253 0.0279 0.0367 0.0321 0.0396 0.0843	Total TCDF Total PeCDF Total HxCDF Total HpCDF	ND ND ND ND	0.0839 0.107 0.231 0.248	
Internal Standards 13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-0CDD 13C-0CDD 13C-0CDD 13C-0CDD 13C-0CDF 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HpCDF 13C-1,2,3,4,6,7,8-HpCDF 13C-1,2,3,4,6,7,8-HpCDF 13C-0CDF	% Rec 96.3 90.2 89.5 94.1 97.8 81.9 100 79.8 82.5 106 109 106 108 92.4 98.1 86.3	QC Limits (25.0 - 164 25.0 - 181 32.0 - 141 28.0 - 130 23.0 - 140 17.0 - 157 24.0 - 169 24.0 - 185 21.0 - 178 26.0 - 123 28.0 - 123 28.0 - 136 29.0 - 147 28.0 - 143 26.0 - 138 17.0 - 157	Qual		A IS B A C C D P DNQ A F A J A M D A NP N P P S S X M * R	otopic Labeled Si gnal to noise ratio nalyte is present i hemical Interferer resence of Dipher nalyte concentrationalyte concentrationalyte concentrationalyte concentrationalyte concentrationalyte Not Detect ot Provided re-filtered through ample acceptance esult taken from the concentrational the concentr	tandard outsi o is >10:1 in Method Bl nce nyl Ethers ion is below i concentratic ed at Detecti n a Whatman e criteria not s dilution or rei	ide QC range ank calibration ra calibration ra ary column calibration ra n on Limit Lev 0.7um GF/F met njection	e but inge inge el F filter
37CI-2,3,7,8-TCDD	92.7	35.0 - 197			L				I

Analyst: 4/17/2018 Date:

0 Reviewed By: Date: 4/17/2018

FAL ID: 11414-001-OPR Client ID: OPR Matrix: Soil Batch No: X4472	Date Extra Date Rece Amount: 5	acted: 04-13-2018 pived: NA 6.00 g		ICal: PCDDFAL3-12-22-1 GC Column: DB5MS Units: ng/ml	7 Acquired: 04-16-2018 2005 WHO TEQ: NA
Compound	Conc	QC Limits	Qual		
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD 0CDD	11.2 51.1 57.6 57.9 57.8 55.3 111	6.70 - 15.8 35.0 - 71.0 35.0 - 82.0 38.0 - 67.0 32.0 - 81.0 35.0 - 70.0 78.0 - 144			
2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,4,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF 0CDF	10.1 47.1 47.5 48.6 49.1 49.9 50.8 51.0 51.1 102	$\begin{array}{l} 7.50 - 15.8 \\ 40.0 - 67.0 \\ 34.0 - 80.0 \\ 36.0 - 67.0 \\ 42.0 - 65.0 \\ 35.0 - 78.0 \\ 39.0 - 65.0 \\ 41.0 - 61.0 \\ 39.0 - 69.0 \\ 63.0 - 170 \end{array}$			
Internal Standards	% Rec	QC Limits	Qual		
13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-0CDD 13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-0CDF	99.5 87.1 95.5 103 101 87.7 103 78.2 81.0 110 112 107 106 92.3 104 87.3	20.0 - 175 21.0 - 227 21.0 - 193 25.0 - 163 26.0 - 166 13.0 - 198 22.0 - 152 21.0 - 192 13.0 - 328 19.0 - 202 21.0 - 159 22.0 - 176 17.0 - 205 21.0 - 158 20.0 - 186 13.0 - 198		A Isoto signa B Analy C Chen D Prese DNQ Analy E Analy F Analy J Analy M Maxin ND Analy NP Not F P Pre-fi S Samp	pic Labeled Standard outside QC range but il to noise ratio is >10:1 /te is present in Method Blank nical Interference ence of Diphenyl Ethers /te concentration is below calibration range /te concentration is above calibration range /te concentration on secondary column /te concentration is below calibration range mum possible concentration /te Not Detected at Detection Limit Level Provided iltered through a Whatman 0.7um GF/F filter ole acceptance criteria not met
Cleanup Surrogate 37Cl-2,3,7,8-TCDD	96.0	31.0 - 191		X Matri * Resu	x interferences It taken from dilution or reinjection

Analyst: 4/17/2018 Date:

0 Reviewed By: Date: 4/17/2018

FAL ID: 11414-001-SA Client ID: VS1 Matrix: Soil Batch No: X4472	Date I Date I Amou % Sol	Extracted: 04- Received: 04-0 Int: 5.03 g Iids: 96.30	13-2018 02-2018	ICal: PCD GC Colum Units: pg/g	DFAL3-12 in: DB5MS 9	2-22-17 S	Acquired: 04 2005 WHO T Basis: Dry W	-17-2018 EQ: 0.00672 /eight	2
Compound	Cond	c DL	Qual	2005 WHO Tox	MDL	. Compound	d Conc	DL	Qual
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD 0CDD	NE NE NE 0.603 2.29	0 0.149 0 0.322 0 0.388 0 0.389 0 0.376 3 -	J J	- - - 0.00603 0.000687	0.0315 0.0468 0.0503 0.0490 0.0488 0.0541 0.0888	Total TCDE Total TCDE Total PeCDE Total HxCDE Total HxCDE Total HpCDE	0 ND 0 ND 0 ND 0 1.16	0.149 0.322 0.389	J
2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF 0CDF	NE NE NE NE NE NE NE	0 0.112 0 0.192 0 0.184 0 0.183 0 0.202 0 0.258 0 0.251 0 0.325 0 0.368		- - - - - - - - - - -	0.0243 0.0285 0.0298 0.0255 0.0253 0.0253 0.0253 0.0253 0.0253 0.0253 0.0253 0.0253 0.0253 0.0253 0.0367 0.0321 0.0396 0.0843	Total TCDF Total PeCDF Total HxCDF Total HxCDF Total HpCDF	F ND F ND F ND F ND	0.112 0.192 0.258 0.325	
Internal Standards 13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HxCDD 13C-2,3,7,8-TCDF 13C-2,3,7,8-PeCDF 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-2,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-2,2,3,4,6,7,8-HxCDF 13C-2,2,3,4,6,7,8-HxCDF 13C-2,2,3,4,6,7,8-HxCDF 13C-2,2,3,4,6,7,8-HxCDF 13C-2,2,3,4,6,7,8-HxCDF 13C-2,2,3,4,6,7,8-HxCDF 13C-2,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-2,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-2,2,3,4,7,8,9-HpCDF 13C-1,2,	% Rec 101 87.7 92.8 96.3 79.9 107 79.4 82.9 101 107 103 101 87.6 92.4 81.2	QC Limits 25.0 - 164 25.0 - 181 32.0 - 141 28.0 - 130 23.0 - 140 17.0 - 157 24.0 - 169 24.0 - 169 24.0 - 169 24.0 - 165 21.0 - 178 26.0 - 123 28.0 - 136 29.0 - 147 28.0 - 143 26.0 - 138 17.0 - 157	Qual		A B C D NQ E F J M ND P S X *	Isotopic Labeled S signal to noise rati Analyte is present Chemical Interfere Presence of Diphe Analyte concentra Analyte concentra Analyte concentra Maximum possible Analyte Not Detect Not Provided Pre-filtered throug Sample acceptance Matrix interference Result taken from	Standard outsi o is >10:1 in Method Bla ence enyl Ethers tion is below of tion is below of tion is below of e concentratio ted at Detection ted at Detection	de QC range ank calibration ra calibration ra ary column calibration ra n on Limit Leve 0.7um GF/F met niection	e but nge nge el filter
37Cl-2,3,7,8-TCDD	98.9	35.0 - 197			L				

Analyst: 4/17/2018 Date:

0 Reviewed By: Date: 4/17/2018

FAL ID: 11414-002-SA Client ID: VS3 Matrix: Soil Batch No: X4472	Date E Date F Amou % Soli	Extracted: 04- Received: 04-(nt: 5.07 g ids: 96.41	13-2018 02-2018	ICal: PCDI GC Colum Units: pg/g	DFAL3-12 in: DB5MS J	-22-17	Acquired: 04 2005 WHO Basis: Dry V	4-17-2018 TEQ: 0.0052 Veight	9
Compound	Conc	; DL	Qual	2005 WHO Tox	MDL	Compound	d Conc	DL	Qual
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD 0CDD	ND ND ND 0.460 2.30	0.0914 0.201 0.343 0.371 0.347	J	- - - 0.00460 0.000690	0.0315 0.0468 0.0503 0.0490 0.0488 0.0541 0.0888	Total TCDE Total PeCDE Total HxCDE Total HxCDE	0 ND 0 ND 0 ND 0 1.12	0.0914 0.201 0.371	J
2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF 0CDF	ND ND ND ND ND ND ND ND	0 0.104 0.150 0.144 0.103 0.101 0.115 0.142 0.159 0.201 0.355			0.0243 0.0285 0.0298 0.0255 0.0253 0.0279 0.0367 0.0321 0.0396 0.0843	Total TCDF Total PeCDF Total HxCDF Total HxCDF	ND ND ND ND	0.104 0.150 0.142 0.201	
Internal Standards 13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,4,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-2,3,7,8-PeCDF 13C-2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HpCDF 13C-1,2,3,4,6,7,8-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,6,7,8-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,6,7,8-HpCDF 13C-1,2,3,4,7,8-HpCDF 13C-1,2,3,4,7,8-HpCDF 13C-1,2,3,4,7,8-HpCDF 13C-1,2,3,4,7,8-HpCDF 13C-1,2,3,4,7,8-HpCDF 13C-1,2,3,4,7,8-HpCDF 13C-1,2,3,4,7,8-HpCDF 13C-1,2,3,4,7,8-HpCDF 13C-1,2,3,4,7,8-HpCDF 13C-1,2,3,4,7,8-HpCDF 13C-1,2,3,4,7,8-HpCDF 13C-1,2,3,4,7,8-HpCDF 13C-1,2,3,4,7,8-HpCDF 13C-1,2,3,4,7,8-HpCDF 13C-1,2,3,4,7,8-HpCDF 13C-1,2,3,4,7,8-HpCDF 13C-1,2,3,4,7,8-HpCDF 13C-1,2,3,4,7,8-HpCDF 13C-1,2,3,4,7,8-HpCDF 13C-1,	% Rec 95.7 83.1 84.4 89.6 86.9 64.6 102 74.9 78.4 99.7 103 95.4 94.4 78.3 83.0 68.2	QC Limits 25.0 - 164 25.0 - 181 32.0 - 141 28.0 - 130 23.0 - 140 17.0 - 157 24.0 - 169 24.0 - 169 24.0 - 185 21.0 - 178 26.0 - 152 26.0 - 123 28.0 - 136 29.0 - 147 28.0 - 138 17.0 - 157	Qual		A B C DNQ E F J M ND NP P S X X	Isotopic Labeled S signal to noise rati Analyte is present Chemical Interfere Presence of Diphe Analyte concentra Analyte concentra Analyte concentra Maximum possible Analyte Not Detec Not Provided Pre-filtered throug Sample acceptance Matrix interference Result taken from	Standard outs o is >10:1 in Method B ence enyl Ethers tion is below tion is below to on second tion is below e concentration ted at Detect h a Whatmar ce criteria not es dilution or re	ide QC range lank calibration ra calibration ra dary column calibration ra on tion Limit Lev n 0.7um GF/F t met injection	e but inge ange inge el : filter
37CI-2,3,7,8-TCDD	97.1	35.0 - 197							

Analyst: 4/17/2018 Date:

0 Reviewed By: Date: 4/17/2018

FAL ID: 11414-003-SA Client ID: VS5 Matrix: Soil Batch No: X4472	Date Date Amou % So	Extracted: 04- Received: 04- Int: 5.00 g lids: 95.28	13-2018 02-2018	ICal: PCD GC Colum Units: pg/g	DFAL3-12-2 nn: DB5MS g	22-17	Acquired: 04 2005 WHO T Basis: Dry W	-17-2018 EQ: 0.0085 /eight	0
Compound	Cond	c DL	Qual	2005 WHO Tox	MDL	Compound	Conc	DL	Qua
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD 0CDD	NE NE NE 0.703 4.89	0 0.0985 0 0.236 0 0.372 0 0.359 0 0.353 3 - 9 -	J J	- - - 0.00703 0.00147	0.0315 0.0468 0.0503 0.0490 0.0488 0.0541 0.0888	Total TCDD Total PeCDD Total HxCDD Total HxCDD Total HpCDD	ND ND ND 1.46	0.0985 0.236 0.372	J
2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF 0CDF	NE NE NE NE NE NE	0 0.0911 0 0.185 0 0.210 0 0.212 0 0.230 0 0.282 0 0.282 0 0.282 0 0.328		- - - - - - - - - -	0.0243 0.0285 0.0298 0.0255 0.0253 0.0279 0.0367 0.0321 0.0396 0.0843	Total TCDF Total PeCDF Total HxCDF Total HpCDF	ND ND ND ND	0.0911 0.185 0.282 0.247	
Internal Standards 13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-2,3,7,8-TCDF 13C-2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,	% Rec 105 93.9 87.6 95.8 105 87.5 104 82.5 85.2 110 111 108 106 92.5 98.1 91.8	QC Limits 25.0 - 164 25.0 - 181 32.0 - 141 28.0 - 130 23.0 - 140 17.0 - 157 24.0 - 169 24.0 - 185 21.0 - 178 26.0 - 152 26.0 - 123 28.0 - 136 29.0 - 147 28.0 - 138 17.0 - 157	Qual		A Is B Ai C C D Pi DNQ Ai F Ai J Ai ND Ai NP N S Si X M * R	otopic Labeled St gnal to noise ratio nalyte is present i hemical Interferer resence of Dipher nalyte concentrationalyte concentrationalyte concentrationalyte concentrationalyte concentrationalyte Not Detect of Provided re-filtered through ample acceptance latrix interferences esult taken from concentrational	andard outsi b is >10:1 n Method Bla nce nyl Ethers on is below o on is above on is above on on second on is below o concentratio ed at Detecti a Whatman e criteria not s	de QC rang ank calibration ra calibration ra ary column calibration ra n on Limit Lev 0.7um GF/f met	e but ange ange rel filter
37Cl-2,3,7,8-TCDD	97.6	35.0 - 197							

Analyst: 4/17/2018 Date:

Ũ Reviewed By: Date: 4/17/2018

FAL ID: 11414-004-SA Client ID: VS7 Matrix: Soil Batch No: X4472	Date I Date I Amou % Sol	Extracted: 04- Received: 04-0 Int: 5.01 g Iids: 96.52	13-2018)2-2018	ICal: PCD GC Colum Units: pg/g	DFAL3-12-22 in: DB5MS 9	2-17 A 2 E	Acquired: 04- 005 WHO T Basis: Dry W	17-2018 EQ: 0.665 eight	
Compound	Cond	c DL	Qual	2005 WHO Tox	MDL	Compound	Conc	DL	Qual
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD 0CDD	NE NE 0.714 0.526 10.4 67.9	0 0.138 0 0.331 0 0.290 4 - 5 - 4 - 9 -	IJ	0.0714 0.0526 0.104 0.0204	0.0315 0.0468 0.0503 0.0490 0.0488 0.0541 0.0888	Total TCDD Total PeCDD Total HxCDD Total HpCDD	ND ND 5.34 19.1	0.138 0.331 - -	
2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF 0CDF	0.523 NE 0.637 0.571 0.407 0.366 NE 3.64 NE 7.64	0.204 0.204 0.204 0.218 0.218 0.377	Մ Մ Մ Մ	0.0523 0.191 0.0571 0.0407 0.0366 0.0364 0.00229	0.0243 0.0285 0.0298 0.0255 0.0253 0.0279 0.0367 0.0321 0.0396 0.0843	Total TCDF Total PeCDF Total HxCDF Total HpCDF	3.35 7.46 6.54 8.50		
Internal Standards 13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,4,6,7,8-HxCDF 13C-2,3,7,8-PeCDF 13C-2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-0,2,5,4,6,7,8-HxCDF 13C-0,2,5,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-2,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-0,2,4,7,8,9-HyCDF 13C	% Rec 104 89.6 85.1 94.7 101 86.2 104 80.7 82.7 103 107 105 86.9 97.9 85.4	QC Limits 25.0 - 164 25.0 - 181 32.0 - 141 28.0 - 130 23.0 - 140 17.0 - 157 24.0 - 169 24.0 - 185 21.0 - 185 21.0 - 178 26.0 - 152 26.0 - 123 28.0 - 136 29.0 - 147 28.0 - 138 17.0 - 157	Qual		A lsc sig B An C Ch DNQ An E An F An J An M Ma ND An NP No P Pre S Sa X Ma X Re	topic Labeled Sta nal to noise ratio alyte is present in emical Interferen- esence of Diphen alyte concentratio alyte concentratio alyte concentratio alyte concentratio alyte concentratio alyte concentratio alyte Not Detected the Provided e-filtered through mple acceptance atrix interferences isult taken from di	andard outsid is >10:1 Method Blacce yl Ethers on is below of on is above of on seconda on is below of concentration d at Detection a Whatman criteria not n	de QC range ank calibration ra calibration ra ary column alibration ra n on Limit Lev 0.7um GF/F met njection	e but ange ange el F filter

Analyst: 4/17/2018 Date:

0 Reviewed By: Date: 4/17/2018

	Frontier Analy 5172 Hillsdale El Dorado Hill Tel: 916-934-0 Fax: 916-934-0	tical Laborato Circle ls, CA 95762 0900 0999	nry	<i>FAL US.</i> Laborato Tempera	E ON ry Pr ture:	/LY oject	No.: 2	<u>}</u>	<u>4</u>	١Ľ	L			Cł ^{www} Plea	nai from	n of Custody tieranalytical.com rint in Pen Page of
CLIENT INFORMATI Company Name: Brusca Contact Name: Joe Brusc Address: 7633 Stonewood Phone: 916-677-1470 Email: jbrusca@bruscaass REPORT INFORMAT	ON Associates, Inc. a d Court, Granite Ba Fax: sociates.com	IN Con Con Add Pho Ema	Company Name: Same Contact Name:						ent inf	To) I I<	FAL Quote #: 3310 P.O. #: Project Name: LATHROP 43-Ac PROFECTY TAT (business days): 15 10 5* 3* (Vone) * FAL must agree with price and RUSH TAT in writing. d) ADDITIONAL INSTRUCTIONS					
Report Level: I/II EDD: FAL Othe	III IV Basic Georem Georem Cur	otracker stom: Contact	FAL]Hardcopy]CD (.pdf : 【Email (.po	incluc lf inc	ling E luding	EDDs g EDI	if req Os if 1	ueste reque	ed) sted)						
System #: Sampler:	Source # Employe	t: Br: Date	Tima	Matrix	of containers	A 1613**	A 8290**	M 02.0	A 8280**	pendix IX	A T0-9/9A	A 23/23A	A 1668	L 15	her	**CONGENERS **TEQ 2,3,7,8-TCDD only 2,3,7,8-TCDD/F only PCDD/F (CL-Cl-) 2005 WHO Other
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			ted [1:45 [1:52 [1:57 [2:03	SOTL	*	XXXX EP.	EP	DL	EP,	Ap	EP	EP,	EP	FA	Oth	Remarks
5 6 7 8 9														-		
10 11 12 13 14																
IS Helinquished by: (Signa ////////////////////////////////////	Sampl ature and Printed	es will be dispose Name)	ed of 90 day	s after sample Date	receip	t unless Tim 5 > 2	s other	arrang Rece	ements ived	s have t	Signa	ture a	d agree nd Pr	d upor	n in wr Nam	iting. e) Date Time 412(2018 [525

Client understands that all terms described in the proposals, quotations, and/or the general terms provided in the current FAL price schedules will be followed. FAL reserves the rights to terminate its service or withhold delivery of reports, if in FAL's sole discretion the terms of the project have been broken. Pink Copy - Originator

Frontier Analytical Laboratory

Sample Login Form

FAL Project ID: 11414

Client:	Brusca Associates, Inc.
Client Project ID:	137-002
Date Received:	04/02/2018
Time Received:	03:25 pm
Received By:	KZ
Logged In By:	KZ
# of Samples Received:	4
Duplicates:	0
Storage Location:	R-4

Method of Delivery:	Courier
Tracking Number:	NA
Shipping Container Received Intact	Yes
Custody seals(s) present?	No
Custody seals(s) intact?	No
Sample Arrival Temperature (C)	0
Cooling Method	Blue Ice/Ice
Chain Of Custody Present?	Yes
Return Shipping Container To Client	Yes
Test aqueous sample for residual Chlorine	No
Sodium Thiosulfate Added	No
Adequate Sample Volume	Yes
Appropriate Sample Container	Yes
pH Range of Aqueous Sample	N/A
Anomalies or additional comments:	

April 30, 2018

FAL Project ID: 11441

Mr. Joe Brusca Brusca Associates 7633 Stonewood Court Granite Bay, CA 95746

Dear Mr. Brusca,

The following results are associated with Frontier Analytical Laboratory project **11441**. This corresponds to your **Lathrop 48-Ac Property** project under project number **137-002**. Eight solid samples were received on 4/11/2018 in good condition. These samples were extracted and analyzed by EPA Method 1613 for tetra through octa chlorinated dibenzo dioxins and furans. The Toxic Equivalency (TEQ) for your samples has been calculated using the 2005 World Health Organization's (WHO's) toxic equivalency factors (TEFs). The total TEQ is reported on the upper right hand corner of each sample data sheet. Brusca Associates requested a turnaround time of ten business days for project **11441**.

The following report consists of an Analytical Data section and a Sample Receipt section. The Analytical Data section contains our sample tracking log and the analytical results. The Sample Receipt section contains your chain of custody, our sample login form and the sample photos. The attached results are specifically for the samples referenced in this report only. These results meet all NELAC requirements and shall not be reproduced except in full. Frontier Analytical Laboratory's State of Oregon NELAP certificate number is **4041**. Our State of California ELAP certificate number is **2934**. This report has been emailed to you as a portable document format (PDF) file. A hardcopy will not be sent to you unless specifically requested.

If you have any questions regarding project **11441**, please contact me at (916) 934-0900. Thank you for choosing Frontier Analytical Laboratory for your analytical testing needs.

Sincerely,

Bradley B. Silverbush Director of Operations

Frontier Analytical Laboratory

Sample Tracking Log

FAL Project ID: 11441

Received on: 04/11/2018

Project Due: 04/26/2018 Storage

Storage: <u>R-4</u>

FAL Sample ID	Dup	Client Project ID	Client Sample ID	Requested Method	Matrix	Sampling Date	Sampling Time	Hold Time Due Date
11441-001-SA	0	137-002	VS18	EPA 1613 D/F	Soil	04/11/2018	11:22 am	04/11/2019
11441-002-SA	0	137-002	VS20	EPA 1613 D/F	Soil	04/11/2018	11:29 am	04/11/2019
11441-003-SA	0	137-002	VS22	EPA 1613 D/F	Soil	04/11/2018	11:34 am	04/11/2019
11441-004-SA	0	137-002	VS24	EPA 1613 D/F	Soil	04/11/2018	11:37 am	04/11/2019
11441-005-SA	0	137-002	VS35	EPA 1613 D/F	Soil	04/11/2018	12:43 pm	04/11/2019
11441-006-SA	0	137-002	VS37	EPA 1613 D/F	Soil	04/11/2018	12:48 pm	04/11/2019
11441-007-SA	0	137-002	VS39	EPA 1613 D/F	Soil	04/11/2018	12:52 pm	04/11/2019
11441-008-SA	0	137-002	VS41	EPA 1613 D/F	Soil	04/11/2018	12:57 pm	04/11/2019

FAL ID: 11441-001-MB Client ID: Method Blank Matrix: Soil Batch No: X4491	Date E Date R Amoun	extracted: 04-2 Received: NA ht: 5.00 g	26-2018	ICal: PCDI GC Colum Units: pg/g	DFAL4-12-2 in: DB5MS 9	20-17	Acquired: 04 2005 WHO 1 Basis: Dry W	-27-2018 ГEQ: 0.0 /eight	
Compound	Conc	DL	Qual	2005 WHO Tox	MDL	Compound	I Conc	DL	Qual
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD 0CDD	ND ND ND ND ND ND	0.226 0.321 0.379 0.367 0.342 0.421 1.22		- - - - -	0.0273 0.0570 0.0793 0.0940 0.0823 0.0842 0.172	Total TCDD Total PeCDD Total HxCDD Total HxCDD	ND ND ND ND	0.226 0.321 0.379 0.421	
2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF 1,2,3,4,7,8,9-HpCDF 0CDF	ND ND ND ND ND ND ND ND	0.187 0.222 0.239 0.186 0.200 0.228 0.229 0.226 0.545		- - - - - - - - - -	0.0269 0.0449 0.0468 0.0437 0.0417 0.0574 0.0657 0.0747 0.0883 0.170	Total TCDF Total PeCDF Total HxCDF Total HpCDF	ND ND ND ND	0.187 0.239 0.228 0.256	
Internal Standards 13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HxCDD 13C-2,3,7,8-PeCDF 13C-2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-PaCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,7,8,9-HxCDF 13C-1,2,3,4,7,8,9-HxCDF 13C-1,2,3,4,7,8,9-HxCDF 13C-1,2,3,4,7,8,9-HxCDF 13C-1,2,3,4,7,8,9-HxCDF 13C-0,2,3,4,7,8,9-HxCDF 13C-0,2,3,4,7,8,9-HxCDF 13C-1,2,3,4,7,8,9-HxCDF	% Rec 66.1 68.9 67.5 64.5 56.3 67.6 66.6 66.6 66.2 64.8 63.2 62.4 62.4 62.4 62.4 62.4 59.4	QC Limits 25.0 - 164 25.0 - 181 32.0 - 141 28.0 - 130 23.0 - 140 17.0 - 157 24.0 - 169 24.0 - 169 24.0 - 185 21.0 - 178 26.0 - 152 26.0 - 123 28.0 - 136 29.0 - 147 28.0 - 138 17.0 - 157	Qual		A S B A C C D P DNQ A F A J A ND A ND A NP N P P S S X m * R	sotopic Labeled S ignal to noise ratio analyte is present Chemical Interfere Presence of Diphe analyte concentrat analyte concentrat analyte concentrat daximum possible analyte Not Detect lot Provided Pre-filtered through Sample acceptanc Matrix interference Result taken from a	tandard outs o is >10:1 in Method Bl- nce nyl Ethers ion is below ion is above on on second ion is below concentratic ted at Detecti a Whatman e criteria not s dilution or rei	ide QC range ank calibration ra calibration ra ary column calibration ra n on Limit Leve 0.7um GF/F met njection	e but nge nge el filter
37CI-2,3,7,8-TCDD	63.0	35.0 - 197							

Analyst: Date: <u>4/30/2018</u>

 $\overline{\bigtriangledown}$ Reviewed By: Date: 4/30/2018

FAL ID: 11441-001-OPR Client ID: OPR Matrix: Soil Batch No: X4491	Date Extracted: 04-26-2018 Date Received: NA Amount: 5.00 g	ICal: PCDDFAL4-12 GC Column: DB5MS Units: ng/ml	-20-17 Acquired: 04-27-2018 2005 WHO TEQ: NA
Compound	Conc QC Limits	Qual	
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD 0CDD	$ \begin{array}{rll} 10.5 & 6.70 - 15.8 \\ 51.4 & 35.0 - 71.0 \\ 47.6 & 35.0 - 82.0 \\ 49.1 & 38.0 - 67.0 \\ 47.5 & 32.0 - 81.0 \\ 49.4 & 35.0 - 70.0 \\ 104 & 78.0 - 144 \\ \end{array} $		
2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF 0CDF	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		
Internal Standards	% Rec QC Limits	Qual	
13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HxCDD 13C-0CDD 13C-2,3,7,8-TCDF 13C-2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,7,8,9-HxCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-0CDF	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	A B C D D NQ F J M ND NP P S S	Isotopic Labeled Standard outside QC range but signal to noise ratio is >10:1 Analyte is present in Method Blank Chemical Interference Presence of Diphenyl Ethers Analyte concentration is below calibration range Analyte concentration is above calibration range Analyte concentration on secondary column Analyte concentration on secondary column Analyte concentration is below calibration range Maximum possible concentration Analyte Not Detected at Detection Limit Level Not Provided Pre-filtered through a Whatman 0.7um GF/F filter Sample acceptance criteria not met Matrix interferences
Cleanup Surrogate	78 7 31 0 - 191	X *	viatrix interferences Result taken from dilution or reinjection
0101-2,0,1,0-1000	10.1 01.0 - 101		

Analyst: Date: <u>4/30/2018</u>

 $\overline{\bigtriangledown}$ Reviewed By: Date: 4/30/2018

FAL ID: 11441-001-SA Client ID: VS18 Matrix: Soil Batch No: X4491	Date Date Amo % So	Extracted: 04- Received: 04- unt: 5.01 g blids: 92.06	26-2018 11-2018	ICal: PCD GC Colun Units: pg/	DFAL4-12 nn: DB5MS g	2-20-17 S	Acquired: 04- 2005 WHO T Basis: Dry W	-28-2018 'EQ: 0.0453 /eight		
Compound	Con	nc DL	Qual	2005 WHO Tox	MDL	. Compound	d Conc	DL	Qual	
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD 0CDD	N N 0.35 0.86 5.1	D 0.166 D 0.185 D 0.201 D 0.215 1 - 18 - 7 -	L J J	0.0351 0.00868 0.00155	0.0273 0.0570 0.0793 0.0940 0.0823 0.0842 0.172	Total TCDI Total PeCDI Total HxCDI Total HxCDI Total HpCDI	D ND D ND D 0.817 D 1.99	0.166 0.185 -	L L	
2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF 1,2,3,4,7,8,9-HpCDF	N N N N N N N N N	D 0.129 D 0.143 D 0.153 D 0.182 D 0.182 D 0.189 D 0.197 D 0.207 D 0.131 D 0.177 D 0.373		- - - - - - - - -	0.0269 0.0449 0.0468 0.0437 0.0417 0.0574 0.0574 0.0657 0.0747 0.0883 0.170	Total TCDI Total PeCDI Total HxCDI Total HxCDI Total HpCDI	= 0.314 = ND = ND = ND	0.156 0.207 0.177	J	
Internal Standards 13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-2,3,7,8-TCDF 13C-2,3,7,8-PeCDF 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF	% Rec 91.7 95.4 99.6 95.1 92.8 82.1 94.8 91.5 91.5 91.5 94.0 89.6 88.6 90.2 92.2 90.9 82.6	QC Limits 25.0 - 164 25.0 - 181 32.0 - 141 28.0 - 130 23.0 - 140 17.0 - 157 24.0 - 169 24.0 - 185 21.0 - 178 26.0 - 123 28.0 - 123 28.0 - 136 29.0 - 147 28.0 - 138 17.0 - 157	Qual		A B C D NQ E F J M D NP P S X *	Isotopic Labeled S signal to noise rati Analyte is present Chemical Interfere Presence of Diphe Analyte concentra Analyte concentra Analyte concentra Maximum possible Analyte Not Detect Not Provided Pre-filtered throug Sample acceptance Matrix interference Result taken from	Standard outsi io is >10:1 in Method Bla ence enyl Ethers tion is below of tion is below of e concentratio ted at Detection h a Whatman ce criteria not es dilution or reir	de QC rang ank calibration ra calibration ra ary column calibration ra n on Limit Lev 0.7um GF/f met	e but ange ange rel filter	
37CI-2,3,7,8-TCDD	83.4	35.0 - 197			L					

Analyst: Date: <u>4/30/2018</u>

 $\overline{\bigtriangledown}$ Reviewed By: Date: 4/30/2018

Compound Conc DL Qual WHO Tox MDL Compound Conc DL Qual 2.3,7,8-TCDD ND 0.216 - 0.0273 - 0.0570 1.2,3,4,7,8-HxCDD ND 0.226 - 0.0793 - 0.0684 0.0793 1.2,3,4,7,8-HxCDD ND 0.226 - 0.0823 Total PCCDD ND 0.259 1.2,3,4,7,8-HxCDD ND 0.216 - 0.0823 Total PCCDD ND 0.259 1.2,3,4,6,7,8-HxCDD ND 0.170 - 0.0657 0.172 Total HxCDD 8.35 - 2.3,7,8-FxCDF ND 0.170 - 0.0259 - 0.0468 - - 0.0449 - 0.0449 - 0.0449 - 0.0449 - 0.0471 - - 0.0571 - - 0.0574 - 0.0574 - 0.0468 - - 0.0574 - 0.0468 - -	FAL ID: 11441-002-SA Client ID: VS20 Matrix: Soil Batch No: X4491	Date Date Amou % Sc	Extracted: 04- Received: 04- unt: 5.01 g blids: 90.84	26-2018 11-2018	ICal: PCE GC Colun Units: pg/	DFAL4-12 nn: DB5M g	2-20-17 S	Acquired: 04 2005 WHO 1 Basis: Dry W	-28-2018 TEQ: 0.252 /eight	
2.3.7.8-TCDD ND 0.216 - 0.0273 1.2.3.7.8-PeCDD ND 0.226 - 0.0570 1.2.3.4.7.8+KCDD ND 0.226 - 0.0940 Total TCDD 0.855 - 1.2.3.4.7.8+KCDD ND 0.216 - 0.0842 Total TCDD 0.855 - 1.2.3.4.6.7.8+HCDD ND 0.216 - 0.0842 Total TCDD 0.855 - 2.3.7.8-TCDF ND 0.170 - 0.0269 - <th>Compound</th> <th>Con</th> <th>nc DL</th> <th>Qual</th> <th>2005 WHO Tox</th> <th>MDI</th> <th>_ Compoun</th> <th>d Conc</th> <th>DL</th> <th>Qua</th>	Compound	Con	nc DL	Qual	2005 WHO Tox	MDI	_ Compoun	d Conc	DL	Qua
2,3,7,8-TCDF ND 0.170 - 0.0269 1,2,3,7,8-PeCDF ND 0.184 - 0.0449 2,3,4,7,8-PeCDF ND 0.184 - 0.0468 1,2,3,4,7,8-PeCDF 0.595 - J 0.0339 0.0437 1,2,3,4,6,7,8-HxCDF 0.595 - J 0.0574 1,2,3,4,6,7,8-HxCDF ND 0.156 - 0.0657 Total TCDF 1.39 - 1,2,3,4,6,7,8-HxCDF ND 0.156 - 0.0853 Total HxCDF 10.3 - D 1,2,3,4,7,8-HxCDF ND 0.247 - 0.0883 Total HxCDF 10.3 - D 0CDF 4.00 - J 0.00120 0.170 Total HxCDF 10.3 - 13C-1,2,3,7,8-PCDD 81.6 25.0 - 181 B Alayte is present in Method Blank C C Chemical Interference D Presence of Diphenyl Ethers 13C-1,2,3,7,8-PCDF 82.0 24.0 - 185 F Analyte concentration is below calibration range 13C-1,2,3,7,8-PCDF 82.2 24.0 - 185	2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD 0CDD	NI NI 0.84 NI 4.1 19.	D 0.216 D 0.269 D 0.226 4 - D 0.216 6 - 3 -	J	0.0844 0.0416 0.00579	0.0273 0.0570 0.0793 0.0940 0.0823 0.0842 0.172	3 3 3 3 Total TCDI 3 Total PeCDI 2 Total HxCDI 2 Total HpCDI	D 0.855 D ND D 3.76 D 8.35	0.269	
Internal Standards % Rec QC Limits Qual 13C-2,3,7,8-TCDD 81.6 25.0 - 164 signal to noise ratio is >10:1 13C-1,2,3,7,8-PeCDD 86.0 25.0 - 181 B Analyte is present in Method Blank 13C-1,2,3,4,7,8-HxCDD 87.4 32.0 - 141 B Analyte is present in Method Blank 13C-1,2,3,6,7,8-HxCDD 80.3 23.0 - 140 D Presence of Diphenyl Ethers 13C-2,3,7,8-PeCDF 84.3 24.0 - 169 D Presence of Diphenyl Ethers 13C-1,2,3,7,8-PeCDF 82.0 24.0 - 185 E Analyte concentration is below calibration range 13C-1,2,3,7,8-PeCDF 82.0 24.0 - 152 DNQ Analyte concentration is below calibration range 13C-1,2,3,7,8-PeCDF 83.2 21.0 - 178 J Analyte concentration is below calibration range 13C-1,2,3,4,7,8-HxCDF 81.1 26.0 - 152 M Maximum possible concentration 13C-2,3,4,6,7,8-HxCDF 78.6 28.0 - 136 J Analyte Not Detected at Detection Limit Level 13C-1,2,3,7,8,9-HxCDF 78.9 29.0 - 147 ND Analyte Not Detec	2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF 0,00000000000000000000000000000000000	NI NI 0.33 0.59 NI 2.5 NI 4.0	D 0.170 D 0.184 D 0.196 95 - D 0.148 D 0.156 92 - D 0.247 0 -	J J	0.0339 0.0595 0.0252 0.0252	0.0265 0.0445 0.0455 0.0437 0.0417 0.0572 0.0657 0.0747 0.0883 0.170	9 3 7 4 7 Total TCD 7 Total PeCD 3 Total HxCD 9 Total HpCD	F 1.39 F 3.58 F 10.3 F 9.04	- - -	D,J,N D,N
Solution 17.0 - 157 Solution <	Internal Standards 13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-2,3,7,8-PeCDF 13C-2,3,4,7,8-PeCDF 13C-2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF	% Rec 81.6 86.0 87.4 87.5 80.3 68.9 84.3 82.0 83.2 84.5 81.1 78.6 78.9 79.2 79.6 69.0	QC Limits 25.0 - 164 25.0 - 181 32.0 - 141 28.0 - 130 23.0 - 140 17.0 - 157 24.0 - 169 24.0 - 185 21.0 - 178 26.0 - 152 26.0 - 123 28.0 - 136 29.0 - 147 28.0 - 143 26.0 - 138 17.0 - 157	Qual		A B C D D NQ E F J M D NP P S X *	Isotopic Labeled S signal to noise rat Analyte is present Chemical Interfere Presence of Diphe Analyte concentra Analyte concentra Analyte concentra Maximum possible Analyte Not Detect Not Provided Pre-filtered throug Sample acceptan Matrix interference Result taken from	Standard outsi io is >10:1 t in Method Bla ence enyl Ethers ation is below of ation is below of e concentratio cted at betecti gh a Whatman ce criteria not es o dilution or rei	de QC range ank calibration ra calibration ra ary column calibration ra n on Limit Leve 0.7um GF/F met njection	e but nge nge el filter

Analyst: Date: <u>4/30/2018</u>

Reviewed By:____ Date: 4/30/2018

FAL ID: 11441-003-SA Client ID: VS22 Matrix: Soil Batch No: X4491	Date I Date I Amou % Sol	Extracted: 04- Received: 04- Int: 5.01 g Iids: 92.99	26-2018 11-2018	ICal: PCE GC Colun Units: pg/	DFAL4-12-20 nn: DB5MS ⁄g	-17 A 2 E	Acquired: 04- 2005 WHO TI Basis: Dry We	28-2018 EQ: 0.0430 eight	8 1430		
Compound	Cond	c DL	Qual	2005 WHO Tox	MDL	Compound	Conc	DL	Qual		
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD OCDD	NE NE NE 2.64 53.2	0 0.184 0 0.237 0 0.283 0 0.287 0 0.261 4 -	IJ	- - - 0.0264 0.0160	0.0273 0.0570 0.0793 0.0940 0.0823 0.0842 0.172	Total TCDD Total PeCDD Total HxCDD Total HpCDD	ND ND ND 7.57	0.184 0.237 0.287			
2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF 0CDF	NE NE NE NE NE NE 2.20	0 0.132 0 0.191 0 0.191 0 0.204 0 0.225 0 0.225 0 0.226 0 0.225 0 0.226 0 0.225 0 0.226 0 0.224	J	- - - - - - - - - - - - - - - - - - -	0.0269 0.0449 0.0468 0.0437 0.0417 0.0574 0.0657 0.0747 0.0883 0.170	Total TCDF Total PeCDF Total HxCDF Total HpCDF	ND ND ND 0.950	0.132 0.191 0.259	J		
Internal Standards 13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-2,3,7,8-TCDF 13C-2,3,7,8-PeCDF 13C-2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HpCDF 13C-1,2,3,4,7,8,9-HxCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-0CDF	% Rec 88.6 89.5 97.5 93.2 92.0 82.0 92.4 87.5 90.1 90.7 89.3 87.8 86.7 88.8 93.2 83.9	QC Limits 25.0 - 164 25.0 - 181 32.0 - 141 28.0 - 130 23.0 - 140 17.0 - 157 24.0 - 169 24.0 - 185 21.0 - 178 26.0 - 152 26.0 - 123 28.0 - 136 29.0 - 147 28.0 - 138 17.0 - 157	Qual		A Iso sig B Ana C Ch D Pre DNQ Ana F Ana J Ana J Ana M Ma ND Ana NP No P Pre S Sau X Ma * Re	topic Labeled Sta nal to noise ratio alyte is present ir emical Interferen alyte concentratio alyte concentratio alyte concentratio alyte concentratio alyte concentratio interferent concentration alyte Not Detected the Provided be-filtered through mple acceptances trix interferences sult taken from di	andard outsic is >10:1 n Method Bla ce yl Ethers on is below c on is below c on on seconda on is below c concentratior d at Detectic a Whatman criteria not r	de QC range nk alibration ra alibration ra alibration ra n bn Limit Lev 0.7um GF/F net jection	e but ange ange vel		
37CI-2,3,7,8-TCDD	84.2	35.0 - 197			L						

Analyst: Date: <u>4/30/2018</u>

Reviewed By:____ Date: 4/30/2018

FAL ID: 11441-004-SA Client ID: VS24 Matrix: Soil Batch No: X4491	Date Date Amo % So	Extracted: 04- Received: 04- unt: 5.02 g blids: 93.09	26-2018 11-2018	ICal: PCE GC Colur Units: pg/	DDFAL4-12- mn: DB5MS /g	20-17	Acquired: 04 2005 WHO ⊺ Basis: Dry W	-28-2018 ГEQ: 1.05 /eight	
Compound	Con	nc DL	Qual	2005 WHO Tox	MDL	Compound	Conc	DL	Qual
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD 0CDD	N N 0.74 0.51 12. 11	D 0.165 D 0.247 D 0.243 I3 - 0 - 8 - 2 -	J J	0.0743 0.0510 0.128 0.0336	0.0273 0.0570 0.0793 0.0940 0.0823 0.0842 0.172	Total TCDD Total PeCDD Total HxCDD Total HxCDD	ND ND 4.78 23.3	0.165 0.247 -	J
2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF 0,2DF	1.5 N 0.99 1.0 0.52 0.63 0.48 4.1 0.42 6.5	3 - D 0.228 15 - 12 - 12 - 18 - 13 - 16 - 12 - 16 - 13 - 13 -	J J J J J J J	0.153 0.299 0.102 0.0528 0.0633 0.0486 0.0412 0.00426 0.00196	0.0269 0.0449 0.0468 0.0437 0.0417 0.0574 0.0657 0.0747 0.0883 0.170	Total TCDF Total PeCDF Total HxCDF Total HpCDF	7.52 6.47 7.76 9.52	- - -	
Internal Standards 13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDF 13C-2,3,7,8-PeCDF 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF	% Rec 89.2 92.9 95.1 92.5 89.4 76.9 93.7 91.6 92.6 90.0 88.9 87.5 86.4 87.1 87.1 78.0	QC Limits 25.0 - 164 25.0 - 181 32.0 - 141 28.0 - 130 23.0 - 140 17.0 - 157 24.0 - 169 24.0 - 185 21.0 - 178 26.0 - 152 26.0 - 123 28.0 - 136 29.0 - 147 28.0 - 143 26.0 - 138 17.0 - 157	Qual		A IS B A C C D F DNQ A F A J A ND A ND A ND A NP N S S X M X F	sotopic Labeled S signal to noise ration Analyte is present Chemical Interferent Presence of Diphe Analyte concentrat Analyte concentrat Analyte concentrat Maximum possible Analyte Not Detect Not Provided Pre-filtered through Sample acceptance Matrix interference Result taken from the state of the state of the state Analyte Not Detect	tandard outs b is >10:1 in Method Bl nce nyl Ethers ion is below ion is above on on second ion is below concentratic ed at Detect n a Whatman e criteria not s dilution or rei	ide QC range ank calibration ra calibration ra lary column calibration ra on ion Limit Leve no.7um GF/F met njection	e but inge ange el filter
37CI-2,3,7,8-TCDD	81.7	35.0 - 197							

Analyst: Date: <u>4/30/2018</u>

 $\overline{\bigtriangledown}$ Reviewed By: Date: 4/30/2018

FAL ID: 11441-005-SA Client ID: VS35 Matrix: Soil Batch No: X4491	Date Date Amo % Se	Extracted: 04-: Received: 04-: ount: 5.02 g olids: 88.92	26-2018 11-2018	ICal: PCD GC Colun Units: pg/)DFAL4-12-20 nn: DB5MS g	20-17 Acquired: 04-28- 2005 WHO TEQ Basis: Dry Weigh			
Compound	Cor	nc DL	Qual	2005 WHO Tox	MDL	Compound	Conc	DL	Qual
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD OCDD	N N 0.50 0.43 1.8 14	D 0.229 D 0.269 D 0.204 1 - 33 - 36 - .9 -	J J J	- 0.0501 0.0433 0.0186 0.00447	0.0273 0.0570 0.0793 0.0940 0.0823 0.0842 0.172	Total TCDD Total PeCDD Total HxCDD Total HpCDD	ND ND 0.935 3.51	0.229 0.269 -	J
2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF 0,00000000000000000000000000000000000	N N N N 0.36 0.47 N 1.4	D 0.194 D 0.202 D 0.223 D 0.172 D 0.188 D 0.202 38 - 78 - D 0.189 14 -	J J	- - - 0.0368 0.00478 - - - - - - - - - - - - - - - - - - -	0.0269 0.0449 0.0468 0.0437 0.0417 0.0574 0.0657 0.0747 0.0883 0.170	Total TCDF Total PeCDF Total HxCDF Total HpCDF	0.935 0.530 0.871 1.81		J J J,M J
Internal Standards 13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-2,3,7,8-TCDF 13C-2,3,7,8-PeCDF 13C-2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF	% Rec 85.0 82.5 84.7 80.8 73.8 59.6 84.6 80.1 78.4 79.5 76.4 74.7 74.4 74.2 73.9 63.3	QC Limits 25.0 - 164 25.0 - 181 32.0 - 141 28.0 - 130 23.0 - 140 17.0 - 157 24.0 - 169 24.0 - 185 21.0 - 178 26.0 - 123 28.0 - 136 29.0 - 147 28.0 - 138 17.0 - 157	Qual		A Isot sigr B Ana C Che D Pre DNQ Ana F Ana J Ana M Ma: ND Ana NP Not P Pre S Sar X Mat * Res	topic Labeled Sta nal to noise ratio alyte is present ir emical Interferen sence of Diphen alyte concentratio alyte concentratio alyte concentratio alyte concentratio alyte concentratio alyte Not Detected throwided e-filtered through mple acceptances sult taken from d	andard outsic is >10:1 n Method Bla ice on is below c on is below c concentration ed at Detectic a Whatman e criteria not r s ilution or rein	le QC range nk alibration ra alibration ra alibration ra n Limit Lev D.7um GF/F net jection	e but ange ange ange el filter
37CI-2,3,7,8-TCDD	79.2	35.0 - 197			L				

Analyst: Date: <u>4/30/2018</u>

Reviewed By:____ Date: 4/30/2018

FAL ID: 11441-006-SA Client ID: VS37 Matrix: Soil Batch No: X4491	Date Date Amo % So	Extracted: 04- Received: 04- unt: 5.02 g blids: 87.73	26-2018 11-2018	ICal: PCD GC Colun Units: pg/	DFAL4-12-2 nn: DB5MS g	0-17 A 2 E	Acquired: 04- 2005 WHO T 3asis: Dry Wo	28-2018 EQ: 0.0529 eight	
Compound	Con	nc DL	Qual	2005 WHO Tox	MDL	Compound	Conc	DL	Qual
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD 0CDD	N N N N 1.7 14.	D 0.147 D 0.207 D 0.187 D 0.213 D 0.213 D 0.183 75 - 7 -	J	- - - 0.0175 0.00441	0.0273 0.0570 0.0793 0.0940 0.0823 0.0842 0.172	Total TCDD Total PeCDD Total HxCDD Total HpCDD	ND ND 0.648 3.88	0.147 0.207 -	L L
2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF 0,00000000000000000000000000000000000	N N N N 0.31 N N N	D 0.142 D 0.154 D 0.160 D 0.133 D 0.145 D 0.146 D 0.146 O - D 0.190 D 0.222 D 0.451	J	- - - 0.0310 - - - -	0.0269 0.0449 0.0468 0.0437 0.0417 0.0574 0.0657 0.0747 0.0883 0.170	Total TCDF Total PeCDF Total HxCDF Total HpCDF	0.275 ND 0.310 ND	0.160	L L
Internal Standards 13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-1,2,3,4,7,8-PeCDF 13C-2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-0CDF	% Rec 94.6 98.9 105 99.7 93.5 80.5 98.5 94.8 95.9 97.0 92.7 93.7 91.7 94.2 95.0 84.9	QC Limits 25.0 - 164 25.0 - 181 32.0 - 141 28.0 - 130 23.0 - 140 17.0 - 157 24.0 - 169 24.0 - 185 21.0 - 178 26.0 - 152 26.0 - 123 28.0 - 136 29.0 - 147 28.0 - 138 17.0 - 157	Qual		A Iss sig B Ar C Cł D Pr DNQ Ar F Ar J Ar M Mi ND Ar NP No P Pr S Sa X A	otopic Labeled Sta gnal to noise ratio halyte is present in hemical Interferen esence of Diphen halyte concentration halyte concentration halyte concentration halyte concentration halyte concentration halyte Not Detected bit Provided e-filtered through ample acceptances	andard outsid is >10:1 n Method Bla ce yl Ethers on is below c on is above c n on seconda on seconda concentration ed at Detection a Whatman criteria not r	de QC range ink alibration ra ary column alibration ra n on Limit Lev 0.7um GF/F met	e but ange ange rel = filter
Cleanup Surrogate	85.3	35.0 - 197			* Re	esult taken from d	llution or reir	ijection	
2. 2. 2,0,.,0 . 000									

Analyst:_____ Date:_______

Reviewed By:____ Date: 4/30/2018

FAL ID: 11441-007-SA Client ID: VS39 Matrix: Soil Batch No: X4491	Date Date Amou % Sol	Extracted: 04- Received: 04- int: 5.01 g lids: 87.32	26-2018 11-2018	ICal: PCD GC Colun Units: pg/	DFAL4-12-20- nn: DB5MS g	-17 A 20 B	Acquired: 04-28-2018 2005 WHO TEQ: 0.117 Basis: Dry Weight		
Compound	Cond	c DL	Qual	2005 WHO Tox	MDL	Compound	Conc	DL	Qual
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD OCDD	NE NE 0.428 0.492 1.99 17.3	0 0.200 0 0.230 0 0.249 3 - 2 - 3 - 3 -	J J	0.0428 0.0492 0.0199 0.00519	0.0273 0.0570 0.0793 0.0940 0.0823 0.0842 0.172	Total TCDD Total PeCDD Total HxCDD Total HpCDD	ND ND 1.92 4.52	0.200 0.230 -	J
2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF 0CDF	NE NE NE NE NE NE NE NE	0 0.151 0 0.147 0 0.156 0 0.188 0 0.207 0 0.212 0 0.246 0 0.264 0 0.295	J	- - - - - - - - - - - - - - - - - - -	0.0269 0.0449 0.0468 0.0437 0.0417 0.0574 0.0657 0.0747 0.0883 0.170	Total TCDF Total PeCDF Total HxCDF Total HpCDF	ND ND ND 0.655	0.151 0.156 0.246	J
Internal Standards 13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-2,3,7,8-PeCDF 13C-2,3,4,7,8-PeCDF 13C-2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HpCDF 13C-1,2,3,4,7,8,9-HxCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3	% Rec 89.1 94.2 96.3 92.2 89.4 71.3 90.3 90.8 89.2 89.7 86.2 85.2 86.4 89.0 78.8	QC Limits 25.0 - 164 25.0 - 181 32.0 - 141 28.0 - 130 23.0 - 140 17.0 - 157 24.0 - 169 24.0 - 185 21.0 - 178 26.0 - 152 26.0 - 123 28.0 - 136 29.0 - 147 28.0 - 138 17.0 - 157	Qual		A Isot sigr B Ana C Che D Pre DNQ Ana E Ana F Ana J Ana M Max ND Ana NP Not P Pre S San X Mat * Res	opic Labeled Sta hal to noise ratio i lyte is present in emical Interference sence of Dipheny lyte concentration lyte concentration lyte concentration lyte concentration lyte concentration lyte concentration lyte concentration lyte Not Detected Provided -filtered through a nple acceptance rix interferences sult taken from dil	ndard outsic s >10:1 Method Bla e /l Ethers n is below c on seconda n is below c oncentratior d at Detectic a Whatman (criteria not r ution or rein	de QC range nk alibration ra alibration ra alibration ra b n Limit Lev 0.7um GF/F net jection	e but ange ange rel = filter
37CI-2,3,7,8-TCDD	83.3	35.0 - 197			L				

Analyst: Date: <u>4/30/2018</u>

Reviewed By:____ Date: 4/30/2018

FAL ID: 11441-008-SA Client ID: VS41 Matrix: Soil Batch No: X4491	Date Date Amo % So	Extracted: 04- Received: 04- unt: 5.02 g blids: 92.82	26-2018 11-2018	ICal: PCE GC Colun Units: pg/	DFAL4-12-20 nn: DB5MS ′g	D-17 A 2 B	Acquired: 04-28-2018 2005 WHO TEQ: 0.215 Basis: Dry Weight		
Compound	Con	nc DL	Qual	2005 WHO Tox	MDL	Compound	Conc	DL	Qual
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD 0CDD	N N 0.52 0.36 8.2 67.	D 0.180 D 0.226 D 0.236 9 - 9 - 9 - 4 - 3 -	L L	0.0529 0.0369 0.0824 0.0202	0.0273 0.0570 0.0793 0.0940 0.0823 0.0842 0.172	Total TCDD Total PeCDD Total HxCDD Total HpCDD	ND ND 2.96 15.0	0.180 0.226 -	J
2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF 0CDF	N N N N N 2.0 N 7.0	D 0.154 D 0.202 D 0.226 D 0.177 D 0.181 D 0.175 D 0.200 11 - D 0.171 13 -	IJ	- - - 0.0201 - - 0.00211	0.0269 0.0449 0.0468 0.0437 0.0417 0.0574 0.0657 0.0747 0.0883 0.170	Total TCDF Total PeCDF Total HxCDF Total HpCDF	ND ND 1.98 5.80	0.154 0.226	J
Internal Standards 13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,7,8-HpCDD 13C-2,3,7,8-TCDF 13C-2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,7,8-PHCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-0CDF	% Rec 89.9 91.0 96.8 94.6 89.6 81.3 95.0 88.1 91.1 86.3 85.5 87.7 86.9 88.7 89.6 80.9	QC Limits 25.0 - 164 25.0 - 181 32.0 - 141 28.0 - 130 23.0 - 140 17.0 - 157 24.0 - 169 24.0 - 185 21.0 - 178 26.0 - 152 26.0 - 123 28.0 - 136 29.0 - 147 28.0 - 138 17.0 - 157	Qual		A lsc sig B An C Cr D Pr DNQ An E An F An J An M Ma ND An NP Nc P Pr S Sa X Ma * Re	atopic Labeled Sta nal to noise ratio alyte is present in memical Interference esence of Dipheny alyte concentratic alyte concentratic alyte concentratic alyte concentratic alyte concentratic alyte concentratic alyte Not Detecte of Provided e-filtered through mple acceptance atrix interferences ssult taken from di	Indard outsid is >10:1 Method Bla ce yl Ethers in is below c ion seconda in is below c ion seconda in is below c ioncentratior d at Detectic a Whatman criteria not r	de QC rang nk alibration ra ary column alibration ra n on Limit Lev 0.7um GF/F met jection	e but ange ange ange vel = filter
37CI-2,3,7,8-TCDD	84.0	35.0 - 197							

Analyst: Date: <u>4/30/2018</u>

Reviewed By:____ Date: 4/30/2018

ANALYTICAL LA	Frontier Analy 5172 Hillsdale El Dorado Hil Tel: 916-934-0 Fax: 916-934-0	vtical La circle ls, CA 9 0900 0999	aborato 95762	ry	FAL USA Laborator Temperat	E <i>OI</i> ry Pi ture:	VLY oject	No.: 2	C	ΥL	<i>F1</i>) 1	Ch www Pleas	fron se Pi	n of Custody tieranalytical.com rint in Pen Page of
CLIENT INE Company Nar Contact Name Address: <u>PO</u> Phone: <u>916-67</u> Email: jbrusca	ORMATION me: Brusca Associates, Inc. :: Joe Brusca Box 332, Roseville, CA 95661 7-1470 Fax: @bruscaassociates.com			IN Cor Cor Adc Pho Ema	VOICE IN npany Nam ntact Name: lress: ne: ail:	FOR e: Sa	MAT me	ION Fax:	(if diffe	erent fr	om cli	ent info	5) H F F F 7 *	PROJECT INFORMATIONFAL Quote #:3310P.O. #:			
REPORT IN Report Level:	FORMATION I/II I/II III IV FAL Basic Other:	otracke stom: C	r Contact	FAL	Hardcopy CD (.pdf i Email (.pd	ISTI inclu	RIBU ding E cluding	FION EDDs g EDI	(ema if req Ds if 1	uil onl ueste reques	ly-is _I d) sted)	oreferi	red)			AD	DITIONAL INSTRUCTIONS
California System #: Sampler:	State Drinking Water Form Source 7 Employ Sample ID	#: er: Da	ıte	Time	Matrix	# of containers	2PA 1613**	3PA 8290**	DLM 02.0	3PA 8280**	Appendix IX	EPA TO-9/9A	3PA 23/23A	3PA 1668	⁷ AL 15	Other	**CONGENERS **TEQ 2,3,7,8-TCDD only 1998 WHO 2,3,7,8-TCDD/F only 2005 WHO ✓ PCDD/F (Cl₄-Cl8) Other
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5 0 2	4/11	Collect	ed [1:22 [1:29 [1:34 [1:37	SoTL					I	7						Remarks
5 VS35 5 VS37 7 VS39 3 VS41	,			12:43 12:48 12:52 12:57									-				
0 1 2 3 4																	
.5 Relingvished	Samp I by: (Signature and Printed	 oles will b Name)	e dispose	ed of 90 day	ys after sample Date	receij 18	t unless Tim 3:4	s other	arrang Rece VQ	ements ived	by: (been m Signat	ade an ture a	d agree Ind Pr	d upor	n in w Nam	$\frac{1}{\frac{1}{1}}$ The Date Time $\frac{1}{1}$ The Date Time $\frac{1}{1}$

Client understands that all terms described in the proposals, quotations, and/or the general terms provided in the current FAL price schedules wiPbe¹ followed.⁶ FAL reserves the rights to terminate its service or withhold delivery of reports, if in FAL's sole discretion the terms of the project have been broken.

Frontier Analytical Laboratory

Sample Login Form

FAL Project ID: 11441

Brusca Associates, Inc.
137-002
04/11/2018
03:45 pm
KZ
KZ
8
0
R-4

Method of Delivery:	Courier
Tracking Number:	NA
Shipping Container Received Intact	Yes
Custody seals(s) present?	No
Custody seals(s) intact?	No
Sample Arrival Temperature (C)	0
Cooling Method	lce
Chain Of Custody Present?	Yes
Return Shipping Container To Client	Yes
Test aqueous sample for residual Chlorine	No
Sodium Thiosulfate Added	No
Adequate Sample Volume	Yes
Appropriate Sample Container	Yes
pH Range of Aqueous Sample	N/A
Physical Sample Container pH Range of Aqueous Sample Anomalies or additional comments:	N/A

May 2, 2018

FAL Project ID: 11471

Mr. Joe Brusca Brusca Associates 7633 Stonewood Court Granite Bay, CA 95746

Dear Mr. Brusca,

The following results are associated with Frontier Analytical Laboratory project **11471**. This corresponds to your **Lathrop 48-Ac Property** project under project number **137-002**. Five soil samples were received on 4/13/2018 in good condition. These samples were extracted and analyzed by EPA Method 1613 for tetra through octa chlorinated dibenzo dioxins and furans. The Toxic Equivalency (TEQ) for your samples has been calculated using the 2005 World Health Organization's (WHO's) toxic equivalency factors (TEFs). The total TEQ is reported on the upper right hand corner of each sample data sheet. Brusca Associates requested a turnaround time of fifteen business days for project **11471**.

The following report consists of an Analytical Data section and a Sample Receipt section. The Analytical Data section contains our sample tracking log and the analytical results. The Sample Receipt section contains your chain of custody, our sample login form and a sample photo. The attached results are specifically for the samples referenced in this report only. These results meet all NELAC requirements and shall not be reproduced except in full. Frontier Analytical Laboratory's State of Oregon NELAP certificate number is **4041**. Our State of California ELAP certificate number is **2934**. This report has been emailed to you as a portable document format (PDF) file. A hardcopy will not be sent to you unless specifically requested.

If you have any questions regarding project **11471**, please contact me at (916) 934-0900. Thank you for choosing Frontier Analytical Laboratory for your analytical testing needs.

Sincerely,

Bradley B. Silverbush Director of Operations

Frontier Analytical Laboratory

Sample Tracking Log

FAL Project ID: <u>11471</u>

Received on: 04/13/2018

Project Due: 05/07/2018 Storage: R-3

FAL Sample ID	Dup	Client Project ID	Client Sample ID	Requested Method	Matrix	Sampling Date	Sampling Time	Hold Time Due Date
11471-001-SA	0	137-002	VS53	EPA 1613 D/F	Soil	04/13/2018	10:44 am	04/15/2019
11471-002-SA	0	137-002	VS55	EPA 1613 D/F	Soil	04/13/2018	10:49 am	04/15/2019
11471-003-SA	0	137-002	VS57	EPA 1613 D/F	Soil	04/13/2018	10:54 am	04/15/2019
11471-004-SA	0	137-002	VS59	EPA 1613 D/F	Soil	04/13/2018	10:57 am	04/15/2019
11471-005-SA	0	137-002	VS65	EPA 1613 D/F	Soil	04/13/2018	11:23 am	04/15/2019

FAL ID: 11471-001-MB Client ID: Method Blank Matrix: Soil Batch No: X4493	Date E Date R Amoun	eceived: 04-3 eceived: NA ht: 5.00 g	30-2018	ICal: PCD GC Colum Units: pg/g	20-17	Acquired: 05-01-2018 2005 WHO TEQ: 0.0 Basis: Dry Weight			
Compound	Conc	DL	Qual	2005 WHO Tox	MDL	Compound	Conc	DL	Qual
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD 0,0DD	ND ND ND ND ND ND	0.151 0.182 0.197 0.221 0.191 0.180 0.314		- - - - -	0.0273 0.0570 0.0793 0.0940 0.0823 0.0842 0.172	Total TCDD Total PeCDD Total HxCDD Total HxCDD	ND ND ND ND	0.151 0.182 0.221 0.180	
2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF 1,2,3,4,7,8,9-HpCDF 0CDF	ND ND ND ND ND ND ND ND	0.116 0.140 0.141 0.126 0.137 0.132 0.160 0.122 0.211 0.225			0.0269 0.0449 0.0468 0.0437 0.0417 0.0574 0.0657 0.0747 0.0883 0.170	Total TCDF Total PeCDF Total HxCDF Total HpCDF	ND ND ND ND	0.116 0.141 0.160 0.211	
Internal Standards 13C-2,3,7,8-TCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,4,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HxCDF 13C-2,3,4,7,8-PeCDF 13C-1,2,3,7,8-PeCDF 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF	% Rec 104 107 110 105 101 111 104 108 99.4 98.5 99.1 97.8 98.8 75.9 97.2	QC Limits 25.0 - 164 25.0 - 181 32.0 - 141 28.0 - 130 23.0 - 140 17.0 - 157 24.0 - 169 24.0 - 185 21.0 - 178 26.0 - 152 26.0 - 123 28.0 - 136 29.0 - 147 28.0 - 138 17.0 - 157	Qual		A Is B A C C D F DNQ A F A J A ND A NP F S S X M * F	sotopic Labeled S signal to noise ratio Analyte is present Chemical Interfere Presence of Diphe Analyte concentrat Analyte concentrat Analyte concentrat Maximum possible Analyte Not Detect Not Provided Pre-filtered through Sample acceptanc Matrix interference Result taken from the second Content of the seco	tandard outsi o is >10:1 in Method Blance nyl Ethers ion is below of ion is above on on second ion is below of concentratio ed at Detection a Whatman e criteria not s dilution or reij	de QC range ank calibration ran calibration ran ary column calibration ran n on Limit Leve 0.7um GF/F met njection	e but nge nge nge el filter
37CI-2,3,7,8-TCDD	94.0	35.0 - 197			<u> </u>				

Analyst: Date: 5/2/2018

Reviewed By:_	DPV
Date: 5/2/20)18

FAL ID: 11471-001-OPR Client ID: OPR Matrix: Soil Batch No: X4493	Date Extracted: 04-30-2018 Date Received: NA Amount: 5.00 g	ICal: PCDDFAL4-12-20-17 GC Column: DB5MS Units: ng/ml	Acquired: 05-01-2018 2005 WHO TEQ: NA
Compound	Conc QC Limits Qu	al	
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD 0CDD	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		
2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,4,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF 0CDF	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
Internal Standards	% Rec QC Limits Qu	al	
13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-0CDD 13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,7,8,9-HxCDF 13C-1,2,3,4,7,8,9-HxCDF 13C-1,2,3,4,7,8,9-HxCDF 13C-0CDF	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	AIsotopic Labisignal to noisiBAnalyte is prCChemical IntDPresence ofDNQAnalyte condEAnalyte condFAnalyte condJAnalyte condJAnalyte condMMaximum poNDAnalyte NotNPNot ProvidedPPre-filtered tSSample accode	eled Standard outside QC range but se ratio is >10:1 esent in Method Blank erference Diphenyl Ethers centration is below calibration range centration is above calibration range irmation on secondary column centration is below calibration range ossible concentration Detected at Detection Limit Level d hrough a Whatman 0.7um GF/F filter eptance criteria not met
Cleanup Surrogate	72.0 31.0 101	X Matrix interfe * Result taken	erences from dilution or reinjection
37 CI-2, 3, 7, 8- I CDD	12.0 31.0 - 191		

Analyst: Date: 5/2/2018

Reviewed E	By: DPV
Date: 5/2	/2018

FAL ID: 11471-001-SA Client ID: VS53 Matrix: Soil Batch No: X4493	471-001-SA Date Extracted: 04-30-2018 ICal: PCDDFAL4-12-20-17 /S53 Date Received: 04-13-2018 GC Column: DB5MS /Amount: 5.04 g Units: pg/g (4493) % Solids: 92.01				20-17	Acquired: 05-01-2018 2005 WHO TEQ: 0.0123 Basis: Dry Weight			
Compound	Con	nc DL	Qual	2005 WHO Tox	MDL	Compound	d Conc	DL	Qual
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD 0CDD	N N N 0.98 8.0	D 0.172 D 0.233 D 0.234 D 0.235 D 0.215 	J J	- - - 0.00986 0.00242	0.0273 0.0570 0.0793 0.0940 0.0823 0.0842 0.172	Total TCDD Total PeCDD Total HxCDD Total HxCDD Total HpCDD	0 ND 0 ND 0 ND 0 2.18	0.172 0.233 0.235	J
2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF 0,2DF	N N N N N N N N N N	D 0.130 D 0.145 D 0.156 D 0.148 D 0.151 D 0.160 D 0.186 D 0.246 D 0.285 D 0.648		- - - - - - - - -	0.0269 0.0449 0.0468 0.0437 0.0417 0.0574 0.0574 0.0657 0.0747 0.0883 0.170	Total TCDF Total PeCDF Total HxCDF Total HpCDF	ND ND ND ND	0.130 0.156 0.186 0.285	
Internal Standards 13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-2,3,7,8-PeCDF 13C-1,2,3,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,7,8,9-HpCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-0,2,4,7,8,9-HpCDF 13C-0	% Rec 81.8 90.8 105 102 92.7 88.4 76.6 91.7 93.9 92.3 90.9 88.0 91.1 93.4 83.4	QC Limits 25.0 - 164 25.0 - 181 32.0 - 141 28.0 - 130 23.0 - 140 17.0 - 157 24.0 - 169 24.0 - 185 21.0 - 178 26.0 - 152 26.0 - 123 28.0 - 136 29.0 - 147 28.0 - 138 17.0 - 157	Qual		A S B A C C D F DNQ A F A J A ND A ND A S S S X N X T	sotopic Labeled S signal to noise rati Analyte is present Chemical Interfere Presence of Diphe Analyte concentrat Analyte concentrat Analyte concentrat Maximum possible Analyte Not Detect Not Provided Pre-filtered through Sample acceptance Matrix interference Result taken from	itandard outsi o is >10:1 in Method Bla nce myl Ethers tion is below of tion is above of on on seconda tion is below of e concentration ted at Detection h a Whatman be criteria not the s	de QC range ank calibration ra calibration ra ary column calibration ra n on Limit Lev 0.7um GF/F met	e but nge nge el filter
37Cl-2,3,7,8-TCDD	71.0	35.0 - 197							

Analyst:______ Date: <u>5/2/2018</u>_____

Review	wed By:_	DPV	
Date:	5/2/20	18	

FAL ID: 11471-002-SA Client ID: VS55 Matrix: Soil Batch No: X4493	Date Date Amou % So	Date Extracted: 04-30-2018 Date Received: 04-13-2018 Amount: 5.05 g % Solids: 91.40			ICal: PCDDFAL4-12-20-17 GC Column: DB5MS Units: pg/g			Acquired: 05-01-2018 2005 WHO TEQ: 0.0501 Basis: Dry Weight		
Compound	Con	c DL	Qual	2005 WHO Tox	MDL	Compound	Conc	DL	Qual	
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD OCDD	NE NE NE 3.14 32.0	0 0.192 0 0.208 0 0.352 0 0.339 0 0.317 4 - 0 -	J	- - - 0.0314 0.00960	0.0273 0.0570 0.0793 0.0940 0.0823 0.0842 0.172	Total TCDD Total PeCDD Total HxCDD Total HpCDD	ND ND 0.728 6.23	0.192 0.208 -	J	
2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF 0,2000 0,00000000000000000000000000000	NE NE NE NE NE 0.850 NE 1.92	D 0.191 D 0.209 D 0.219 D 0.167 D 0.156 D 0.177 D 0.212 O - D 0.241 2 -	J	- - - 0.00850 - 0.000576	0.0269 0.0449 0.0468 0.0437 0.0417 0.0574 0.0657 0.0747 0.0883 0.170	Total TCDF Total PeCDF Total HxCDF Total HpCDF	ND 0.874 1.53 2.98	0.191 - - -	J,M J J	
Internal Standards 13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,7,8-HpCDD 13C-2,3,7,8-TCDF 13C-2,3,4,7,8-PeCDF 13C-2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,7,8,9-HxCDF 13C-1,2,3,4,7,	% Rec 79.6 90.2 107 105 92.1 88.3 80.7 92.0 93.6 96.4 96.5 92.5 82.4 78.6 79.6 84.8	QC Limits 25.0 - 164 25.0 - 181 32.0 - 141 28.0 - 130 23.0 - 140 17.0 - 157 24.0 - 169 24.0 - 185 21.0 - 178 26.0 - 152 26.0 - 123 28.0 - 136 29.0 - 147 28.0 - 138 17.0 - 157	Qual		A Iso sigu B Ana C Chu D Pre DNQ Ana F Ana J Ana J Ana M Ma ND Ana NP Not P Pre S Sau X Ma * Res	topic Labeled St nal to noise ratio alyte is present in esence of Dipher alyte concentrationalyte concentrationalyte concentrationalyte concentrationalyte concentrationalyte concentrationalyte concentrationalyte Not Detected the Provided e-filtered through mple acceptances sult taken from d	andard outsid is >10:1 n Method Bla ice byl Ethers on is below c con is above c on is above c on is below c concentration ed at Detection a Whatman e criteria not r s ilution or rein	de QC range nk alibration ra ary column alibration ra n bn Limit Lev 0.7um GF/F net ijection	e but ange ange rel = filter	
37CI-2,3,7,8-TCDD	73.4	35.0 - 197			L					

Analyst:_____ Date:__<u>5/2/2018</u>

Reviewe	ed By:	
Date:	5/2/2018	

FAL ID: 11471-003-SA Client ID: VS57 Matrix: Soil Batch No: X4493	Date Date Amou % So	Date Extracted: 04-30-2018 Date Received: 04-13-2018 Amount: 5.09 g % Solids: 91.21			ICal: PCDDFAL4-12-20-17 GC Column: DB5MS Units: pg/g			Acquired: 05-01-2018 2005 WHO TEQ: 0.0622 Basis: Dry Weight		
Compound	Con	c DL	Qual	2005 WHO Tox	MDL	Compound	Conc	DL	Qual	
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD 0CDD	NI NI NI 4.00 31.4	0 0.205 0 0.255 0 0.200 0 0.220 0 0.192 6 - 8 -	J	- - - 0.0406 0.00954	0.0273 0.0570 0.0793 0.0940 0.0823 0.0842 0.172	Total TCDD Total PeCDD Total HxCDD Total HpCDD	ND ND 1.01 7.32	0.205 0.255 -	J	
2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF 0CDF	NI NI NI NI NI 1.1 NI 3.14	D 0.153 D 0.190 D 0.206 D 0.165 D 0.182 D 0.229 1 - D 0.181 4 -	J	- - - 0.0111 - - - - - - - - - - - - - - - - - -	0.0269 0.0449 0.0468 0.0437 0.0417 0.0574 0.0657 0.0747 0.0883 0.170	Total TCDF Total PeCDF Total HxCDF Total HpCDF	ND ND 0.433 2.56	0.153 0.206 -	J	
Internal Standards 13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-2,3,7,8-TCDF 13C-2,3,7,8-PeCDF 13C-2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HpCDF 13C-1,2,3,4,7,8,9-HxCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF	% Rec 80.3 89.0 107 91.7 90.5 81.0 95.5 94.5 95.8 93.9 93.6 84.8 80.3 88.6 85.1	QC Limits 25.0 - 164 25.0 - 181 32.0 - 141 28.0 - 130 23.0 - 140 17.0 - 157 24.0 - 169 24.0 - 185 21.0 - 178 26.0 - 152 26.0 - 123 28.0 - 136 29.0 - 147 28.0 - 138 17.0 - 157	Qual		A Iso sig B Ana C Ch D Pre DNQ Ana F Ana J Ana M Ma ND Ana NP No P Pre S Sau X Ma * Re	topic Labeled St nal to noise ratio alyte is present in emical Interferen esence of Dipher alyte concentration alyte concentration alyte concentration alyte concentration alyte concentration alyte Not Detected t Provided 9-filtered through mple acceptances trix interferences sult taken from d	andard outsic is >10:1 n Method Bla ice byl Ethers on is below c con is below c concentration ed at Detectic a Whatman e criteria not r s ilution or rein	de QC range ink alibration ra ary column alibration ra n on Limit Lev 0.7um GF/F net	e but ange ange ange rel = filter	
37CI-2,3,7,8-TCDD	71.4	35.0 - 197			L					

U Analyst: Date: 5/2/2018

Reviewed By:_	SPV
Date: 5/2/20	18

FAL ID: 11471-004-SA Client ID: VS59 Matrix: Soil Batch No: X4493	Date Date Amo % So	Extracted: 04-30-2018 ICal: PCDE Received: 04-13-2018 GC Column int: 5.02 g Units: pg/g lids: 93.03 Idage		DFAL4-12-20 nn: DB5MS g	-17 A 2' B	Acquired: 05-01-2018 2005 WHO TEQ: 0.332 Basis: Dry Weight			
Compound	Con	nc DL	Qual	2005 WHO Tox	MDL	Compound	Conc	DL	Qual
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD OCDD	N N N N 3.0 31.	D 0.154 D 0.260 D 0.323 D 0.351 D 0.308 I3 - 5 -	J	- - - 0.0303 0.00945	0.0273 0.0570 0.0793 0.0940 0.0823 0.0842 0.172	Total TCDD Total PeCDD Total HxCDD Total HpCDD	0.433 ND ND 5.92	0.260 0.351 -	J
2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF 0,00000000000000000000000000000000000	N N 0.95 N N N 0.58 N 3.4	D 0.197 D 0.167 2 - D 0.157 D 0.157 D 0.163 D 0.205 6 - D 0.139 4 -	L L	0.286 - - 0.00586 - 0.00103	0.0269 0.0449 0.0468 0.0437 0.0417 0.0574 0.0657 0.0747 0.0883 0.170	Total TCDF Total PeCDF Total HxCDF Total HpCDF	1.37 5.22 1.02 2.28	- - -	M L L
Internal Standards 13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-2,3,7,8-TCDF 13C-2,3,7,8-PeCDF 13C-2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,7,8,9-HxCDF 13C-1,2,3,4,7,	% Rec 80.5 88.1 106 102 87.8 82.7 80.7 91.6 92.0 96.5 93.0 90.5 83.4 78.4 81.6 79.4	QC Limits 25.0 - 164 25.0 - 181 32.0 - 141 28.0 - 130 23.0 - 140 17.0 - 157 24.0 - 169 24.0 - 185 21.0 - 178 26.0 - 152 26.0 - 123 28.0 - 136 29.0 - 147 28.0 - 138 17.0 - 157	Qual		A Isot sigr B Ana C Che D Pre DNQ Ana F Ana J Ana M Max ND Ana ND Ana NP Not P Pre S San X Mat * Res	opic Labeled Sta al to noise ratio ilyte is present in mical Interference sence of Dipheny lyte concentration lyte concentration lyte concentration lyte concentration lyte concentration lyte concentration lyte Not Detecter Provided -filtered through a nple acceptance rix interferences sult taken from dii	ndard outsic is >10:1 Method Bla ce /I Ethers n is below c on seconda n is below c oncentratior d at Detectic a Whatman criteria not r	le QC range nk alibration ra alibration ra in Limit Lev D.7um GF/F net jection	⇒ but inge ange el
37Cl-2,3,7,8-TCDD	74.8	35.0 - 197			·				

Analyst:_____ Date:__<u>5/2/2018</u>

Review	wed By:	DPV
Date:	5/2/20	18

FAL ID: 11471-005-SA Client ID: VS65 Matrix: Soil Batch No: X4493	Date Date Amou % Sol	Extracted: 04- Received: 04- Int: 5.01 g lids: 95.58	30-2018 13-2018	ICal: PCE GC Colur Units: pg/	DFAL4-12-20 nn: DB5MS ′g)-17 A 2 E	Acquired: 05-01-2018 2005 WHO TEQ: 0.139 Basis: Dry Weight		
Compound	Cond	c DL	Qual	2005 WHO Tox	MDL	Compound	Conc	DL	Qual
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD OCDD	NE NE NE 5.37 52.8	0 0.184 0 0.232 0 0.222 0 0.239 0 0.211 7 - 3 -		- - - 0.0537 0.0158	0.0273 0.0570 0.0793 0.0940 0.0823 0.0842 0.172	Total TCDD Total PeCDD Total HxCDD Total HpCDD	ND ND 2.20 10.2	0.184 0.232 -	J
2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF 0,00000000000000000000000000000000000	0.567 NE NE NE NE NE 1.18 NE 4.63	1 - 0 0.131 0 0.140 0 0.131 0 0.139 0 0.148 0 0.194 8 - 0 0.143 3 -	J	0.0561 - - - - 0.0118 - - - - - - - - - - - - - - - - - -	0.0269 0.0449 0.0468 0.0437 0.0417 0.0574 0.0657 0.0747 0.0883 0.170	Total TCDF Total PeCDF Total HxCDF Total HpCDF	1.91 0.776 1.20 4.03		J J
Internal Standards 13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-2,3,7,8-TCDF 13C-2,3,7,8-PeCDF 13C-2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,7,8,9-HxCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-0CDF	% Rec 78.2 86.3 107 100 88.8 86.0 77.8 91.3 91.2 95.1 92.6 89.5 78.6 78.8 74.4 82.5	QC Limits 25.0 - 164 25.0 - 181 32.0 - 141 28.0 - 130 23.0 - 140 17.0 - 157 24.0 - 169 24.0 - 185 21.0 - 178 26.0 - 152 26.0 - 123 28.0 - 136 29.0 - 147 28.0 - 138 17.0 - 157	Qual		A Iso sig B An: C Ch D Pre DNQ An: F An: J An: M Ma ND An: NP No P Pre S Sa X Ma * Re	topic Labeled Sta nal to noise ratio alyte is present ir emical Interferen esence of Diphen alyte concentratio alyte concentratio alyte concentratio alyte concentratio alyte concentratio alyte Not Detecte t Provided e-filtered through mple acceptance sult taken from d	andard outsid is >10:1 n Method Bla ce yl Ethers on is below c con is above c on is above c on is below c concentration d at Detectic a Whatman criteria not r	de QC range nk alibration ra alibration ra alibration ra n Don Limit Lev 0.7um GF/F net jection	e but inge ange inge el
37Cl-2,3,7,8-TCDD	69.2	35.0 - 197							

U Analyst: Date: 5/2/2018

Review	wed By:	DPV
Date:	5/2/20	18

	Frontier Analytical L 5172 Hillsdale Circle El Dorado Hills, CA Tel: 916-934-0900 Fax: 916-934-0999	aboratory 9 95762	FAL USE Laborator Temperatu	E ONLY y Projec ure:	r et No.: O	^ \	141			Cł www Plea	lai from se Pr	n of Custody tieranalytical.com int in Pen Page of
CLIENT INFORMATI Company Name: Brusca Contact Name: Joe Brusc Address: PO Box 332, Rc Phone: 916-677-1470 Email: jbrusca@bruscaase	ON Associates, Inc. a seville, CA 95661 Fax: sociates.com	IN Cor Cor Add Pho Em	VOICE INF npany Name ntact Name: lress: one: ail:	ORMA :: Same	TION Fax	(if differ	ent from c	(ient info)	PR FA P.C Prc Prc TA * F	COJECT L Quote D, #: pject #: bject Nar t (busine FAL mus	INF #: 3: 13 ne: 1 ss day t agre	ORMATION 310 7 - 002 48 - Ac PRoParty s): 15 10 5* 3* (\sqrt{one}) be with price and RUSH TAT in writing.
REPORT INFORMAT Report Level: I/II EDD: FAL Othe	III IV Basic Geotrack	er Contact FAL	Hardcopy CD (.pdf in Email (.pd	STRIB neluding f includ	UTION ; EDDs ing EDI	l (emai if requ Ds if re	<u>l only is</u> ested) quested	preferre	ed)	Kat	AD hu	DITIONAL INSTRUCTIONS
System #: Sampler:	Source #: Employer:	ate Time Collected	Matrix	# of containers FDA 1613**	EPA 8290**	DLM 02.0	EPA 8280** Appendix IX	EPA TO-9/9A	EPA 23/23A	EPA 1668 FAL 15	Other	**CONGENERS **TEQ 2,3,7,8-TCDD only 1998 WHO 2,3,7,8-TCDD/F only ✓ 2005 WHO ✓ PCDD/F (Cl ₄ -Cl ₈) Other Remarks
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4/1	3/18 10:44 10:49 10:54 10:57 11:23	SOIL									
0 7 7 8 9 10 11 11												
12 13 14 15 Pothewished by (Circu	Samples will	be disposed of 90 day	/s after sample i	receipt un	ess other	antanger	nents have	been ma	de and a	agreed upo	n in wi Nam	riting.
W Sign		2	4/13/19	3 2:(2. <i>PM</i>	Kay	Su-		DP			41318 1412

Client understands that all terms described in the proposals, quotations, and/or the general terms provided in the current FAL price schedules with follower of reports, if in FAL's sole discretion the terms of the project have been broken.

Frontier Analytical Laboratory

Sample Login Form

FAL Project ID: 11471

Client:	Brusca Associates, Inc.
Client Project ID:	137-002
Date Received:	04/13/2018
Time Received:	02:12 pm
Received By:	KZ
Logged In By:	KZ
# of Samples Received:	5
Duplicates:	0
Storage Location:	R-3

Method of Delivery:	Courier
Tracking Number:	NA
Shipping Container Received Intact	Yes
Custody seals(s) present?	No
Custody seals(s) intact?	No
Sample Arrival Temperature (C)	0
Cooling Method	Ice
Chain Of Custody Present?	Yes
Return Shipping Container To Client	Yes
Test aqueous sample for residual Chlorine	No
Sodium Thiosulfate Added	No
Adequate Sample Volume	Yes
Appropriate Sample Container	Yes
pH Range of Aqueous Sample	N/A
Anomalies or additional comments:	

17 April 2018

Joe Brusca Brusca Associates Inc. PO Box 332 Roseville, CA 95661 RE: Lathrop 48 Acre Property

Enclosed are the results of analyses for samples received by the laboratory on 04/05/18 09:55. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Mike Jaroudi Project Manager

Brusca Associates Inc.	Project: Lathrop 48 Acre Property	
PO Box 332	Project Number: 137-002	Reported:
Roseville CA, 95661	Project Manager: Joe Brusca	04/17/18 15:58

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
SP1-1	T181153-01	Soil	04/04/18 11:59	04/05/18 09:55
SP1-5	T181153-05	Soil	04/04/18 12:12	04/05/18 09:55
SP1-6	T181153-06	Soil	04/04/18 12:13	04/05/18 09:55
SP1-8	T181153-08	Soil	04/04/18 12:22	04/05/18 09:55

SunStar Laboratories, Inc.

Brusca Associates Inc.	Project: Lathrop 48 Acre Property	
PO Box 332	Project Number: 137-002	Reported:
Roseville CA, 95661	Project Manager: Joe Brusca	04/17/18 15:58

DETECTIONS SUMMARY

Sample ID: SP1-1	Laboratory ID:		T181153-01		
		Reporting			
Analyte	Result	Limit	Units	Method	Notes
Antimony	1.5	1.0	ug/l	6020 ICP-MS	AO-1
Arsenic	30	1.0	ug/l	6020 ICP-MS	AO-1
Barium	480	1.0	ug/l	6020 ICP-MS	AO-1
Beryllium	1.2	1.0	ug/l	6020 ICP-MS	AO-1
Cadmium	2.1	1.0	ug/l	6020 ICP-MS	AO-1
Chromium	69	1.0	ug/l	6020 ICP-MS	AO-1
Cobalt	45	1.0	ug/l	6020 ICP-MS	AO-1
Copper	120	1.0	ug/l	6020 ICP-MS	AO-1
Lead	300	2.0	ug/l	6020 ICP-MS	AO-1
Mercury	0.18	0.10	ug/l	6020 ICP-MS	AO-1
Molybdenum	21	1.0	ug/l	6020 ICP-MS	AO-1
Nickel	60	1.0	ug/l	6020 ICP-MS	AO-1
Silver	5.3	1.0	ug/l	6020 ICP-MS	AO-1
Vanadium	260	1.0	ug/l	6020 ICP-MS	AO-1
Zinc	440	1.0	ug/l	6020 ICP-MS	AO-1

Sample ID: SP1-5	Laboratory ID:		T181153-05		
		Reporting			
Analyte	Result	Limit	Units	Method	Notes
Antimony	1.5	1.0	ug/l	6020 ICP-MS	AO-1
Arsenic	20	1.0	ug/l	6020 ICP-MS	AO-1
Barium	340	1.0	ug/l	6020 ICP-MS	AO-1
Cadmium	1.6	1.0	ug/l	6020 ICP-MS	AO-1
Chromium	60	1.0	ug/l	6020 ICP-MS	AO-1
Cobalt	39	1.0	ug/l	6020 ICP-MS	AO-1
Copper	200	1.0	ug/l	6020 ICP-MS	AO-1
Lead	360	2.0	ug/l	6020 ICP-MS	AO-1
Mercury	0.28	0.10	ug/l	6020 ICP-MS	AO-1
Molybdenum	16	1.0	ug/l	6020 ICP-MS	AO-1
Nickel	45	1.0	ug/l	6020 ICP-MS	AO-1
Silver	9.0	1.0	ug/l	6020 ICP-MS	AO-1
Vanadium	160	1.0	ug/l	6020 ICP-MS	AO-1

SunStar Laboratories, Inc.

Brusca Associates Inc. PO Box 332 Roseville CA, 95661	Reported: 04/17/18 15:58					
Sample ID:	SP1-5	Labora	tory ID:	T181153-05		
			Reporting			
Analyte		Result	Limit	Units	Method	Notes
Zinc		350	1.0	119/1	6020 ICP-MS	AO-1
Zine			1.0	ugri	0020101 110	
Sample ID:	SP1-6	Laborat	tory ID:	T181153-06		
			Reporting			
Analyte		Result	Limit	Units	Method	Notes
Antimony		1.5	1.0	ug/l	6020 ICP-MS	AO-1
Arsenic		24	1.0	ug/l	6020 ICP-MS	AO-1
Barium		510	1.0	ug/l	6020 ICP-MS	AO-1
Beryllium		1.1	1.0	ug/l	6020 ICP-MS	AO-1
Cadmium		2.0	1.0	ug/l	6020 ICP-MS	AO-1
Chromium		56	1.0	ug/l	6020 ICP-MS	AO-1
Cobalt		39	1.0	ug/l	6020 ICP-MS	AO-1
Copper		110	1.0	ug/l	6020 ICP-MS	AO-1
Lead		390	2.0	ug/l	6020 ICP-MS	AO-1
Mercury		0.22	0.10	ug/l	6020 ICP-MS	AO-1
Molybdenum		16	1.0	ug/l	6020 ICP-MS	AO-1
Nickel		54	1.0	ug/l	6020 ICP-MS	AO-1
Silver		5.0	1.0	ug/l	6020 ICP-MS	AO-1
Vanadium		190	1.0	ug/l	6020 ICP-MS	AO-1
Zinc		380	1.0	ug/l	6020 ICP-MS	AO-1
Sample ID:	SP1-8	Laborat	tory ID:	T181153-08		
			Reporting			
Analyte		Result	Limit	Units	Method	Notes
Antimony		1.0	1.0	ug/l	6020 ICP-MS	AO-1
Arsenic		27	1.0	ug/l	6020 ICP-MS	AO-1
Barium		520	1.0	ug/l	6020 ICP-MS	AO-1
Beryllium		1.1	1.0	ug/l	6020 ICP-MS	AO-1
Cadmium		1.1	1.0	ug/l	6020 ICP-MS	AO-1
Chromium		57	1.0	ug/l	6020 ICP-MS	AO-1
Cobalt		37	1.0	ug/l	6020 ICP-MS	AO-1
Copper		85	1.0	ug/l	6020 ICP-MS	AO-1
Lead		140	2.0	ug/l	6020 ICP-MS	AO-1

SunStar Laboratories, Inc.

Mercury

Molybdenum

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

ug/l

ug/l

6020 ICP-MS

6020 ICP-MS

0.10

1.0

0.14

24

AO-1

AO-1

Brusca Associates Inc.	Project: Lathrop 48 Acre Property	
PO Box 332	Project Number: 137-002	Reported:
Roseville CA, 95661	Project Manager: Joe Brusca	04/17/18 15:58

Sample ID: SP1-8	Labora	tory ID:	T181153-08		
		Reporting			
Analyte	Result	Limit	Units	Method	Notes
Nickel	53	1.0	ug/l	6020 ICP-MS	AO-1
Silver	3.5	1.0	ug/l	6020 ICP-MS	AO-1
Vanadium	240	1.0	ug/l	6020 ICP-MS	AO-1
Zinc	370	1.0	ug/l	6020 ICP-MS	AO-1

SunStar Laboratories, Inc.

Brusca Associates Inc. PO Box 332 Roseville CA, 95661	1	Project: Lathrop 48 Acre Property Project Number: 137-002 Project Manager: Joe Brusca								
		5 T1811	SP1-1 53-01 (Se	oil)						
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes	
		SunStar L	aborator	ies, Inc.						
Metals by EPA 6020 Method										
Antimony	1.5	1.0	ug/l	1	8041135	04/12/18	04/17/18	6020 ICP-MS	AO-1	
Arsenic	30	1.0	"	"	"	"	"	"	AO-1	
Barium	480	1.0	"	"	"	"	"	"	AO-1	
Beryllium	1.2	1.0	"	"	"	"	"	"	AO-1	
Cadmium	2.1	1.0	"	"	"	"	"	"	AO-1	
Chromium	69	1.0	"	"	"	"	"	"	AO-1	
Cobalt	45	1.0	"	"	"	"	"	"	AO-1	
Copper	120	1.0	"	"	"	"	"	"	AO-1	
Lead	300	2.0	"	"	"	"	"	"	AO-1	
Mercury	0.18	0.10	"	"	"	"	"	"	AO-1	
Molybdenum	21	1.0	"	"	"	"	"	"	AO-1	
Nickel	60	1.0	"	"	"	"	"	"	AO-1	
Selenium	ND	5.0	"	"	"	"	"	"	AO-1	
Silver	5.3	1.0	"	"	"	"	"	"	AO-1	
Thallium	ND	1.0	"	"	"	"	"	"	AO-1	
Vanadium	260	1.0	"	"	"	"	"	"	AO-1	
Zinc	440	1.0	"	"	"	"	"	"	AO-1	

SunStar Laboratories, Inc.

Brusca Associates Inc.		Proje	et: Lathro	op 48 Acre Pi	roperty				
PO Box 332		Project Numb	er: 137-0	02				Reported:	
Roseville CA, 95661		04/17/18 15:	58						
		5	SP1-5						
		T1811	53-05 (Se	oil)					
		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar La	aborator	ies, Inc.					
Metals by EPA 6020 Method									
Antimony	1.5	1.0	ug/l	1	8041135	04/11/18	04/17/18	6020 ICP-MS	AO-1
Arsenic	20	1.0	"	"	"	"	"	"	AO-1
Barium	340	1.0	"	"	"	"	"	"	AO-1
Beryllium	ND	1.0	"	"	"	"	"	"	AO-1
Cadmium	1.6	1.0	"	"	"	"	"	"	AO-1
Chromium	60	1.0	"	"	"	"	"	"	AO-1
Cobalt	39	1.0	"	"	"	"	"	"	AO-1
Copper	200	1.0	"	"	"	"	"	"	AO-1
Lead	360	2.0	"	"	"	"	"	"	AO-1
Mercury	0.28	0.10	"	"	"	"	"	"	AO-1
Molybdenum	16	1.0	"	"	"	"	"	"	AO-1
Nickel	45	1.0	"	"	"	"	"	"	AO-1
Selenium	ND	5.0	"	"	"	"	"	"	AO-1
Silver	9.0	1.0	"	"	"	"	"	"	AO-1
Thallium	ND	1.0	"	"	"	"	"	"	AO-1
Vanadium	160	1.0	"	"	"	"	"	"	AO-1
Zinc	350	1.0	"	"	"	"	"	"	AO-1

SunStar Laboratories, Inc.

Brusca Associates Inc. PO Box 332 Roseville CA, 95661		Reported: 04/17/18 15:	58						
		5 T1811	SP1-6 53-06 (Se	oil)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar La	aborator	ies, Inc.					
Metals by EPA 6020 Method									
Antimony	1.5	1.0	ug/l	1	8041135	04/12/18	04/17/18	6020 ICP-MS	AO-1
Arsenic	24	1.0	"	"	"	"	"	"	AO-1
Barium	510	1.0	"	"	"	"	"	"	AO-1
Beryllium	1.1	1.0	"	"	"	"	"	"	AO-1
Cadmium	2.0	1.0	"	"	"	"	"	"	AO-1
Chromium	56	1.0	"	"	"	"	"	"	AO-1
Cobalt	39	1.0	"	"	"	"	"	"	AO-1
Copper	110	1.0	"	"	"	"	"	"	AO-1
Lead	390	2.0	"	"	"	"	"	"	AO-1
Mercury	0.22	0.10	"	"	"	"	"	"	AO-1
Molybdenum	16	1.0	"	"	"	"	"	"	AO-1
Nickel	54	1.0	"	"	"	"	"	"	AO-1
Selenium	ND	5.0	"	"	"	"	"	"	AO-1
Silver	5.0	1.0	"	"	"	"	"	"	AO-1
Thallium	ND	1.0	"	"	"	"	"	"	AO-1
Vanadium	190	1.0	"	"	"	"	"	"	AO-1
Zinc	380	1.0	"	"	"	"	"	"	AO-1

SunStar Laboratories, Inc.

Mike Jaroudi, Project Manager

Brusca Associates Inc. PO Box 332 Roseville CA, 95661	roperty			Reported: 04/17/18 15:58					
,			SP1_8						
		T1811	53-08 (Se	oil)					
		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar La	aborator	ies, Inc.					
Metals by EPA 6020 Method									
Antimony	1.0	1.0	ug/l	1	8041135	04/12/18	04/17/18	6020 ICP-MS	AO-1
Arsenic	27	1.0	"	"	"	"	"	"	AO-1
Barium	520	1.0	"	"	"	"	"	"	AO-1
Beryllium	1.1	1.0	"	"	"	"	"	"	AO-1
Cadmium	1.1	1.0	"	"	"	"	"	"	AO-1
Chromium	57	1.0	"	"	"	"	"	"	AO-1
Cobalt	37	1.0	"	"	"	"	"	"	AO-1
Copper	85	1.0	"	"	"	"	"	"	AO-1
Lead	140	2.0	"	"	"	"	"	"	AO-1
Mercury	0.14	0.10	"	"	"	"	"	"	AO-1
Molybdenum	24	1.0	"	"	"	"	"	"	AO-1
Nickel	53	1.0	"	"	"	"	"	"	AO-1
Selenium	ND	5.0	"	"	"	"	"	"	AO-1
Silver	3.5	1.0	"	"	"	"	"	"	AO-1
Thallium	ND	1.0	"	"	"	"	"	"	AO-1
Vanadium	240	1.0	"	"	"	"	"	"	AO-1
Zinc	370	1.0	"	"	"	"	"	"	AO-1

SunStar Laboratories, Inc.

Mike Jaroudi, Project Manager

SunStar Laboratories, Inc. Providing Quality Analytical Services Nationwide

25712 Commercentre Drive Lake Forest, California 92630 949.297.5020 Phone 949.297.5027 Fax

Brusca Associates Inc.	Project: Lathrop 48 Acre Property	
PO Box 332	Project Number: 137-002	Reported:
Roseville CA, 95661	Project Manager: Joe Brusca	04/17/18 15:58

Metals by EPA 6020 Method - Quality Control

SunStar Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch 8041135 - EPA 3010A

Blank (8041135-BLK1)				Prepared: (04/11/18 Analyzed: 04	4/17/18			
Antimony	ND	1.0	ug/l						AO-1
Arsenic	ND	1.0	"						AO-1
Barium	16.1	1.0	"						AO-1, QB-01
Beryllium	ND	1.0	"						AO-1
Cadmium	ND	1.0	"						AO-1
Chromium	1.93	1.0	"						AO-1, QB-01
Cobalt	ND	1.0	"						AO-1
Copper	1.50	1.0	"						AO-1, QB-01
Lead	ND	2.0	"						AO-1
Mercury	ND	0.10	"						AO-1
Molybdenum	ND	1.0	"						AO-1
Nickel	ND	1.0	"						AO-1
Selenium	ND	5.0	"						AO-1
Silver	ND	1.0	"						AO-1
Thallium	ND	1.0	"						AO-1
Vanadium	3.01	1.0	"						AO-1, QB-01
Zinc	11.1	1.0	"						AO-1, QB-01
LCS (8041135-BS1)				Prepared: (04/11/18 Analyzed: 04	4/17/18			
Arsenic	48.2	1.0	ug/l	50.0	96.4	80-120			AO-1
Barium	48.8	1.0	"	50.0	97.5	80-120			AO-1
Cadmium	47.7	1.0	"	50.0	95.4	80-120			AO-1
Chromium	52.4	1.0	"	50.0	105	80-120			AO-1
Lead	51.3	2.0	"	50.0	103	80-120			AO-1
Duplicate (8041135-DUP1)	S	Source: T181153	-05	Prepared: (04/11/18 Analyzed: 04	4/17/18			
Barium	432	5.0	ug/l		341		23.6	200	AO-1
Lead	445	10	"		361		20.8	200	AO-1

SunStar Laboratories, Inc.

SunStar Laboratories, Inc. Providing Quality Analytical Services Nationwide

25712 Commercentre Drive Lake Forest, California 92630 949.297.5020 Phone 949.297.5027 Fax

Brusca Associates Inc.	Project: Lathrop 48 Acre Property	
PO Box 332	Project Number: 137-002	Reported:
Roseville CA, 95661	Project Manager: Joe Brusca	04/17/18 15:58

Metals by EPA 6020 Method - Quality Control

SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 8041135 - EPA 3010A										
Matrix Spike (8041135-MS1)	Sour	rce: T181153-(05	Prepared: (04/11/18 Ai	nalyzed: 04	/17/18			
Arsenic	62.4	1.0	ug/l	50.0	19.8	85.2	75-125			AO-1
Barium	363	1.0	"	50.0	341	44.9	75-125			AO-1, QM-05
Cadmium	45.9	1.0	"	50.0	1.59	88.7	75-125			AO-
Chromium	107	1.0	"	50.0	59.6	94.3	75-125			AO-
Lead	368	2.0	"	50.0	361	12.3	75-125			AO-1, QM-0
Matrix Spike Dup (8041135-MSD1)	Sour	rce: T181153-(05	Prepared: (04/11/18 Ai	nalyzed: 04	/17/18			
Arsenic	61.3	1.0	ug/l	50.0	19.8	82.9	75-125	1.81	20	AO-
Barium	372	1.0		50.0	341	62.8	75-125	2.43	20	AO-1, QM-03
Cadmium	45.7	1.0	"	50.0	1.59	88.2	75-125	0.541	20	AO-
Chromium	107	1.0	"	50.0	59.6	94.9	75-125	0.296	20	AO-
Lead	389	2.0	"	50.0	361	55.4	75-125	5.69	20	AO-1, QM-0:
				~ •						

Post Spike (8041135-PS1)	Source: T1	81153-05	Prepared: (04/11/18 Ai	nalyzed: 04	4/17/18	8		
Barium	188	ug/l	2.50	0.341	NR	80-120	AO-1,		
							QM-05		
Lead	199		2.50	0.361	NR	80-120	AO-1,		
							OM-05		

SunStar Laboratories, Inc.

Brusca Asso PO Box 332	peiates Inc.	Project: Lathrop 48 Acre Property Project Number: 137-002	Reported:				
Roseville C.	A, 95661	Project Manager: Joe Brusca	04/1//18 15:58				
Notes and Definitions							
QM-05	The spike recovery was outside acceptan acceptance criteria. The data is acceptable	ce limits for the MS and/or MSD due to possible matrix interference. le as no negative impact on data is expected.	The LCS was within				
OP 01	The method blenk contains analyte at a s	anoantration above the MDL between concentration is less than 100	(of the comple result				

QB-01 The method blank contains analyte at a concentration above the MRL; however, concentration is less than 10% of the sample result, which is negligible according to method criteria.

- AO-1 STLC Leach Ran 6020 Water
- DET Analyte DETECTED
- ND Analyte NOT DETECTED at or above the reporting limit
- NR Not Reported
- dry Sample results reported on a dry weight basis
- RPD Relative Percent Difference

SunStar Laboratories, Inc.

Mike Jaroudi, Project Manager

Sample ID Onle Time Solution Sample ID Sample Time Solution Solution Sample ID Sample Time Solution Solution Sample ID Sample Time Sample Solution Sample ID Sample Time Sample Solution Sample ID Sample Time Sample ID Solution Sample ID Sample ID Sample ID Sample ID Sample ID Sample ID Sample ID Sample ID Sample ID Sample ID Sample ID Sample ID Sample ID Sample ID Sample ID Sample ID Sample ID Sample ID Sample ID Sample ID Sample ID Sample ID Sample ID Sample ID Sample ID Sample ID Sample ID Sample ID Sample ID Sample ID Sample ID Sample ID Sample ID Sample ID Sample ID Sample ID Sample ID Sample ID Sample ID Samp	2 Commercentre Drive, Lake Forest, CA 92630 297-5020 2000 200	ex ourun kunnere interentite Drive, Lake Forest, CA 9850 287-5020 288-5010 287-5020		Time Turn around tin	Date /	y: (signature)	Received b	Date / Time	red by: (signature)
Sample ID Sounde Time Sounde Time Sample ID Sample ID Sounde Time Sounde Sounde The Sample ID Sample ID Sounde Time Sounde Sounde The Sample ID Sample ID Sounde Time Sounde Sounde Sounde The Sample ID Sounde Time Sounde Sounde Sounde Sounde Sounde The Sample ID Sounde Time Sounde Sou	Trie Commercial Drive, Lake Forest, CA 92630 BRUS A Asse current of the Lake Forest, CA 92630 BRUS A Asse current of the Lake Forest, CA 92630 BRUS A Asse current of the Lake Forest, CA 92630 BRUS A Asse current of the Lake Forest, CA 92630 BRUS A Asse current of the Lake Forest, CA 92630 BRUS A Asse current of the Lake Forest, CA 92630 BRUS A Asse current of the Lake Forest, CA 92630 BRUS A Asse current of the Lake Forest, CA 92630 BRUS A Asse current of the Lake Forest, CA 92630 BRUS A Asse current of the Lake Forest, CA 92630 BRUS A Asse current of the Lake Forest, CA 92630 BRUS A Asse current of the Lake Forest, CA 92630 BRUS A Asse current of the Lake Forest, CA 92630 BRUS A Asse current of the Lake Forest, CA 92630 BRUS A Asse current of the Lake Forest, CA 92630 BRUS A Asse current of the Lake Forest, CA 92630 BRUS A Asse current of the Lake Forest, CA 92630 BRUS A Asse current of the Lake Forest, CA 92630 BRUS A Asse current of the Lake Forest, CA 92630 BRUS A Part Asse current of the Lake Forest, CA 92630 BRUS A Part Asse current of the Lake Forest	BRUE Commercentle Drive, Lake Forest, CA 92630 Date: 14/1/8 Page: 01 BRUE A Ass: Carpet Try Fac: Child BTT - 14/1/8 Page: 01 BRUE A Ass: Carpet Try Fac: Child BTT - 14/1/8 Page: 01 Browne Brue Try Fac: Child BTT - 14/1/8 Fac: Child BTT - 14/1/8 Page: 01 Browne Brue Try Fac: Fac: Child BTT - 14/1/8 Fac: Child BTT - 14/1/8 Page: 01 Browne Brue Try Fac: Fac: Fac: Sample II Fac: Fa	condition/cold 4-1	955 Received good	4-5-18		λ	955	650 4-5-1
Sample ID Date Time Sample Container Sample ID Sample ID Sample Container Sample Container Sample ID Sample ID Sample ID Sample Container Sample ID Sample ID Sample ID Sample Container Sample ID Sample ID Sample Container Sample Container The ID ID ID Sample ID Sample Container Sample ID ID ID ID Sample ID Sample ID ID ID ID Sample ID Sample ID ID ID ID Sample ID Sample ID ID ID ID ID Sample ID Sample ID ID ID ID ID Sample ID Sample ID Sample ID ID ID ID ID Sample ID Sample ID Sample ID ID ID ID Sample ID Sample ID Sample ID Sample ID ID ID ID ID <td< th=""><th>BRUS A Association Nuovemental Prive Commental Preservative (g-297-5020) Truc Page: 1 (1) Call Page: 1 (2) Call BRUS A Association Nuovemental (g-297-5020) Truc First Commental Preservative (g-1) True Call Call</th><th>answe Quarry Avernal Survey Sarry Commercisitie Drive, Lake Forest, CA 92630 BRUS A Ass or contrast True True answe Quarry Avernal Survey Fax: Club 677 - 147 D answe Quarry Avernal Survey Fax: Club 677 - 147 D answe Quarry Avernal Survey Fax: Club 677 - 147 D answe Quarry Avernal Survey Fax: Club 677 - 147 D answe Quarry Avernal Survey Fax: Club 677 - 147 D answe Quarry Avernal Survey Fax: Club 677 - 147 D answe Quarry Avernal Survey Fax: Club 677 - 147 D answe Quarry Avernal Survey Fax: Club 677 - 147 D answe Quarry Avernal Survey Fax: Club 677 - 147 D answe Quarry Avernal Survey Fax: Club 677 - 147 D answe Quarry Avernal Survey Fax: Club 677 - 147 D answe Quarry Avernal Survey Fax: Club 677 - 147 D answe Quarry Avernal Survey Fax: Club 77 - 147 D answe Quarry Avernal Survey Fax: Club 77 - 177 D answe Quarry Avernal Survey Fax: Club 77 - 177 D answe Quarry Avernal Survey Fax: Club 77 - 177 D answe Quarry Avernal Survey Fax: Club 77 - 177 D answe Quarry Avernal Survey Fax: Club 77 - 177 D answe Quarry Avernal Survey Fax: Club 77 - 177 D answe Quarry Avernal Survey Fax: Club 77 - 177 D answe Quarry Avernal Surv</th><th>INTACT? UNINA OFI METALS</th><th>Time Seals</th><th>Date /</th><th>Y: (signature)</th><th>Received b</th><th>Date / Time</th><th>uished by: (signature)</th></td<>	BRUS A Association Nuovemental Prive Commental Preservative (g-297-5020) Truc Page: 1 (1) Call Page: 1 (2) Call BRUS A Association Nuovemental (g-297-5020) Truc First Commental Preservative (g-1) True Call	answe Quarry Avernal Survey Sarry Commercisitie Drive, Lake Forest, CA 92630 BRUS A Ass or contrast True True answe Quarry Avernal Survey Fax: Club 677 - 147 D answe Quarry Avernal Survey Fax: Club 677 - 147 D answe Quarry Avernal Survey Fax: Club 677 - 147 D answe Quarry Avernal Survey Fax: Club 677 - 147 D answe Quarry Avernal Survey Fax: Club 677 - 147 D answe Quarry Avernal Survey Fax: Club 677 - 147 D answe Quarry Avernal Survey Fax: Club 677 - 147 D answe Quarry Avernal Survey Fax: Club 677 - 147 D answe Quarry Avernal Survey Fax: Club 677 - 147 D answe Quarry Avernal Survey Fax: Club 677 - 147 D answe Quarry Avernal Survey Fax: Club 677 - 147 D answe Quarry Avernal Survey Fax: Club 677 - 147 D answe Quarry Avernal Survey Fax: Club 77 - 147 D answe Quarry Avernal Survey Fax: Club 77 - 177 D answe Quarry Avernal Survey Fax: Club 77 - 177 D answe Quarry Avernal Survey Fax: Club 77 - 177 D answe Quarry Avernal Survey Fax: Club 77 - 177 D answe Quarry Avernal Survey Fax: Club 77 - 177 D answe Quarry Avernal Survey Fax: Club 77 - 177 D answe Quarry Avernal Survey Fax: Club 77 - 177 D answe Quarry Avernal Surv	INTACT? UNINA OFI METALS	Time Seals	Date /	Y: (signature)	Received b	Date / Time	uished by: (signature)
Image: Sample ID Sample ID Image: Sample ID Sample	GRUS A Marriel knower Brits Origin Austriel Stress Capter Trive Date: 4 4/18 Page: 1 C BRUS A ASS - CANTS TAL Fax. (1/4) 677 - (471) Date: 4 4/18 Page: 1 C e(1/6) 677 - (474) Fax. (1/4) 677 - (471) Date: 4 4/18 Page: 1 C e(1/6) 677 - (474) Fax. (1/4) 677 - (471) Date: 4 4/18 Page: 1 C e(1/6) 677 - (474) Sample ID Date: 5 (1/2) 7 Date: 5 (1/2) 7 Date: 5 (1/2) 7 e(1/6) 677 - (471) Batch # T18/1/53 EDF # Clinith Project # athmager: 1/6 - 1/6 - 1/2 /	annual of the sector Numerical Service Comments Protect, CA 92630 Date A (4/13) Page 1 2 Sp12 Commercentite Drive, Lake Forest, CA 92630 Bale A (4/13) Page 0 2 Sp12 Commercentite Drive, Lake Forest, CA 92630 Bale A (4/13) Page 0 2 Sp12 Commercentite Drive, Lake Forest, CA 92630 Fax. (4/14) Page 0 2 alg(16) Lot 1 Fax. (4/14) Page Container Container Container Container Container Container Container EDF # TIS/US EDF # EDF # TIS/US EDF # EDF # TIS/US EDF #	# of containers Notes	Time Total 17:37 Chain of Custod	4/4/19	y: (signatore)	Received	bate / Time 4/19:14:38	wished by: (signature)
Image: Sample ID Sample ID Image: Sample ID Sample	Sample ID Sampl	animole Quarn Averrei, Sannole ID	1 12	I XXI		X	1	12:47	51-12
$\frac{1}{1+1} = \frac{1}{1+1} = \frac{1}$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c} entree Quark Numeric Server Numeric Serve$	Ĩ	XX	X		1	12:45	1-14
Image: Stample Sample Image: Stample Image: Stample Image: Stample Image: Stample <td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td> <td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td> <td>13</td> <td>XX</td> <td></td> <td>1 2</td> <td></td> <td>12:42</td> <td>1-13</td>	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	13	XX		1 2		12:42	1-13
Image: Strategy of the strategy	Barriel D Sample D Fax: (III) BT - (AT) Date A + 4 / 1/3 Page: 1 2 Sample D Fax: (III) BT - (AT) Fax: (III) BT - (AT) Date A + 4 / 1/3 Page: 1 2 Sample D Fax: (III) BT - (AT) Fax: (III) BT - (AT) Date A + 4 / 1/3 Page: 1 Cilient Project Name: LATHR of A - A - Page: 1 2 edita A - T Fax: (III) BT - (AT) Sample D Sample D Sample D Date A + 4 / 1/3 Page: 1 Cilient Project #: 13T - 002 I - 1 Sample D	$ \begin{array}{c} \text{Bernee Quarr Avanue Surveys} \\ \text{Berneed Drive, Lake Forest, CA 92630} \\ \text{Beg. 72. Commercentre Drive, Lake Forest, CA 92630} \\ \text{Beg. 73. Commercentre Drive, Lake Forest, CA 92630} \\ \text{Beg. 73. Carrier Trive Fax: (III.b 171 - IAT) Collector: \begin{bmatrix} \text{Server} - 1 & \text{Server} - 1$	12	XX	X X			12:37	1-12 -
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Nonvene Numment Summer Commercentife Drive, Lake Forest, CA 92630 Date: 1/1/1 Date: 1/1/1 Date: 1/1/1 Date: 1/1/1/1 Date: 1/1/1/1/1 Date: 1/1/1/1/1 Date: 1/1/1/1/1 Date: 1/1/1/1/1 Date: 1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/	11	XX				12:35	-11 -
Sample Sample Sample Sample <td< td=""><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>The served quark Australe Servers Neurones Serverse Quark Australe Servers Neurones Serverse Quark Australe Forest, CA 92630 Serverse Cartes Thr. e. $(1) (271 - 1470)$ Fax: $(1) (277 - 1471)$ e. $(1) (277 - 1470)$ Fax: $(1) (277 - 1471)$ e. $(1) (277 - 1470)$ Fax: $(1) (277 - 1471)$ e. $(1) (277 - 1470)$ Fax: $(1) (277 - 1471)$ e. $(1) (277 - 1470)$ Fax: $(1) (277 - 1471)$ e. $(1) (277 - 1470)$ Fax: $(1) (277 - 1471)$ e. $(1) (277 - 1470)$ Fax: $(1) (277 - 1471)$ e. $(1) (277 - 1471)$ Fax: $(1) (277 - 1471)$ e. $(1) (277 - 1471)$ Fax: $(1) (277 - 1471)$ e. $(1) (277 - 1471)$ Fax: $(1) (277 - 1471)$ e. $(1) (277 - 1471)$ Fax: $(1) (277 - 1471)$ E. $(1) (277 -$</td><td>2</td><td>XXIII</td><td></td><td></td><td></td><td>12:31</td><td>-10 -</td></td<>	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	The served quark Australe Servers Neurones Serverse Quark Australe Servers Neurones Serverse Quark Australe Forest, CA 92630 Serverse Cartes Thr. e. $(1) (271 - 1470)$ Fax: $(1) (277 - 1471)$ e. $(1) (277 - 1470)$ Fax: $(1) (277 - 1471)$ e. $(1) (277 - 1470)$ Fax: $(1) (277 - 1471)$ e. $(1) (277 - 1470)$ Fax: $(1) (277 - 1471)$ e. $(1) (277 - 1470)$ Fax: $(1) (277 - 1471)$ e. $(1) (277 - 1470)$ Fax: $(1) (277 - 1471)$ e. $(1) (277 - 1470)$ Fax: $(1) (277 - 1471)$ e. $(1) (277 - 1471)$ Fax: $(1) (277 - 1471)$ e. $(1) (277 - 1471)$ Fax: $(1) (277 - 1471)$ e. $(1) (277 - 1471)$ Fax: $(1) (277 - 1471)$ e. $(1) (277 - 1471)$ Fax: $(1) (277 - 1471)$ E. $(1) (277 - $	2	XXIII				12:31	-10 -
Image: Second	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c} \text{semple ID} \\ \text{Sample ID} $	02	(XX				12:25	1-9 -
Sample ID Sample ID	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c} \text{verture Quarr Awarres Nummers Expression} \\ \text{Seg172 Commercentre Drive, Lake Forest, CA 92630} \\ \text{Seg17 Commercentre Drive, Lake Forest, CA 92630} \\ \text{Seg11 Commercentre Drive, Lake Forest, CA 92630} \\ Seg11 Commercentr$	82	XXIIX	X			17:22	1-8 .
Sample Date Samp	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	The server of the prive the server is the server of the prive that the prive the server of the prive that the prive the server of the server	fo	XX	X	X	-	t1:11	
Sample D Sample Container Solution Solutio	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	The service of our non-transformer on the private forest, CA 92630 $\begin{array}{c} 39,297-5020\\ 30,107-502\\ 30,107-$	06	XX		>		12:13	01-6 .
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Province Quarr Avarradisence Nurveus 39-297-5020 19-29	10	XX		X		10:12	11-5 ,
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Permeno Quur Avannes Sample Drive, Lake Forest, CA 92630 349-297-5020 349-297-5020 at Brus A Ass o Carnes Tric ess: PO Bay 332 Ross and the Forest, CA 92630 at Manager: Jer Skus CA e. (116) 677 - (471) e. (116) 677 - (471) at Manager: Jer Skus CA e. (116) 677 - (471) e. (116) 677 - (471) at Manager: Jer Skus CA e. (116) 677 - (471) e. (116) 677 - (471) at Manager: Jer Skus CA e. (116) 677 - (471) e. (116) 677 - (471) at Manager: Jer Skus CA e. (116) 770 - (116) 778	10	XX		1 1		(2:05	·PI-4 .
P I Sample I ID ID ID <td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td> <td>Perumero Quarri ANAVITICAL Standard CA 92630 25712 Commercentre Drive, Lake Forest, CA 92630 249-297-5020 249-2</td> <td>03</td> <td>XX</td> <td></td> <td>X</td> <td></td> <td>12:03</td> <td>P1-3 -</td>	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Perumero Quarri ANAVITICAL Standard CA 92630 25712 Commercentre Drive, Lake Forest, CA 92630 249-297-5020 249-2	03	XX		X		12:03	P1-3 -
PI- Sample II- Sampled Time Sample Type Sample Type Container Type Oontainer V 6260-SVOCs 9270 8260 HEX, OXY only 8260 BTEX, OXY only 8260 BTEX, OXY only 8021 BTEX 8015M (gasoline) 8015M (diesel) 8015M (diesel) 8015M Ext./Carbon Chain 8015M Ext./Carbon Chain Support 6020 ICP-MS Metals Extended Action Action Action Action VID # Comments/Preservative P Laboratory ID #	Provinces Quarry Assurates Nanowelle Provinces Quarry Assurates Nanowelle Provinces Quarry Assurates Nanowelle Provinces Quarry Assurates Nanowelle Provinces Assoration Case of the Second State Forest, CA 92630 949-297-5020 Part SRUS CA Assoration Case of the Second State Forest, CA 92630 949-297-5020 Part SRUS CA Assoration Case of the Second State Forest, CA 92630 Part Sample ID Sampled Time Solution Solution State Forest, OX 92 Project Name: $ATHRop H8 - Ac Rodes Care of the Second State of the Second State$	Percense Quarr ANATTICAL Stevers Nationality Preservative Struction of the set of the s	02	XX			Solid	12:01	P1-2 -
Sample Date Type Date Type Container Type Container Sample Con	Provinision Quury Auverteux Savores Norwares Pervision Quury Auverteux Savores Norwares 25712 Commercentre Drive, Lake Forest, CA 92630 949-297-5020 949-297-5020 949-297-5020 949-297-5020 949-297-5020 949-297-5020 949-297-5020 949-297-5020 949-297-5020 Project Name: Project Name: Project Name: Project Name: ArtHR-op Parte Sample	Sample ID Sampled Time Sample Sample Time Sample	2	XX		JAR	T	4418 11:59	- 1-14
	PROVIDING QUALITY ANALYTICAL SERVICES NATIONWIDE 25712 Commercentre Drive, Lake Forest, CA 92630 949-297-5020 nt: BRUS (A ASS & CTATS, TAC. ess: PO B & 332, Rosevac, CA 9561 ress: PO B & 332, Rosevac, CA 9561 rest: PO B & 332, Rosevac, CA 95661 rest: PO B & 332,	PROVIDEND QUALITY AMALYTICAL SERVICES NATIONWEDE 25712 Commercentre Drive, Lake Forest, CA 92630 25712 Commercentre Drive, Lake Forest, CA 92630 249-297-5020 at: BRUSCA Association Content Project, CA 92630 249-297-5020 at: BRUSCA Association Content Project All All Batch #: TISINS EDF #: act Manager: Jec. BRUSCA Fax: GLB 677 - 1471 at Manager: Jec. BRUSCA Fax: GLB 777 - 1471 at Manager: Jec. BRUSCA Fax: GLB 777 -	Laboratory ID #	8021 BTEX 8015M (gasoline) 8015M (diesel) 8015M Ext./Carbon Chain 6010/7000 Title 22 Metals 6020 ICP-MS Metals	8260 + OXY 8260 BTEX, OXY only	Container Type	Solid Sample	Date Sampled Time	Sample ID
	PROVIDING QUALITY ANALYTICAL SERVICES NATIONWIDE 25712 Commercentre Drive, Lake Forest, CA 92630 249-297-5020 t: BRUSCA Association Tryc. t: BRUSCA Association Tryc. t: BRUSCA Association Tryc. ess: PO Box 332, Rosevacue, CA 95661 project Name: LATHRUP 48-Ac PROPERTY	PROVIDING QUALITY ANALYTICAL SERVICES NATIONWIDE 25712 Commercentre Drive, Lake Forest, CA 92630 249-297-5020 t: BRUSCA Association, Thic of 2 t: BRUSCA Association, CA 92630 Date: 4 4/18 Project Name: LATHRUP 48-Ac Property of 2 ess: PO Box 332, Rossurgue, CA 95661 Project Name: LATHRUP 48-Ac Property -	Client Project #: 157-002	ollector: BRUSCA	0.0	(47)	- + + 9 (9	10 Fax. (9)	e: (916) 677-14-
e: (9/6) 677-1470 Fax: (9/6) 677-1471 Collector: BRUSCA Client Project #: 157-002	PROVIDING QUALITY ANALYTICAL SERVICES NATIONWIDE 25712 Commercentre Drive, Lake Forest, CA 92630 349-297-5020 BRUSCA Association Two	** BRUSCA Assocrates Two Date: 4/4/18 Page: 1 or 2	of 48-AC PROPERTY	roject Name: LATHR.	P	199	CA 950	ROSEVALUE	ess: PO Box 332
es; PO Box 332, ROSEVALLE, CA 95661 Project Name: LATHROP 48-AC PROPERTY e: (916) 677-1470 Fax: (916) 677-1471 Collector: BRUSCA Client Project #: 137-002	Rovibing Quality Analytical Services Nationwide 25712 Commercentre Drive, Lake Forest, CA 92630 949-297-5020	PROVIDING QUALITY ANALYTICAL SERVICES NATIONWIDE 25712 Commercentre Drive, Lake Forest, CA 92630 949-297-5020	Page: 1 of 2	ate: 4 4/18	0			GATS TWO	+ BRUSCA Asso
t. BRUSCA ASSOCTATES TIVE. OF 2 ess: PO Box 332, ROSEVELUE, CA 95661 Project Name: LATHROP 48-AC PROPERTY e: (916) 677-1470 Fax: (916) 677-1471 Collector: BRUSCA Client Project #: 137-002							A 92630	ive, Lake Forest, C	PROVIDING QUALITY ANALYTICAL SERV 25712 Commercentre D 949-297-5020

Relinquished by: (signature) Relinquished by: (signature) C S a Relinquished by: (signature)	Sample ID SP1-16 SP1-17 SP1-19 SP1-20 SP1-20	5	PROVIDING QUALITY ANALYTICAL 25712 Commercentre 949-297-5020 Client: BRUSCA ASS Address: Po Box 33 Phone: (1/6) 677-14 Project Manager: JDE
$\frac{4}{4}\frac{1}{15} = 14$ Date / Tir U-5-19 Date / Tir	Sampled	Date	SERVICES NATIONWIDE Drive, Lake F Drive, Lake F 2, Poseva 170 BRUSCA
me * 38 * 955 me	13:05 13:05	t	orest, CA
Received b	Sola	Sample	92630 - 4566
y: (signature) y: (signature) y: (signature)		Container	47)
u-3		260 SVOCS 9270	
Date / Time Date / Time -18 $95Date / Time$	8. XXXX 8	260 BTEX, OXY only 270 PCBs 8082 3021 BTEX	Date: Project I Collecto Batch #
S Chain c	8 8 8 8	3015M (gasoline) 3015M (diesel) 3015M Ext./Carbon Chain	4/4/ Name: LAT BRUS
Total # c Seals int ved good co	6 AXXXX6	6010/7000 Title 22 Metals	TI8115
eals VININA act? VININA andition/cold			48-A
4	200	_aboratory ID #	Client
* 3 DAY TAT AL METALS		Comments/Preservative	2 of 2 20F3/27 10F3/27 t Project #: 137-002
		Total # of containers	

April 19, 2018

FAL Project ID: 11423

Mr. Joe Brusca Brusca Associates 7633 Stonewood Court Granite Bay, CA 95746

Dear Mr. Brusca,

The following results are associated with Frontier Analytical Laboratory project **11423**. This corresponds to your **Lathrop 48-Ac Property** project under project number **137-002**. Twenty solid samples were received on 4/4/2018 in good condition. All twenty samples were extracted and analyzed by EPA Method 1613 for tetra through octa chlorinated dibenzo dioxins and furans. The Toxic Equivalency (TEQ) for your samples has been calculated using the 2005 World Health Organization's (WHO's) toxic equivalency factors (TEFs).The total TEQ is reported on the upper right hand corner of each sample data sheet. Brusca Associates requested a turnaround time of ten business days for project **11423**.

The following report consists of an Analytical Data section and a Sample Receipt section. The Analytical Data section contains our sample tracking log and the analytical results. The Sample Receipt section contains your chain of custody, our sample login form and a sample photo. The attached results are specifically for the samples referenced in this report only. These results meet all NELAC requirements and shall not be reproduced except in full. Frontier Analytical Laboratory's State of Oregon NELAP certificate number is **4041**. Our State of California ELAP certificate number is **2934**. This report has been emailed to you as a portable document format (PDF) file. A hardcopy will not be sent to you unless specifically requested.

If you have any questions regarding project **11423**, please contact me at (916) 934-0900. Thank you for choosing Frontier Analytical Laboratory for your analytical testing needs.

Sincerely,

Bradley B. Silverbush Director of Operations

Frontier Analytical Laboratory

Sample Tracking Log

FAL Project ID: 11423

Received on: 04/04/2018

Project Due: 04/19/2018 Storage: R-4

FAL Sample ID	Dup	Client Project ID	Client Sample ID	Requested Method	Matrix	Sampling Date	Sampling Time	Hold Time Due Date
11423-001-SA	0	137-002	SP1-1	EPA 1613 D/F	Solid	04/04/2018	11:59 am	04/04/2019
11423-002-SA	0	137-002	SP1-2	EPA 1613 D/F	Solid	04/04/2018	12:01 pm	04/04/2019
11423-003-SA	0	137-002	SP1-3	EPA 1613 D/F	Solid	04/04/2018	12:03 pm	04/04/2019
11423-004-SA	0	137-002	SP1-4	EPA 1613 D/F	Solid	04/04/2018	12:05 pm	04/04/2019
11423-005-SA	0	137-002	SP1-5	EPA 1613 D/F	Solid	04/04/2018	12:12 pm	04/04/2019
11423-006-SA	0	137-002	SP1-6	EPA 1613 D/F	Solid	04/04/2018	12:13 pm	04/04/2019
11423-007-SA	0	137-002	SP1-7	EPA 1613 D/F	Solid	04/04/2018	12:17 pm	04/04/2019
11423-008-SA	0	137-002	SP1-8	EPA 1613 D/F	Solid	04/04/2018	12:22 pm	04/04/2019
11423-009-SA	0	137-002	SP1-9	EPA 1613 D/F	Solid	04/04/2018	12:25 pm	04/04/2019
11423-010-SA	0	137-002	SP1-10	EPA 1613 D/F	Solid	04/04/2018	12:31 pm	04/04/2019
11423-011-SA	0	137-002	SP1-11	EPA 1613 D/F	Solid	04/04/2018	12:35 pm	04/04/2019
11423-012-SA	0	137-002	SP1-12	EPA 1613 D/F	Solid	04/04/2018	12:37 pm	04/04/2019
11423-013-SA	0	137-002	SP1-13	EPA 1613 D/F	Solid	04/04/2018	12:42 pm	04/04/2019
11423-014-SA	0	137-002	SP1-14	EPA 1613 D/F	Solid	04/04/2018	12:45 pm	04/04/2019
11423-015-SA	0	137-002	SP1-15	EPA 1613 D/F	Solid	04/04/2018	12:47 pm	04/04/2019
11423-016-SA	0	137-002	SP1-16	EPA 1613 D/F	Solid	04/04/2018	12:51 pm	04/04/2019
11423-017-SA	0	137-002	SP1-17	EPA 1613 D/F	Solid	04/04/2018	12:53 pm	04/04/2019
11423-018-SA	0	137-002	SP1-18	EPA 1613 D/F	Solid	04/04/2018	12:56 pm	04/04/2019
11423-019-SA	0	137-002	SP1-19	EPA 1613 D/F	Solid	04/04/2018	01:05 pm	04/04/2019
11423-020-SA	0	137-002	SP1-20	EPA 1613 D/F	Solid	04/04/2018	01:08 pm	04/04/2019

FAL ID: 11423-001-MB Client ID: Method Blank Matrix: Solid Batch No: X4473	Date E Date R Amoun	extracted: 04-1 Received: NA ht: 5.00 g	6-2018	ICal: PCDI GC Colum Units: pg/g	DFAL4-12-: in: DB5MS 9	20-17	Acquired: 04 2005 WHO 1 Basis: Dry W	-18-2018 ГEQ: 0.0 /eight	
Compound	Conc	DL	Qual	2005 WHO Tox	MDL	Compound	Conc	DL (Qual
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD 0CDD	ND ND ND ND ND ND	0.271 0.342 0.395 0.463 0.393 0.544 0.711			0.0273 0.0570 0.0793 0.0940 0.0823 0.0842 0.172	Total TCDD Total PeCDD Total HxCDD Total HxCDD	ND ND ND ND	0.271 0.342 0.463 0.544	
2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF 0,200	ND ND ND ND ND ND ND ND	0.200 0.222 0.233 0.251 0.253 0.281 0.320 0.339 0.430 0.606		- - - - - - - - -	0.0269 0.0449 0.0468 0.0437 0.0574 0.0574 0.0657 0.0747 0.0883 0.170	Total TCDF Total PeCDF Total HxCDF Total HpCDF	ND ND ND ND	0.200 0.233 0.320 0.430	
Internal Standards 13C-2,3,7,8-TCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,4,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HxCDF 13C-2,3,7,8-PeCDF 13C-2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-0,2,4,7,8,9-HxCDF 13C	% Rec 80.2 82.2 82.5 84.6 78.2 65.4 83.0 78.9 80.4 79.3 75.3 75.3 75.3 75.9 77.0 67.4	QC Limits 25.0 - 164 25.0 - 181 32.0 - 141 28.0 - 130 23.0 - 140 17.0 - 157 24.0 - 169 24.0 - 185 21.0 - 178 26.0 - 152 26.0 - 123 28.0 - 136 29.0 - 147 28.0 - 143 26.0 - 138 17.0 - 157	Qual		A S B A C C D F DNQ A E A F A J A ND A ND A NP N P F S S X M * F	sotopic Labeled S ignal to noise ratio analyte is present Chemical Interfere Presence of Diphe analyte concentrat analyte concentrat analyte concentrat daximum possible analyte Not Detect Not Provided Pre-filtered through Sample acceptanc Matrix interference Result taken from a	tandard outs o is >10:1 in Method Bl. nce nyl Ethers ion is below on on second ion is below concentratic red at Detection a Whatman e criteria not s dilution or rei	ide QC range b ank calibration rang calibration rang ary column calibration rang n on Limit Level 0.7um GF/F fi met njection	ge ge ge ilter
Cleanup Surrogate 37Cl-2,3,7,8-TCDD	76.9	35.0 - 197			* F	Result taken from a	dilution or rei	njection	

Analyst: Date: 4/18/2018

Reviewed By:____ Date: 4/18/2018

FAL ID: 11423-001-OPR Client ID: OPR Matrix: Solid Batch No: X4473	Date Extracted: 04-16-2018 Date Received: NA Amount: 5.00 g	ICal: PCDDFAL4-1 GC Column: DB5M Units: ng/ml	2-20-17 Acquired: 04-18-2018 IS 2005 WHO TEQ: NA
Compound	Conc QC Limits	Qual	
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD 0CDD	10.6 6.70 - 15.8 52.3 35.0 - 71.0 49.6 35.0 - 82.0 50.5 38.0 - 67.0 49.5 32.0 - 81.0 52.1 35.0 - 70.0 103 78.0 - 144		
2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF 0CDF	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		
Internal Standards	% Rec QC Limits	Qual	
13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,7,8-TCDF 13C-2,3,7,8-PeCDF 13C-1,2,3,7,8-PeCDF 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	A B C D DNG E F J M ND NP P S	Isotopic Labeled Standard outside QC range but signal to noise ratio is >10:1 Analyte is present in Method Blank Chemical Interference Presence of Diphenyl Ethers Analyte concentration is below calibration range Analyte concentration is above calibration range Analyte concentration on secondary column Analyte concentration is below calibration range Maximum possible concentration Analyte Not Detected at Detection Limit Level Not Provided Pre-filtered through a Whatman 0.7um GF/F filter Sample acceptance criteria not met
Cleanup Surrogate	76 4 31 0 - 191	X *	Matrix interferences Result taken from dilution or reinjection
57 CI-2, 5, 7, 0-1 CDD	10.4 51.0 - 191		

Analyst: Date: 4/18/2018

Reviewed By:____ Date: 4/18/2018

FAL ID: 11423-001-MB Client ID: Method Blank Matrix: Solid Batch No: X4475	Date E Date R Amoun	xtracted: 04-1 eceived: NA ht: 5.00 g	7-2018	ICal: PCDI GC Colum Units: pg/g	DFAL4-12- in: DB5MS J	20-17	Acquired: 04 2005 WHO 1 Basis: Dry W	-18-2018 ГEQ: 0.0 /eight	
Compound	Conc	DL	Qual	2005 WHO Tox	MDL	Compound	Conc	DL	Qual
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD 0CDD	ND ND ND ND ND ND	0.162 0.199 0.283 0.287 0.261 0.328 0.708			0.0273 0.0570 0.0793 0.0940 0.0823 0.0842 0.172	Total TCDD Total PeCDD Total HxCDD Total HxCDD	ND ND ND ND	0.162 0.199 0.287 0.328	
2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF 0CDF	ND ND ND ND ND ND ND ND	0.110 0.171 0.256 0.256 0.309 0.314 0.358 0.688		- - - - - - - - -	0.0269 0.0449 0.0468 0.0437 0.0417 0.0574 0.0657 0.0747 0.0883 0.170	Total TCDF Total PeCDF Total HxCDF Total HpCDF	ND ND ND ND	0.110 0.172 0.309 0.358	
Internal Standards 13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,4,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HpCDF 13C-1,2,3,4,7,8,9-HpCDF	% Rec 96.4 97.4 102 102 89.7 72.0 95.4 93.3 92.9 93.8 91.1 90.3 88.1 90.6 90.5 75.8	QC Limits 25.0 - 164 25.0 - 181 32.0 - 141 28.0 - 130 23.0 - 140 17.0 - 157 24.0 - 169 24.0 - 185 21.0 - 178 26.0 - 152 26.0 - 123 28.0 - 136 29.0 - 147 28.0 - 138 17.0 - 157	Qual		A IS B A C C D F DNQ A F A J A ND A ND A NP F S S X M * F	sotopic Labeled S signal to noise ratio Analyte is present Chemical Interfere Presence of Diphe Analyte concentrat Analyte concentrat Maximum possible Analyte Not Detect Not Provided Pre-filtered through Sample acceptance Matrix interference Result taken from	tandard outs o is >10:1 in Method Bl nce nyl Ethers ion is below ion is above on on second ion is below concentratic red at Detecti n a Whatman e criteria not s dilution or rei	ide QC range ank calibration ran calibration ran ary column calibration ran on Limit Leve 0.7um GF/F met njection	but nge nge nge bl
37CI-2,3,7,8-TCDD	89.1	35.0 - 197							

Analyst: Date: 4/19/2018

 $\overline{\nabla}$ Reviewed By: Date: 4/19/2018

FAL ID: 11423-001-OPR Client ID: OPR Matrix: Solid Batch No: X4475	Date Extracted: 04-17-2018 Date Received: NA Amount: 5.00 g		ICal: PCDDFAL4-12-20-17 GC Column: DB5MS Units: ng/ml	Acquired: 04-18-2018 2005 WHO TEQ: NA
Compound	Conc QC Limits	Qual		
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD 0CDD	10.6 6.70 - 15.8 52.1 35.0 - 71.0 48.7 35.0 - 82.0 49.2 38.0 - 67.0 46.8 32.0 - 81.0 50.3 35.0 - 70.0 103 78.0 - 144			
2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF 0,2,3,4,7,8,9-HpCDF	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
Internal Standards	% Rec QC Limits	Qual		
13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HxCDD 13C-2,3,7,8-TCDF 13C-2,3,4,7,8-PeCDF 13C-2,3,4,7,8-PeCDF 13C-1,2,3,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		AIsotopic Labeled signal to noise raBAnalyte is preserCChemical InterferDPresence of DiptDNQAnalyte concentrEAnalyte concentrFAnalyte concentrJAnalyte concentrMMaximum possibNDAnalyte Not DeteNPNot ProvidedPPre-filtered throuSSample acceptar	Standard outside QC range but tito is >10:1 nt in Method Blank rence nenyl Ethers ation is below calibration range ation is above calibration range tion on secondary column ation is below calibration range le concentration rected at Detection Limit Level gh a Whatman 0.7um GF/F filter nce criteria not met
Cleanup Surrogate 37Cl-2,3,7,8-TCDD	85.8 31.0 - 191		X Matrix interference * Result taken from	ces n dilution or reinjection

Analyst: Date: 4/19/2018

Reviewed By:____ Date: 4/19/2018

FAL ID: 11423-001-SA Client ID: SP1-1 Matrix: Solid Batch No: X4473	Date Date Amou % So	Extracted: 04-7 Received: 04-0 unt: 5.04 g liids: 93.84	16-2018 04-2018	ICal: PCD GC Colun Units: pg/	DFAL4-12-2 nn: DB5MS g	20-17	Acquired: 04 2005 WHO T Basis: Dry W	-18-2018 EQ: 6.49 eight
Compound	Con	c DL	Qual	2005 WHO Tox	MDL	Compound	Conc	DL Qua
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD 0CDD	0.374 1.44 2.22 6.04 3.44 17 1274	5 - 8 - 9 - 4 - 7 - 1 - 0 -	L J J	0.375 1.48 0.229 0.604 0.347 1.71 0.381	0.0273 0.0570 0.0793 0.0940 0.0823 0.0842 0.172	Total TCDD Total PeCDD Total HxCDD Total HxCDD Total HpCDD	2.38 11.2 47.6 294	- - -
2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF 1,2,3,4,7,8,9-HpCDF 0CDF	2.2 0.74 1.2 1.3 1.4 1.6 NI 23. 1.8 91.	6 - 9 - 6 - 9 - 6 - 0 0.296 4 - 8 - 2 -	F J J J J	0.226 0.0225 0.387 0.136 0.149 0.166 0.234 0.0188 0.0274	0.0269 0.0449 0.0468 0.0437 0.0417 0.0574 0.0657 0.0747 0.0883 0.170	Total TCDF Total PeCDF Total HxCDF Total HpCDF	17.6 17.2 32.0 80.0	- - -
Internal Standards 13C-2,3,7,8-TCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,4,6,7,8-HxCDD 13C-2,3,7,8-PCCDF 13C-2,3,4,7,8-PeCDF 13C-1,2,3,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-0CDF	% Rec 87.9 91.0 95.4 89.6 85.1 70.8 92.2 87.4 87.5 87.1 83.3 81.2 80.0 84.2 85.1 73.5	QC Limits 25.0 - 164 25.0 - 181 32.0 - 141 28.0 - 130 23.0 - 140 17.0 - 157 24.0 - 169 24.0 - 169 24.0 - 185 21.0 - 178 26.0 - 152 26.0 - 123 28.0 - 136 29.0 - 147 28.0 - 138 17.0 - 157	Qual		A Is B A C C D P DNQ A F A J A M M ND A NP N S S X M * R	otopic Labeled St gnal to noise ratio nalyte is present i hemical Interferer resence of Dipher nalyte concentratio nalyte concentratio nalyte concentrationalyte concentrationalyte nalyte concentrationalyte concentrationalyte nalyte Not Detect ot Provided re-filtered through ample acceptance latrix interferences esult taken from concentrational	andard outsi o is >10:1 n Method Bla nce nyl Ethers on is below o on is above o n on seconda on is below o concentratio ed at Detectio a Whatman e criteria not s s	de QC range but ank calibration range calibration range ary column calibration range n on Limit Level 0.7um GF/F filter met
37CI-2,3,7,8-TCDD	84.0	35.0 - 197			·			

Analyst: Date: 4/18/2018

Reviewed By:____ Date: 4/18/2018

FAL ID: 11423-002-SA Client ID: SP1-2 Matrix: Solid Batch No: X4473	Date Date Amo % So	Extracted: 04- Received: 04- unt: 5.03 g lids: 94.12	16-2018 04-2018	ICal: PCE GC Colur Units: pg/	DFAL4-12-: nn: DB5MS ′g	20-17	Acquired: 04 2005 WHO 1 Basis: Dry W	-18-2018 ГEQ: 0.668 /eight	
Compound	Con	c DL	Qual	2005 WHO Tox	MDL	Compound	Conc	DL	Qual
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD OCDD	N N 1.1 0.70 16. 12	D 0.209 D 0.390 D 0.353 2 - 0 - 1 - 6 -	J J	0.112 0.0700 0.161 0.0378	0.0273 0.0570 0.0793 0.0940 0.0823 0.0842 0.172	Total TCDD Total PeCDD Total HxCDD Total HxCDD	0.542 ND 6.96 30.6	0.390	J
2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF 0,2DF	0.62 NI 0.46 0.44 NI NI 3.88 N 9.1	8 - D 0.182 4 - 3 - D 0.193 D 0.222 D 0.238 0 - D 0.255 4 -	L L L	0.0628 0.139 0.0443 0.0380 0.0380	0.0269 0.0449 0.0468 0.0437 0.0417 0.0574 0.0574 0.0657 0.0747 0.0883 0.170	Total TCDF Total PeCDF Total HxCDF Total HxCDF	2.57 3.62 4.88 9.45	-	L L
Internal Standards 13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,7,8-HpCDD 13C-0CDD 13C-2,3,7,8-PeCDF 13C-1,2,3,7,8-PeCDF 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-0CDF Cleanup Surrogate	% Rec 92.1 95.3 98.1 96.1 93.3 83.7 94.5 88.7 89.5 91.8 89.3 89.3 88.4 90.7 91.9 82.0	QC Limits 25.0 - 164 25.0 - 181 32.0 - 141 28.0 - 130 23.0 - 140 17.0 - 157 24.0 - 169 24.0 - 185 21.0 - 178 26.0 - 123 28.0 - 123 28.0 - 143 28.0 - 143 26.0 - 138 17.0 - 157	Qual		A IS B A C C D F DNQ A F A F A M M ND A NP N P F S S X M * F	sotopic Labeled S ignal to noise ratio analyte is present Chemical Interferent Presence of Dipher analyte concentrat analyte concentrat analyte concentrat Maximum possible analyte Not Detect Not Provided Pre-filtered through Sample acceptance Matrix interference Result taken from a	tandard outsi o is >10:1 n Method Blance nyl Ethers ion is below ion is above on on second ion is below concentratic ed at Detecti n a Whatman e criteria not s dilution or rei	ide QC range ank calibration ra calibration ra ary column calibration ra n on Limit Lev 0.7um GF/F met njection	e but ange ange el F filter
37CI-2,3,7,8-TCDD	82.6	35.0 - 197							

Analyst: 4/18/2018 Date:

FAL ID: 11423-003-SA Client ID: SP1-3 Matrix: Solid Batch No: X4473	Date I Date I Amou % Sol	Extracted: 04-1 Received: 04-0 nt: 5.02 g ids: 94.41	16-2018 04-2018	ICal: PCD GC Colun Units: pg/)DFAL4-12-2 nn: DB5MS ⁽ g	20-17 A 2 E	cquired: 04-1 005 WHO TE asis: Dry Wei	8-2018 Q: 1.10 ght	
Compound	Conc	c DL	Qual	2005 WHO Tox	MDL	Compound	Conc	DL	Qua
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD 0CDD	NE NE 0.702 1.47 1.04 24.3 194	0 0.194 0 0.281 2 - 4 - 8 - 4 -	J J	0.0702 0.147 0.104 0.243 0.0582	0.0273 0.0570 0.0793 0.0940 0.0823 0.0842 0.172	Total TCDD Total PeCDD Total HxCDD Total HxCDD	0.443 0.610 9.86 45.0	- - -	
2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF 0,00000000000000000000000000000000000	1.01 NE 0.515 0.630 0.422 0.601 NE 5.11 NE 14.0	0.241	J J J	0.101 0.155 0.0630 0.0422 0.0601 0.0511	0.0269 0.0449 0.0468 0.0437 0.0417 0.0574 0.0657 0.0747 0.0883 0.170	Total TCDF Total PeCDF Total HxCDF Total HpCDF	3.15 4.92 7.74 13.6		
Internal Standards 13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-2,3,7,8-TCDF 13C-2,3,7,8-PeCDF 13C-2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,7,8-9+HxCDF140 140+HxCD7 140+HxCD7 140+HxCD7 140+HxCD7 140+HxCD7 140+HxCD7 140+HxCD7 140+HxCD7 140+HxCD7 140+H	% Rec 84.7 89.7 90.3 83.4 66.9 89.1 87.3 86.4 86.8 83.2 78.8 80.5 83.0 81.9 71.1	QC Limits 25.0 - 164 25.0 - 181 32.0 - 141 28.0 - 130 23.0 - 140 17.0 - 157 24.0 - 169 24.0 - 185 21.0 - 178 26.0 - 152 26.0 - 123 28.0 - 136 29.0 - 147 28.0 - 138 17.0 - 157	Qual		A Is B AI C C D PI DNQ AI F AI J AI ND AI NP N S SI X M * R	otopic Labeled Sta gnal to noise ratio nalyte is present ir hemical Interferen- resence of Diphen nalyte concentratio nalyte concentratio nalyte concentratio laximum possible of nalyte Not Detecte ot Provided re-filtered through ample acceptance atrix interferences esult taken from di	Indard outside is >10:1 Method Blan ce yl Ethers on is below ca on secondar on is below ca concentration d at Detectior a Whatman 0. criteria not m	QC range k libration ra y column libration ra Limit Lev 7um GF/F et	e but ange ange vel F filter
37CI-2,3,7,8-TCDD	81.6	35.0 - 197			L				

Analyst: Date: 4/18/2018

Reviewed By:____ Date: 4/18/2018

FAL ID: 11423-004-SA Client ID: SP1-4 Matrix: Solid Batch No: X4473	Date Date Amo % So	Extracted: 04- Received: 04-(unt: 5.02 g olids: 95.60	16-2018 04-2018	ICal: PCE GC Colun Units: pg/	DFAL4-12 nn: DB5MS ′g	-20-17 S	Acquired: 04-18-2018 2005 WHO TEQ: 0.510 Basis: Dry Weight		
Compound	Con	ic DL	Qual	2005 WHO Tox	MDL	Compound	d Conc	DL	Qual
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD OCDD	Ni Ni 0.99 0.82 18. 16	D 0.212 D 0.388 D 0.340 9 - 5 - 1 - 6 -	ſ	0.0999 0.0825 0.181 0.0498	0.0273 0.0570 0.0793 0.0940 0.0823 0.0842 0.172	Total TCDE Total PeCDE Total HxCDE Total HxCDE	0 ND 0 ND 0 7.26 0 33.2	0.212 0.388 - -	
2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF 0,00000000000000000000000000000000000	0.65 NI NI NI NI 2.9 NI 6.5	3 - D 0.216 D 0.237 D 0.439 D 0.443 D 0.469 D 0.517 2 - D 0.236 9 -	J J	0.0653 - - - - - - - - - - - - - - - - - - -	0.0269 0.0449 0.0468 0.0437 0.0417 0.0574 0.0657 0.0747 0.0883 0.170	Total TCDF Total PeCDF Total HxCDF Total HxCDF	= 3.18 = 2.42 = 3.80 = 7.14		J J
Internal Standards 13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-2,3,7,8-TCDF 13C-2,3,7,8-PeCDF 13C-1,2,3,7,8-PeCDF 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,7,8,9-HxCDF 13C-1,2,3,4,	% Rec 84.2 92.2 90.2 87.9 84.0 70.6 88.8 85.6 87.6 83.6 81.6 80.5 80.5 80.5 82.0 83.4 73.0	QC Limits 25.0 - 164 25.0 - 181 32.0 - 141 28.0 - 130 23.0 - 140 17.0 - 157 24.0 - 169 24.0 - 185 21.0 - 178 26.0 - 152 26.0 - 123 28.0 - 136 29.0 - 147 28.0 - 138 17.0 - 157	Qual		A B C D NQ E F J M ND P S X *	Isotopic Labeled S signal to noise rati Analyte is present Chemical Interfere Presence of Diphe Analyte concentra Analyte concentra Maximum possible Analyte Not Detec Not Provided Pre-filtered throug Sample acceptance Matrix interference Result taken from	Standard outsi o is >10:1 in Method Bla ence enyl Ethers tion is below of on on second tion is below of e concentration ted at Detection h a Whatman ce criteria not es dilution or reir	de QC range ank calibration ra calibration ra ary column calibration ra n on Limit Lev 0.7um GF/F met	e but ange ange el F filter
37CI-2,3,7,8-TCDD	80.7	35.0 - 197			L				

Analyst: Date: 4/18/2018

Reviewed By:____ Date: 4/18/2018

FAL ID: 11423-005-SA Client ID: SP1-5 Matrix: Solid Batch No: X4473	5-SA Date Extracted: 04-16-2018 Date Received: 04-04-2018 Amount: 5.05 g % Solids: 96.53			ICal: PCDDFAL4-12-20-17 GC Column: DB5MS Units: pg/g			Acquired: 04-18-2018 2005 WHO TEQ: 4.88 Basis: Dry Weight		
Compound	Con	c DL	Qual	2005 WHO Tox	MDL	Compound	Conc	DL	Qual
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD 0CDD	NI 0.68 1.4 5.7 2.9 15 154	D 0.245 2 - 4 - 6 - 2 - 2 - 0 -	J J	0.682 0.144 0.576 0.292 1.52 0.462	0.0273 0.0570 0.0793 0.0940 0.0823 0.0842 0.172	Total TCDD Total PeCDD Total HxCDD Total HxCDD	0.702 7.92 43.4 280	- - -	J M
2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF 0,00000000000000000000000000000000000	2.4 0.68 1.2 1.3 1.2 1.3 NI 1.3 1.5 36.	9 - 3 - 5 - 1 - 2 - 8 - D 0.276 8 - 1 - 7 -	F J J J J	0.249 0.0205 0.375 0.131 0.122 0.138 - - 0.138 0.0151 0.0110	0.0269 0.0449 0.0468 0.0437 0.0417 0.0574 0.0657 0.0747 0.0883 0.170	Total TCDF Total PeCDF Total HxCDF Total HpCDF	15.5 13.0 18.9 39.6		
Internal Standards 13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-2,3,7,8-TCDF 13C-2,3,7,8-PeCDF 13C-2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HpCDF 13C-1,2,3,4,7,8,9-HxCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF	% Rec 89.0 92.6 94.0 89.8 82.3 65.1 93.5 85.8 87.6 87.1 83.3 80.0 79.6 79.7 80.5 68.7	QC Limits 25.0 - 164 25.0 - 181 32.0 - 141 28.0 - 130 23.0 - 140 17.0 - 157 24.0 - 169 24.0 - 185 21.0 - 178 26.0 - 152 26.0 - 123 28.0 - 136 29.0 - 147 28.0 - 138 17.0 - 157	Qual		A Isc sig B An C Ch D Pre DNQ An F An M Ma ND An NP No P Pre S Sa X Ma * Re	topic Labeled St nal to noise ratic alyte is present i emical Interferer esence of Dipher alyte concentrati alyte concentrati alyte concentrati alyte concentrati alyte concentrati aximum possible alyte Not Detect the Provided e-filtered through mple acceptance sult taken from con	andard outsic o is >10:1 n Method Bla nce nyl Ethers on is below c on is above c on is above c on on seconda on is below c concentratior ed at Detectic a a Whatman e criteria not r s dilution or rein	le QC range nk alibration ra alibration ra n Limit Lev D.7um GF/F net jection	e but inge ange inge el
37CI-2,3,7,8-TCDD	84.1	35.0 - 197							

Analyst: Date: 4/18/2018

Reviewed By:____ Date: 4/18/2018

FAL ID: 11423-006-SA Client ID: SP1-6 Matrix: Solid Batch No: X4473	Date Extracted: 04-16-2018ICal: PCDDFAL4-12-20-17Date Received: 04-04-2018GC Column: DB5MSAmount: 5.02 gUnits: pg/g% Solids: 96.16				0-17 / 2 E	Acquired: 04-18-2018 2005 WHO TEQ: 5.00 Basis: Dry Weight			
Compound	Con	nc DL	Qual	2005 WHO Tox	MDL	Compound	Conc	DL	Qual
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD 0CDD	N 1.0 1.7 4.9 3.1 11 107	D 0.232 06 - 72 - 03 - 77 - 15 - 70 -	Մ Մ Մ	1.06 0.172 0.493 0.317 1.15 0.321	0.0273 0.0570 0.0793 0.0940 0.0823 0.0842 0.172	Total TCDD Total PeCDD Total HxCDD Total HpCDD	ND 2.91 31.8 206	0.232 - - -	J
2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF 0,00000000000000000000000000000000000	1.3 N 1.3 2.2 1.4 1.8 0.67 27. 1.8 65.	35 - D 0.269 38 - 37 - 37 - 31 - 32 - 31 - 31 - 32 - 31 - 4 -	ן ר ר ן	0.135 - 0.414 0.227 0.147 0.147 0.181 0.0677 0.279 0.0181 0.0196	0.0269 0.0449 0.0468 0.0437 0.0417 0.0574 0.0657 0.0747 0.0883 0.170	Total TCDF Total PeCDF Total HxCDF Total HpCDF	7.40 13.2 39.9 78.0	- - -	
Internal Standards 13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-2,3,7,8-PeCDF 13C-1,2,3,7,8-PeCDF 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF	% Rec 89.9 90.5 94.1 92.4 89.5 78.6 93.0 86.3 87.1 88.4 85.6 85.4 84.8 87.3 88.6 77.2	QC Limits 25.0 - 164 25.0 - 181 32.0 - 141 28.0 - 130 23.0 - 140 17.0 - 157 24.0 - 169 24.0 - 185 21.0 - 178 26.0 - 123 28.0 - 136 29.0 - 147 28.0 - 138 17.0 - 157	Qual		A lsc sig B Ar C Ct D Pr DNQ Ar F Ar J Ar ND Ar ND Ar NP No P Pr S Sa X Ma * Re	otopic Labeled St gnal to noise ratio halyte is present in hemical Interferen esence of Dipher halyte concentratio halyte conc	andard outsi is >10:1 n Method Bla nce byl Ethers on is below of on is below of concentratio ed at Detection a Whatman e criteria not s	de QC rang ank calibration ra calibration ra ary column calibration ra n on Limit Lev 0.7um GF/f met njection	e but ange ange ange rel = filter
37CI-2,3,7,8-TCDD	85.7	35.0 - 197							

Analyst: Date: 4/18/2018

Reviewed By:____ Date: 4/18/2018

FAL ID: 11423-007-SA Client ID: SP1-7 Matrix: Solid Batch No: X4473	Date Extracted: 04-16-2018 ICal: PCDDFAL4-12-20-1 Date Received: 04-04-2018 GC Column: DB5MS Amount: 5.05 g Units: pg/g % Solids: 95.81				20-17	17 Acquired: 04-18-2018 2005 WHO TEQ: 1.65 Basis: Dry Weight				
Compound	Cor	ic DL	Qual	2005 WHO Tox	MDL	Compound	Conc	DL	Qual	
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD 0CDD	N N 2.1 1.4 47. 39	D 0.251 D 0.356 D 0.431 2 - 4 - 6 - 8 -	IJ	0.212 0.144 0.476 0.119	0.0273 0.0570 0.0793 0.0940 0.0823 0.0842 0.172	Total TCDD Total PeCDD Total HxCDD Total HxCDD	ND 0.923 14.3 84.9	0.251 - - -	J	
2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF 1,2,3,4,7,8,9-HpCDF	1.4 N 0.72 0.62 0.62 0.70 N 10. 0.83 33.	3 - D 0.372 25 - 19 - 26 - 3 - D 0.344 32 - 12 - 0 -	Մ Մ Մ	0.143 0.218 0.0829 0.0626 0.0703 - 0.103 0.00832 0.00990	0.0269 0.0449 0.0468 0.0437 0.0417 0.0574 0.0574 0.0657 0.0747 0.0883 0.170	Total TCDF Total PeCDF Total HxCDF Total HpCDF	6.16 5.88 12.9 30.7			
Internal Standards 13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PcDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-2,3,7,8-PcDF 13C-1,2,3,7,8-PeCDF 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF	% Rec 64.6 67.5 70.3 69.0 66.8 59.2 68.0 66.0 63.2 67.2 64.2 63.4 64.0 64.6 65.7 60.0	QC Limits 25.0 - 164 25.0 - 181 32.0 - 141 28.0 - 130 23.0 - 140 17.0 - 157 24.0 - 169 24.0 - 185 21.0 - 178 26.0 - 123 28.0 - 136 29.0 - 147 28.0 - 138 17.0 - 157	Qual		A IS B A C O D F DNQ A F A J A F A ND A ND A ND A S S X M * F	sotopic Labeled S signal to noise ratio Analyte is present i Chemical Interferen Presence of Diphe Analyte concentrat Analyte concentrat Maximum possible Analyte Not Detect Not Provided Pre-filtered through Sample acceptance Matrix interference Result taken from o	tandard outs b is >10:1 n Method Bl nce nyl Ethers ion is below ion is above on on second ion is below concentratic ed at Detect n a Whatmar e criteria not s dilution or rei	ide QC rang ank calibration ra calibration ra lary column calibration ra on ion Limit Lev n 0.7um GF/F met njection	e but ange ange ange rel = filter	
37CI-2,3,7,8-TCDD	60.6	35.0 - 197								

Analyst: Date: 4/18/2018

Reviewed By:____ Date: 4/18/2018

FAL ID: 11423-008-SA Client ID: SP1-8 Matrix: Solid Batch No: X4473	Date Extracted:04-16-2018ICal:Date Received:04-04-2018GC CAmount:5.02 gUnits:% Solids:94.62				DFAL4-12-20 nn: DB5MS g	0-17 / 2 E	Acquired: 04-18-2018 2005 WHO TEQ: 2.93 Basis: Dry Weight			
Compound	Con	c DL	Qual	2005 WHO Tox	MDL	Compound	Conc	DL	Qual	
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD 0CDD	NI 0.95 0.93 2.8 1.7 54. 45	D 0.255 3 - 4 - 5 - 3 - 9 - 3 - 3 -	1 1 1	0.953 0.0934 0.285 0.173 0.549 0.136	0.0273 0.0570 0.0793 0.0940 0.0823 0.0842 0.172	Total TCDD Total PeCDD Total HxCDD Total HxCDD Total HpCDD	ND 4.11 24.4 105	0.255 - - -	J	
2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF 0,2DF	1.7 NI 0.73 0.88 0.69 0.80 NI 9.3 0.80 22.	3 - D 0.387 6 - 9 - 3 - D 0.281 8 - 2 - 1 -	ე ე ე	0.173 0.221 0.0886 0.0699 0.0803 - - - 0.0938 0.00802 0.00663	0.0269 0.0449 0.0468 0.0437 0.0417 0.0574 0.0657 0.0747 0.0883 0.170	Total TCDF Total PeCDF Total HxCDF Total HpCDF	9.10 9.08 13.2 24.6	-		
Internal Standards 13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PcCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-0,2,3,4,7,8-PeCDF 13C-1,2,3,7,8-PeCDF 13C-1,2,3,4,7,8-PaCDF 13C-1,2,3,4,7,8-PACDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF	% Rec 79.8 81.7 85.3 79.9 76.9 60.1 78.5 78.2 76.9 80.2 77.7 71.9 72.3 76.8 75.2 63.7	QC Limits 25.0 - 164 25.0 - 181 32.0 - 141 28.0 - 130 23.0 - 140 17.0 - 157 24.0 - 169 24.0 - 169 24.0 - 185 21.0 - 178 26.0 - 123 28.0 - 132 28.0 - 143 26.0 - 138 17.0 - 157	Qual		A Isc sig B Ar C Cr DNQ Ar E Ar F Ar J Ar M Mi ND Ar NP No P Pr S Sa X Mi * Re	btopic Labeled Sta gnal to noise ratio nalyte is present in nemical Interferen esence of Diphen nalyte concentratio nalyte concentratio nalyte concentratio nalyte concentratio nalyte concentratio adjute Not Detected to Provided e-filtered through ample acceptances atrix interferences esult taken from d	andard outsi is >10:1 n Method Bla ce byl Ethers on is below o on is above o n on seconda on is below o concentratio ed at Detection a Whatman e criteria not s	de QC range ank calibration ra calibration ra ary column calibration ra n on Limit Lev 0.7um GF/F met njection	e but ange ange ange rel = filter	
37CI-2,3,7,8-TCDD	75.5	35.0 - 197								

Analyst: Date: 4/18/2018

Reviewed By:____ Date: 4/18/2018

FAL ID: 11423-009-SA Date Extracted: 04-16-2018 Client ID: SP1-9 Date Received: 04-04-2018 Matrix: Solid Amount: 5.03 g Batch No: X4473 % Solids: 93.92			ICal: PCD GC Colun Units: pg/	DFAL4-12 nn: DB5MS ⁄g	-20-17 S	Acquired: 04-18-2018 2005 WHO TEQ: 0.139 Basis: Dry Weight			
Compound	Con	c DL	Qual	2005 WHO Tox	MDL	Compound	Conc	DL	Qua
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD		D 0.223 D 0.339 D 0.420 D 0.431 D 0.390			0.0273 0.0570 0.0793 0.0940 0.0823	Total TCDD Total PeCDD	ND ND	0.223 0.339	
1,2,3,4,6,7,8-HPCDD OCDD	5.4 44.	7 - 1 -		0.0547 0.0132	0.0842 0.172	Total HxCDD Total HpCDD	1.72	-	J
2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF	0.56 NI NI NI NI NI	0 - D 0.326 D 0.319 D 0.349 D 0.357 D 0.400	J	0.0560 - - - -	0.0269 0.0449 0.0468 0.0437 0.0417 0.0574				
1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF 0CDF	NI 1.4 NI 2.5	D 0.430 8 - D 0.308 6 -	J	0.0148 0.000768	0.0657 0.0747 0.0883 0.170	Total TCDF Total PeCDF Total HxCDF Total HpCDF	1.15 0.564 0.710 3.02	- - -	ן ך ך
Internal Standards 13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-2,3,7,8-TCDF 13C-2,3,7,8-PeCDF 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,7,8,9-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,7,8,9-HxCDF 13C-1,2,3,	% Rec 88.8 93.2 92.2 90.3 86.3 76.3 93.2 89.7 91.8 86.5 82.3 81.4 83.1 82.9 87.8 75.6	QC Limits 25.0 - 164 25.0 - 181 32.0 - 141 28.0 - 130 23.0 - 140 17.0 - 157 24.0 - 169 24.0 - 185 21.0 - 178 26.0 - 152 26.0 - 123 28.0 - 136 29.0 - 147 28.0 - 138 17.0 - 157	Qual		A B C D D NQ F J M ND NP S S X	Isotopic Labeled Si signal to noise ratio Analyte is present i Chemical Interferer Presence of Dipher Analyte concentrati Analyte concentrati Analyte concentrati Maximum possible Analyte Not Detect Not Provided Pre-filtered through Sample acceptance Matrix interference: Result taken from o	tandard outsid o is >10:1 n Method Bla nce nyl Ethers ion is below c ion is below c concentration ed at Detection a Whatman e criteria not r s dilution or rein	de QC range nk alibration ra ary column alibration ra n bn Limit Lev 0.7um GF/F net jection	e but ange ange el F filter
37CI-2,3,7,8-TCDD	84.6	35.0 - 197			L				

Analyst:_____ Date:_______

Reviewed By:____ Date: 4/18/2018

Compound Conc DL Qual WHO Tox MDL Compound Conc DL Qual 2.3,7,8-TCDD ND 0.237 - 0.0273 - 0.0273 1.2,3,7,8-PCDD ND 0.493 - 0.0700 0.0733 1.2,3,4,7,8+KCDD 1.71 - J 0.171 0.0940 Total TCDD ND 0.237 1.2,3,7,8-PCDD 356 - J 0.174 0.0940 Total TCDD ND 0.237 1.2,3,7,8-PCDD 356 - J 0.1865 Total PCDD 13.4 - 0CDD 285 - 0.0855 0.072 Total HpCDD 63.3 - 1,2,3,4,7,8+PCDF ND 0.336 - 0.0449 - - 0.0449 1,2,3,4,7,8+PCDF ND 0.356 - J 0.0747 Total PCDF 5.59 - 1,2,3,4,7,8+PCDF ND 0.239 - 0.08637 Total PCDF 5.	FAL ID: 11423-010-SA Client ID: SP1-10 Matrix: Solid Batch No: X4473	Date Date Amou % Sc	Extracted: 04- Received: 04- unt: 5.06 g blids: 93.98	16-2018 04-2018	ICal: PCD GC Colum Units: pg/g	DFAL4-12- nn: DB5MS g	20-17	Acquired: 04-18-201 2005 WHO TEQ: 1.2 Basis: Dry Weight		
2.3,7,8-TCDD ND 0.237 - 0.0273 1,2.3,7,8-PeCDD ND 0.493 - 0.0570 1,2.3,7,8-PeCDD 1.71 - J 0.0700 0.0793 1,2.3,7,8-PeCDD 1.34 - J 0.134 0.0823 Total TCDD ND 0.493 1,2.3,7,8-PeCDD 1.34 - J 0.134 0.0823 Total PeCDD ND 0.493 1,2.3,7,8-PeCDF 1.16 - 0.116 0.0269 - - 0.0449 2,3,7,8-PeCDF ND 0.336 - 0.0449 - - 0.0468 1,2.3,7,8-PeCDF ND 0.336 - 0.0468 - - 0.0468 1,2.3,7,8-PeCDF ND 0.336 - 0.0644 0.0417 - - - - 0.0468 1,2.3,7,8-PeCDF ND 0.356 - 0.0657 Total TCDF 5.59 - - - 0.0747 Total PeCDF 4.74 - 0.00525 0.170 Total HxCDF 10.9 - <	Compound	Con	nc DL	Qual	2005 WHO Tox	MDL	Compound	Conc	DL	Qual
2,3,7,8-TCDF 1.16 - 0.116 0.0269 1,2,3,7,8-PeCDF ND 0.336 - 0.0449 2,3,4,7,8-PeCDF ND 0.363 - 0.048 1,2,3,4,7,8-PeCDF 0.791 - J 0.0791 0.0437 1,2,3,4,7,8-PeCDF 0.644 - J 0.0644 0.0417 2,3,4,6,7,8-HxCDF 0.644 - J 0.0657 Total TCDF 5.59 - 1,2,3,4,6,7,8-HxCDF ND 0.356 - 0.0657 Total TCDF 5.59 - 1,2,3,4,6,7,8-HyCDF ND 0.239 - 0.0853 Total HxCDF 10.9 - 1,2,3,4,7,8-HxCDD 91.9 25.0 - 164 - 0.00525 0.170 Total HyCDF 19.8 - 13C-1,2,3,4,7,8-HxCDD 96.3 32.0 - 141 B Analyte is present in Method Blank C Chemical Interference D Presence of Diphenyl Ethers 13C-1,2,3,4,7,8-HxCDD 93.2 24.0 - 169 F Analyte concentration is below calibration range E Analyte concentration is below calibration range <	2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD 0CDD	NI 0.70 1.7 1.3 35. 28	D 0.237 D 0.493 0 - 1 - 4 - 6 - 55 -	J J J	0.0700 0.171 0.134 0.356 0.0855	0.0273 0.0570 0.0793 0.0940 0.0823 0.0842 0.172	Total TCDD Total PeCDD Total HxCDD Total HxCDD	ND ND 13.4 63.3	0.237 0.493 -	
Internal Standards % Rec QC Limits Qual 13C-2,3,7,8-TCDD 91.9 25.0 - 164 A Isotopic Labeled Standard outside QC range but signal to noise ratio is >10:1 13C-1,2,3,7,8-PeCDD 95.9 25.0 - 181 B Analyte is present in Method Blank 13C-1,2,3,6,7,8-HxCDD 94.2 28.0 - 130 C C hemical Interference 13C-1,2,3,4,6,7,8-HxCDD 92.1 23.0 - 140 D Presence of Diphenyl Ethers 13C-2,3,7,8-TCDF 93.2 24.0 - 169 E Analyte concentration is below calibration range 13C-1,2,3,7,8-PeCDF 91.8 24.0 - 178 F Analyte concentration is below calibration range 13C-1,2,3,4,7,8-HxCDF 89.7 26.0 - 152 J Analyte concentration is below calibration range 13C-1,2,3,4,7,8-HxCDF 86.8 26.0 - 123 J Analyte concentration is below calibration range 13C-2,3,4,6,7,8-HxCDF 86.1 28.0 - 136 J Analyte concentration is below calibration range 13C-1,2,3,6,7,8-HxCDF 86.1 28.0 - 142 ND Analyte concentration is below calibration range 13C-2,3,4	2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF 0,2DF	1.1 NI 0.79 0.64 0.73 NI 7.4 NI 7.4 NI 7.1	6 - D 0.336 D 0.363 11 - 44 - 5 - D 0.356 99 - D 0.239 5 -	J J	0.116 0.0791 0.0644 0.0736 0.0749 0.00525	0.0269 0.0449 0.0468 0.0437 0.0417 0.0574 0.0574 0.0657 0.0747 0.0883 0.170	Total TCDF Total PeCDF Total HxCDF Total HpCDF	5.59 4.71 10.9 19.8	- - -	J,M
I 30-1,2,3,7,8,9-HxCDF87.129.0 - 14713C-1,2,3,4,6,7,8-HpCDF89.028.0 - 14313C-1,2,3,4,7,8,9-HpCDF91.626.0 - 13813C-0CDF81.517.0 - 157Cleanup SurrogateXNDNot ProvidedNPNot Provided	Internal Standards 13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-0CDD 13C-2,3,7,8-PeCDF 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-0,2,4,7,8,9-HxCDF 13C-0,2,4,7,8,9-HxCDF 13C-0,2,4,7,8,9-HxCDF 13C-0,2,4,7,8,9-HxCDF 13C-0,2,4,7,7,8,9-HxCDF	% Rec 91.9 95.9 96.3 94.2 92.1 80.8 93.2 91.8 93.2 91.8 89.7 86.8 86.1 87.1 89.0 91.6 81.5	QC Limits 25.0 - 164 25.0 - 181 32.0 - 141 28.0 - 130 23.0 - 140 17.0 - 157 24.0 - 169 24.0 - 185 21.0 - 178 26.0 - 152 26.0 - 123 28.0 - 136 29.0 - 147 28.0 - 138 17.0 - 157	Qual		A IS B A C C D F DNQ A F A J A ND A ND A NP F S S X M * F	sotopic Labeled St signal to noise ratio Analyte is present i Chemical Interferer Presence of Dipher Analyte concentrati Analyte concentrati Analyte concentrati Maximum possible Analyte Not Detect Not Provided Pre-filtered through Sample acceptance Matrix interferences Result taken from c	andard outsic is >10:1 n Method Bla nce nyl Ethers on is below c on is above c n on seconda on is below c concentration ed at Detection a Whatman e criteria not n s illution or rein	de QC rang ank alibration ra ary column alibration ra n bn Limit Lev 0.7um GF/f met	e but ange ange ange rel = filter

Analyst: Date: 4/18/2018

Reviewed By:____ Date: 4/18/2018

FAL ID: 11423-011-SA Client ID: SP1-11 Matrix: Solid Batch No: X4475	Date Extracted: 04-17-2018ICal:Date Received: 04-04-2018GC CAmount: 5.01 gUnits% Solids: 92.86				≿al: PCDDFAL4-12-20-17 iC Column: DB5MS inits: pg/g			Acquired: 04-18-2018 2005 WHO TEQ: 2.94 Basis: Dry Weight			
Compound	Cor	nc DL	Qual	2005 WHO Tox	MDL	Compound	Conc	DL	Qual		
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD 0CDD	N 0.56 0.95 2.5 1.6 61 55	ID 0.192 55 - 56 - 57 - 58 - .1 - 56 -	1 1 1	0.565 0.0956 0.257 0.168 0.611 0.167	0.0273 0.0570 0.0793 0.0940 0.0823 0.0842 0.172	Total TCDD Total PeCDD Total HxCDD Total HxCDD	ND 3.01 19.0 114	0.192 - -	J		
2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF 0,2DF	1.5 0.47 1.1 1.4 1.0 1.0 1.0 0.69 13 1.1 29	58 - 72 - 11 - 14 - 04 - 03 - 04 - 15 - 14 - .9 -]]]]]	0.158 0.0142 0.333 0.144 0.104 0.103 0.0694 0.135 0.0114 0.00897	0.0269 0.0449 0.0468 0.0437 0.0417 0.0574 0.0657 0.0747 0.0883 0.170	Total TCDF Total PeCDF Total HxCDF Total HpCDF	9.88 11.5 18.6 35.7				
Internal Standards 13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,7,8-PeCDF 13C-2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF	% Rec 96.8 100 105 99.9 93.6 76.3 99.9 98.5 99.3 95.2 93.2 91.4 91.1 91.7 92.2 77.7	QC Limits 25.0 - 164 25.0 - 181 32.0 - 141 28.0 - 130 23.0 - 140 17.0 - 157 24.0 - 169 24.0 - 169 24.0 - 185 21.0 - 178 26.0 - 152 26.0 - 152 26.0 - 152 26.0 - 153 28.0 - 143 26.0 - 138 17.0 - 157	Qual		A lsc sig B Ar C Ct D Pr DNQ Ar F Ar J Ar ND Ar ND Ar NP No P Pr S Sa X Ma * Re	btopic Labeled St gnal to noise ratio halyte is present in hemical Interferen esence of Dipher halyte concentratio halyte concentration halyte concentr	andard outsi is >10:1 n Method Bla nce byl Ethers on is below of on is below of concentratio ed at Detection a Whatman e criteria not s	de QC range ank calibration ra calibration ra ary column calibration ra n on Limit Lev 0.7um GF/F met njection	e but ange ange el ⁻ filter		
37CI-2,3,7,8-TCDD	89.3	35.0 - 197									

Analyst: Date: 4/19/2018

Reviewed By:____ Date: 4/19/2018

FAL ID: 11423-012-SA Client ID: SP1-12 Matrix: Solid Batch No: X4475	Date Date Amo % So	Extracted: 04- Received: 04-0 unt: 5.05 g blids: 96.77	17-2018 04-2018	ICal: PCD GC Colum Units: pg/g	DFAL4-12-20 nn: DB5MS g	D-17 A 2 E	18-2018 EQ: 1.08 eight		
Compound	Cor	nc DL	Qual	2005 WHO Tox	MDL	Compound	Conc	DL	Qual
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD 0CDD	N 0.49 1.7 1.0 33. 30	D 0.174 D 0.318 4 - 73 - 16 - .3 - 12 -	J J	0.0494 0.173 0.106 0.333 0.0906	0.0273 0.0570 0.0793 0.0940 0.0823 0.0842 0.172	Total TCDD Total PeCDD Total HxCDD Total HpCDD	ND ND 11.1 61.2	0.174 0.318 - -	
2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF 1,2,3,4,7,8,9-HpCDF	0.69 N 0.62 0.52 0.67 N 6.9 0.57 21	99 - D 0.200 D 0.205 21 - 22 - 33 - D 0.144 11 - 26 - 2 - 2 -	ן ר ר ן	0.0699 - 0.0621 0.0522 0.0673 - 0.0691 0.00576 0.00636	0.0269 0.0449 0.0468 0.0437 0.0417 0.0574 0.0657 0.0747 0.0883 0.170	Total TCDF Total PeCDF Total HxCDF Total HpCDF	3.68 3.76 10.0 19.4	-	J
Internal Standards 13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-2,3,7,8-PeCDF 13C-2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-2,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-2,2,3,4,6,7,8-HxCDF 13C-2,2,3,4,6,7,8-HxCDF 13C-2,2,3,4,6,7,8-HxCDF 13C-2,2,3,4,6,7,8-HxCDF 13C-2,2,3,4,6,7,8-HxCDF 13C-2,2,3,4,6,7,8-HxCDF 13C-2,2,3,4,6,7,8-HxCDF 13C-2,2,3,4,6,7,8-HxCDF 13C-2,2,3,4,6,7,8-HxCDF 13C-2,2,3,4,6,7,8-HxCDF 13C-2,2,3,4,6,7,8-HxCDF 13C-2,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-2,2,3,4,7,8,9-HyCDF 13C-2,2,3,4,7,8,9-HyCDF 13C-2,2,3,4,7,8,9-HyCDF 13C-2,2,3,4,7,8,9-HyCDF 13C-2,2,4,7,8,9-HyCDF 13C-2,2,4,7,8,9-HyCDF 13C-2,2,4,7,8,9-HyCDF 13C-2,2,4,7,8,9-HyCDF 13C-2,2,4,7,8,9-HyCDF 13C-2,2,4,7,8,9-HyCDF 13C-2,2,4,7,8,9-HyCDF 13C-2,2,4,7,8,9-HyCDF 13C-2,2,4,7,8,9-HyCDF 13C-2,2,4,7,8,9-HyCDF 13C-2,2,4,7,8,9-HyCDF 13C-2,2,4,7,8,9-HyCDF 13C-2,2,4,7,8,9-HyCDF 13C-2,2,4,7,8,9-HyCDF 13C-2,2,4,7,8,9-HyCDF 13C-2,2,	% Rec 95.7 102 99.8 98.0 90.0 73.3 96.8 97.2 97.8 91.9 86.5 84.6 86.9 87.0 90.6 76.7	QC Limits 25.0 - 164 25.0 - 181 32.0 - 141 28.0 - 130 23.0 - 140 17.0 - 157 24.0 - 169 24.0 - 185 21.0 - 178 26.0 - 152 26.0 - 123 28.0 - 136 29.0 - 143 26.0 - 138 17.0 - 157	Qual		A Isc sig B An C Ch D Pro DNQ An E An F An J An M Ma ND An NP No P Pro S Sa X Ma * Re	atopic Labeled Sta nal to noise ratio alyte is present in memical Interferen esence of Diphen alyte concentratio alyte concentratio alyte concentratio alyte concentratio alyte concentratio alyte concentratio alyte Not Detected the Provided e-filtered through mple acceptance atrix interferences isult taken from di	andard outsid is >10:1 n Method Bla ce yl Ethers on is below c on is above c n on seconda on is below c concentration ed at Detection a Whatman criteria not r	de QC range ink alibration ra alibration ra ary column alibration ra n bn Limit Lev 0.7um GF/F net ijection	e but ange ange ange el ⁻ filter
37CI-2,3,7,8-TCDD	85.9	35.0 - 197			L				

Analyst: Date: <u>4/19/2018</u>

Reviewed By: Date: 4/19/2018

FAL ID: 11423-013-SA Client ID: SP1-13 Matrix: Solid Batch No: X4475	Date Date Amou % So	Extracted: 04-1 Received: 04-0 unt: 5.05 g liids: 94.87	17-2018 04-2018	ICal: PCE GC Colun Units: pg/	DFAL4-12-2 nn: DB5MS ′g	0-17 / 2	Acquired: 04-18-2018 2005 WHO TEQ: 2.89 Basis: Dry Weight				
Compound	Con	c DL	Qual	2005 WHO Tox	MDL	Compound	Conc	DL	Qual		
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD 0CDD	NI 0.66 0.87 2.6 1.4 71. 62	D 0.170 3 - 7 - 0 - 5 - 3 - 9 -	1 1 1	0.663 0.0877 0.260 0.145 0.713 0.189	0.0273 0.0570 0.0793 0.0940 0.0823 0.0842 0.172	Total TCDD Total PeCDD Total HxCDD Total HxCDD Total HpCDD	ND 2.30 18.8 128	0.170 - - -	J		
2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF 0,2DF	1.2 0.39 0.92 0.91 0.84 1.0 NI 12. 0.90 37.	2 - 7 - 3 - 5 - 5 - 0 0.233 5 - 1 - 1 -	յ յ յ յ	0.122 0.0119 0.278 0.0913 0.0845 0.103 - - 0.125 0.00901 0.0111	0.0269 0.0449 0.0468 0.0437 0.0417 0.0574 0.0657 0.0747 0.0883 0.170	Total TCDF Total PeCDF Total HxCDF Total HpCDF	6.98 8.44 16.6 36.9				
Internal Standards 13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDF 13C-2,3,7,8-PeCDF 13C-2,3,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,7,8,9-HyCDF 13C-1,2,3,4,7,8,9-HyCDF 13C-1,2,3,4,7,8,9-HyCDF 13C-1,2,3,4,7,8,9-HyCDF 13C-1,2,3,4,7,8,9-HyCDF 13C-1,2,3,4,7,8,9-HyCDF 13C-1,2,3,4,7,8,9-HyCDF 13C-1,2,3,4,7,8,9-HyCDF 13C-1,2,3,4,7,8,9-HyCDF 13C-1,2,3,4,7,8,9-HyCDF 13C-1,2,3,4,7,8,9-HyCDF 13C-1,2,3,4,7,8,9-HyCDF 13C-1,2,3,4,7,8,9-HyCDF140 14C-1,2,3,4,7,8,	% Rec 96.7 99.1 100 99.6 87.4 75.2 98.0 97.5 96.5 93.8 90.9 88.3 85.6 88.6 89.4 76.8	QC Limits 25.0 - 164 25.0 - 181 32.0 - 141 28.0 - 130 23.0 - 140 17.0 - 157 24.0 - 169 24.0 - 185 21.0 - 178 26.0 - 123 28.0 - 132 28.0 - 133 28.0 - 147 28.0 - 143 26.0 - 138 17.0 - 157	Qual		A Isi B Ar C CI D Pr DNQ Ar E Ar J Ar J Ar M M ND Ar ND Ar NP No S Sa X M * Ro	btopic Labeled Sta gnal to noise ratio nalyte is present in nemical Interferen resence of Dipher nalyte concentration nalyte Not Detected of Provided re-filtered through ample acceptances atrix interferences esult taken from d	andard outsi is >10:1 n Method Bla ice nyl Ethers on is below o on is above o n on seconda on is below o concentratio ed at Detection a Whatman e criteria not s	de QC rang ank calibration ra calibration ra ary column calibration ra n on Limit Lev 0.7um GF/F met	e but ange ange ange rel = filter		
37CI-2,3,7,8-TCDD	91.8	35.0 - 197									

Analyst: Date: 4/19/2018

Reviewed By:____ Date: 4/19/2018

FAL ID: 11423-014-SA Client ID: SP1-14 Matrix: Solid Batch No: X4475	Date Date Amou % So	Extracted: 04- Received: 04-0 unt: 5.00 g lids: 94.79	17-2018 04-2018	ICal: PCE GC Colur Units: pg/	DDFAL4-12 nn: DB5MS /g	2-20-17 S	Acquired: 04-18-2018 2005 WHO TEQ: 0.316 Basis: Dry Weight		
Compound	Con	c DL	Qual	2005 WHO Tox	MDL	. Compound	d Conc	DL	Qua
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD 0CDD	NI NI 0.75 NI 14. 14	0 0.179 0 0.251 0 0.261 0 - 0 0.240 3 - 7 -	J	0.0750 0.143 0.0441	0.0273 0.0570 0.0793 0.0940 0.0823 0.0842 0.172	Total TCDI Total TCDI Total PeCDI Total HxCDI Total HxCDI	0 ND 0 ND 0 4.09 0 26.0	0.179 0.251 - -	J
2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF 0,00000000000000000000000000000000000	0.30 NI NI NI NI 2.1 S.6	8 - 0 0.254 0 0.247 0 0.201 0 0.196 0 0.226 0 0.249 7 - 0 0.213 1 -	J	0.0308 - - - - 0.0217 - - - - - - - - - - - - - - - - - - -	0.0269 0.0449 0.0468 0.0437 0.0417 0.0574 0.0657 0.0747 0.0883 0.170) 7 Total TCDI 7 Total PeCDI 8 Total HxCDI 9 Total HpCDI	= 0.308 = 0.496 = 1.97 = 5.67		
Internal Standards 13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-2,3,7,8-PeCDF 13C-2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF	% Rec 92.7 97.8 96.9 94.0 85.6 62.3 95.2 96.7 97.9 90.0 87.2 83.1 81.7 81.5 83.5 68.7	QC Limits 25.0 - 164 25.0 - 181 32.0 - 141 28.0 - 130 23.0 - 140 17.0 - 157 24.0 - 169 24.0 - 185 21.0 - 178 26.0 - 152 26.0 - 123 28.0 - 136 29.0 - 147 28.0 - 143 26.0 - 138 17.0 - 157	Qual		A B C D NQ E F J M D NP P S X *	Isotopic Labeled S signal to noise rati Analyte is present Chemical Interfere Presence of Diphe Analyte concentra Analyte concentra Analyte concentra Maximum possible Analyte Not Detect Not Provided Pre-filtered throug Sample acceptance Result taken from	Standard outsi o is >10:1 in Method Bla ence enyl Ethers tion is below of tion is below of tion is below of e concentration ted at Detection the a Whatman ce criteria not es dilution or reir	de QC range ank calibration ra calibration ra ary column calibration ra n on Limit Lev 0.7um GF/F met	e but ange ange el F filter
37CI-2,3,7,8-TCDD	90.0	35.0 - 197							

Analyst: Date: 4/19/2018

Reviewed By:____ Date: 4/19/2018

FAL ID: 11423-015-SA Client ID: SP1-15 Matrix: Solid Batch No: X4475	Date Date Amo % So	Extracted: 04- Received: 04-(unt: 5.02 g blids: 94.28	17-2018 04-2018	ICal: PCD GC Colun Units: pg/)DFAL4-12-2 nn: DB5MS g	20-17	Acquired: 04-18-2018 2005 WHO TEQ: 3.20 Basis: Dry Weight			
Compound	Cor	nc DL	Qual	2005 WHO Tox	MDL	Compound	Conc	DL	Qual	
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD 0CDD	N 0.75 0.89 2.9 1.9 67 54	D 0.179 	յ յ յ	0.753 0.0897 0.291 0.193 0.672 0.164	0.0273 0.0570 0.0793 0.0940 0.0823 0.0842 0.172	Total TCDD Total PeCDD Total HxCDD Total HxCDD	0.467 4.35 22.6 122	- - -	J J	
2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF 0CDF	1.7 0.36 1.1 1.2 0.87 1.0 0.45 14 0.99 33	78 - 78 - 1 - 75 - 72 - 72 - 72 - 70 - 70 - 72 - 72 - 72 - 72 - 72 - 72 - 70 - 72 - 72 - 72 - 72 - 72 - 72 - 72 - 72 - 72 - 72 - 72 - 72 - 72 - 72 - 70 - 72 - 70 - 70 - 70 - 70 - 70 - 70 - 70 - 70 - 70 - 70 - 70 - 70 - 70 <td>Մ Մ Մ Մ</td> <td>0.178 0.0110 0.333 0.125 0.0872 0.102 0.0450 0.140 0.00992 0.0101</td> <td>0.0269 0.0449 0.0468 0.0437 0.0417 0.0574 0.0574 0.0747 0.0883 0.170</td> <td>Total TCDF Total PeCDF Total HxCDF Total HpCDF</td> <td>10.7 11.1 19.9 37.6</td> <td>-</td> <td></td>	Մ Մ Մ Մ	0.178 0.0110 0.333 0.125 0.0872 0.102 0.0450 0.140 0.00992 0.0101	0.0269 0.0449 0.0468 0.0437 0.0417 0.0574 0.0574 0.0747 0.0883 0.170	Total TCDF Total PeCDF Total HxCDF Total HpCDF	10.7 11.1 19.9 37.6	-		
Internal Standards 13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,4,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-2,3,7,8-PeCDF 13C-1,2,3,7,8-PeCDF 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-0,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-0,2,4,7,8,9-HpCDF 13C	% Rec 94.1 96.9 99.7 96.8 87.6 75.9 97.3 94.6 96.1 91.5 88.3 86.4 86.2 87.6 88.5 76.9	QC Limits 25.0 - 164 25.0 - 181 32.0 - 141 28.0 - 130 23.0 - 140 17.0 - 157 24.0 - 169 24.0 - 169 24.0 - 185 21.0 - 178 26.0 - 152 26.0 - 123 28.0 - 136 29.0 - 147 28.0 - 138 17.0 - 157	Qual		A Is Sig B Ar C CI D Pr DNQ Ar F Ar J Ar M M ND Ar NP Nr S Si X M * R	otopic Labeled S gnal to noise ratio nalyte is present i hemical Interferen resence of Diphe nalyte concentrat nalyte concentrat nalyte concentrat aximum possible nalyte Not Detect of Provided re-filtered through ample acceptance atrix interference esult taken from o	tandard outsi b is >10:1 n Method Bla nce nyl Ethers ion is below c ion is below c concentration ed at Detection a Whatman e criteria not is s	de QC range ank calibration ra calibration ra ary column calibration ra n on Limit Lev 0.7um GF/F met njection	e but ange ange el - filter	
37CI-2,3,7,8-TCDD	92.6	35.0 - 197								

Analyst: Date: 4/19/2018

Reviewed By:____ Date: 4/19/2018

FAL ID: 11423-016-SA Client ID: SP1-16 Matrix: Solid Batch No: X4475	Date Date Amou % So	Extracted: 04- Received: 04-(unt: 5.00 g lids: 94.97	17-2018 04-2018	ICal: PCD GC Colun Units: pg/	DFAL4-12-2 nn: DB5MS g	0-17 / 2 E	7 Acquired: 04-18-2018 2005 WHO TEQ: 1.97 Basis: Dry Weight					
Compound	Con	c DL	Qual	2005 WHO Tox	MDL	Compound	Conc	DL	Qual			
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD 0CDD	NI 0.55 0.70 1.6 1.4 34. 26	D 0.180 6 - 1 - 4 - 8 - 8 - 9 -	յ յ յ	0.556 0.0701 0.164 0.148 0.348 0.0807	0.0273 0.0570 0.0793 0.0940 0.0823 0.0842 0.172	Total TCDD Total PeCDD Total HxCDD Total HpCDD	ND 1.78 12.6 62.9	0.180 - - -	J			
2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF 0,2DF	0.86 NI 0.51 0.55 0.83 1.0 NI 10. 0.75 20.	3 - 0 0.209 9 - 2 - 0 - 6 - 0 0.219 6 - 8 - 2 - 2 - 0 - 0.209 9 - - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	ן ר ר ר ר	0.0863 0.156 0.0552 0.0830 0.106 0.106 0.00758 0.00606	0.0269 0.0449 0.0468 0.0437 0.0417 0.0574 0.0657 0.0747 0.0883 0.170	Total TCDF Total PeCDF Total HxCDF Total HpCDF	4.02 5.39 14.0 23.7					
Internal Standards 13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PcCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,7,8-HxCDD 13C-2,3,7,8-PCCDF 13C-1,2,3,7,8-PeCDF 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF	% Rec 93.3 94.4 101 98.5 88.4 71.2 95.3 93.2 94.4 93.4 88.9 85.4 86.2 87.3 87.8 74.5	QC Limits 25.0 - 164 25.0 - 181 32.0 - 141 28.0 - 130 23.0 - 140 17.0 - 157 24.0 - 169 24.0 - 169 24.0 - 185 21.0 - 178 26.0 - 123 28.0 - 123 28.0 - 123 28.0 - 143 28.0 - 143 26.0 - 138 17.0 - 157	Qual		A Iso sig B Ar C Cl D Pr DNQ Ar F Ar J Ar ND Ar ND Ar NP No P Pr S Sa X M: X Re	btopic Labeled St gnal to noise ratio halyte is present in hemical Interferen esence of Dipher halyte concentratio halyte conc	andard outsid is >10:1 n Method Bla ce yl Ethers on is below c on is below c on is below c concentration ad at Detection a Whatman c criteria not n is ilution or rein	de QC rang ank calibration ra calibration ra alibration ra on Limit Lev 0.7um GF/F met njection	e but ange ange el = filter			
37CI-2,3,7,8-TCDD	85.2	35.0 - 197										

Analyst: Date: 4/19/2018

Reviewed By:____ Date: 4/19/2018

FAL ID: 11423-017-SA Client ID: SP1-17 Matrix: Solid Batch No: X4475	Date Date Amo % Sc	Extracted: 04- Received: 04-(unt: 5.04 g olids: 95.05	17-2018 04-2018	ICal: PCD GC Colun Units: pg/	DFAL4-12-2 nn: DB5MS ′g	0-17 A 2 E	Acquired: 04-18-2018 2005 WHO TEQ: 0.429 Basis: Dry Weight		
Compound	Con	ic DL	Qual	2005 WHO Tox	MDL	Compound	Conc	DL	Qual
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD OCDD	Ni Ni 1.0 0.68 16. 13	D 0.179 D 0.217 D 0.240 7 - 9 - 0 - 1 -	IJ	0.107 0.0689 0.160 0.0393	0.0273 0.0570 0.0793 0.0940 0.0823 0.0842 0.172	Total TCDD Total PeCDD Total HxCDD Total HpCDD	ND ND 6.81 29.2	0.179 0.217 -	
2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF 0,00000000000000000000000000000000000	0.27 Ni Ni Ni Ni 2.4 Ni 6.0	4 - D 0.166 D 0.211 D 0.211 D 0.232 D 0.253 8 - D 0.224 8 -	J	0.0274 - - - - 0.0248 - - - - - - - - - - - - - - - - - - -	0.0269 0.0449 0.0468 0.0437 0.0417 0.0574 0.0657 0.0747 0.0883 0.170	Total TCDF Total PeCDF Total HxCDF Total HxCDF	0.932 1.71 3.08 6.12		J,M J J
Internal Standards 13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-1,2,3,7,8-PeCDF 13C-2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-0CDF	% Rec 94.0 97.5 98.8 97.9 88.8 73.4 95.8 93.8 94.7 92.3 87.8 86.3 86.2 84.6 88.7 76.9	QC Limits 25.0 - 164 25.0 - 181 32.0 - 141 28.0 - 130 23.0 - 140 17.0 - 157 24.0 - 169 24.0 - 185 21.0 - 178 26.0 - 152 26.0 - 123 28.0 - 136 29.0 - 147 28.0 - 143 26.0 - 138 17.0 - 157	Qual		A Is B Ar C CI D Pr DNQ Ar F Ar J Ar M M ND Ar NP Nr S Sr X M * R	otopic Labeled St gnal to noise ratio nalyte is present in hemical Interferen resence of Dipher nalyte concentration nalyte concentration nalyte concentration nalyte concentration nalyte concentration nalyte Not Detected of Provided re-filtered through ample acceptances atrix interferences esult taken from d	andard outsid is >10:1 n Method Bla ice byl Ethers on is below c con is above c n on seconda concentration ed at Detection a Whatman e criteria not r s ilution or rein	de QC rang Ink alibration ra ary column alibration ra n on Limit Lev 0.7um GF/F met	e but ange ange rel F filter
37CI-2,3,7,8-TCDD	85.0	35.0 - 197							

Analyst: Date: 4/19/2018

Reviewed By:____ Date: 4/19/2018

FAL ID: 11423-018-SA Client ID: SP1-18 Matrix: Solid Batch No: X4475	Date Date Amou % Sc	Extracted: 04- Received: 04- unt: 5.00 g lids: 93.52	17-2018 04-2018	ICal: PCE GC Colur Units: pg/	DFAL4-12 nn: DB5MS ⁄g	-20-17	Acquired: 04-18-2018 2005 WHO TEQ: 0.891 Basis: Dry Weight				
Compound	Con	c DL	Qual	2005 WHO Tox	MDL	Compound	I Conc	DL	Qual		
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD 0CDD	NI NI 0.83 0.76 11. 89.	D 0.171 D 0.292 D 0.272 2 - 2 - 5 - 3 -	IJ	0.0832 0.0762 0.115 0.0268	0.0273 0.0570 0.0793 0.0940 0.0823 0.0842 0.172	Total TCDD Total PeCDD Total HxCDD Total HxCDD Total HpCDD	 ND 0.581 6.39 22.0 	0.171 - - -	J		
2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF 0,CDF	1.5 Ni 0.82 0.67 0.45 0.48 Ni 2.9 Ni 4.7	2 - 0 0.203 1 - 1 - 9 - 0 0.208 1 - 0 0.208 1 - 0 0.321 6 -	1 1 1 1	0.152 0.246 0.0671 0.0451 0.0489 0.0291 0.00143	0.0269 0.0449 0.0468 0.0437 0.0417 0.0574 0.0574 0.0657 0.0747 0.0883 0.170	Total TCDF Total PeCDF Total HxCDF Total HxCDF	5.49 5.82 5.46 6.72	- - -			
Internal Standards 13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-2,3,7,8-PeCDF 13C-2,3,7,8-PeCDF 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF	% Rec 98.4 101 101 91.5 74.2 100 97.3 97.5 95.0 91.3 89.9 86.2 89.4 91.3 79.0	QC Limits 25.0 - 164 25.0 - 181 32.0 - 141 28.0 - 130 23.0 - 140 17.0 - 157 24.0 - 169 24.0 - 185 21.0 - 178 26.0 - 123 28.0 - 123 28.0 - 136 29.0 - 147 28.0 - 138 17.0 - 157	Qual		A 5 B 7 C 0 DNQ 7 F 7 J 7 ND 7 NP 1 S 5 X 1 * 1	Isotopic Labeled S signal to noise rationally the is present Chemical Interfere Presence of Diphe Analyte concentral Analyte concentral Analyte concentral Maximum possible Analyte Not Detect Not Provided Pre-filtered through Sample acceptance Matrix interference Result taken from	tandard outs o is >10:1 in Method B nce nyl Ethers tion is below tion is above on on second tion is below concentration ted at Detect n a Whatman we criteria not s dilution or re	side QC range lank calibration ran calibration ran dary column calibration ran on tion Limit Leve n 0.7um GF/F t met injection	e but nge nge nge el filter		
37CI-2,3,7,8-TCDD	92.7	35.0 - 197									

Analyst: Date: 4/19/2018

Reviewed By:____ Date: 4/19/2018

FAL ID: 11423-019-SA Client ID: SP1-19 Matrix: Solid Batch No: X4475	Date Date Amou % So	Extracted: 04-1 Received: 04-0 Int: 5.01 g Iids: 95.10	17-2018 04-2018	ICal: PCD GC Colun Units: pg/	DFAL4-12-2 nn: DB5MS g	0-17 /	Acquired: 04-19-2018 2005 WHO TEQ: 2.84 Basis: Dry Weight				
Compound	Con	c DL	Qual	2005 WHO Tox	MDL	Compound	Conc	DL	Qual		
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD 0CDD	NI 0.774 0.933 2.76 1.92 58.9 496	0 0.197 4 - 2 - 8 - 2 - 5 - 6 -	1 1 1	0.774 0.0932 0.278 0.192 0.585 0.149	0.0273 0.0570 0.0793 0.0940 0.0823 0.0842 0.172	Total TCDD Total PeCDD Total HxCDD Total HxCDD	ND 3.60 20.3 103	0.197 - - -	J		
2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF 0CDF	0.92 0.36 0.55(0.90) 1.0(1.3 NE 15.3 0.955 32.6	1 - 4 - 5 - 1 - 0 0.248 3 - 2 - 3 - 3 -	J J J J J	0.0921 0.0109 0.167 0.0901 0.106 0.131 - - 0.153 0.00952 0.00984	0.0269 0.0449 0.0468 0.0437 0.0417 0.0574 0.0657 0.0747 0.0883 0.170	Total TCDF Total PeCDF Total HxCDF Total HpCDF	4.61 8.55 20.6 37.7				
Internal Standards 13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-2,3,7,8-PeCDF 13C-1,2,3,7,8-PeCDF 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF	% Rec 95.8 93.4 98.7 97.2 88.3 71.8 98.9 94.7 95.2 91.5 87.8 85.8 86.2 84.1 88.3 75.7	QC Limits 25.0 - 164 25.0 - 181 32.0 - 141 28.0 - 130 23.0 - 140 17.0 - 157 24.0 - 169 24.0 - 169 24.0 - 169 24.0 - 169 24.0 - 178 26.0 - 152 26.0 - 123 28.0 - 136 29.0 - 147 28.0 - 138 17.0 - 157	Qual		A Iss sig B Ar C CI D Pr DNQ Ar F Ar J Ar ND Ar ND Ar NP Nc P Pr S Sa X M * Re	otopic Labeled St gnal to noise ratio halyte is present in hemical Interferen resence of Dipher halyte concentratio halyte con	andard outsi is >10:1 n Method Bla nce nyl Ethers on is below o on is below o concentratio ed at Detectio a Whatman e criteria not s	de QC rang ank calibration ra calibration ra ary column calibration ra n on Limit Lev 0.7um GF/f met njection	e but ange ange ange rel = filter		
37CI-2,3,7,8-TCDD	85.5	35.0 - 197			_ * Re	esult taken from d	illution or reir	njection			

Analyst: Date: 4/19/2018

Reviewed By:____ Date: 4/19/2018

Batch No: X4475	Amount: 5.03 g % Solids: 93.51	04-2018	GC Colum Units: pg/g	n: DB5MS	0-17	Acquired: 04-19-2018 2005 WHO TEQ: 3.62 Basis: Dry Weight			
Compound	Conc DL	Qual	2005 WHO Tox	MDL	Compound	Conc	DL (Qual	
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD OCDD	ND 0.210 0.856 - 1.19 - 3.04 - 2.00 - 55.7 - 455 -)]]	0.856 0.119 0.304 0.200 0.557 0.137	0.0273 0.0570 0.0793 0.0940 0.0823 0.0842 0.172	Total TCDD Total PeCDD Total HxCDD Total HxCDD	0.546 4.16 20.1 100	- - -	J J	
2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF 0CDF	2.58 - 0.736 - 1.66 - 1.88 - 1.12 - 1.45 - 0.856 - 11.3 - 1.60 - 27.4 -	F J J J J J	0.258 0.0221 0.498 0.188 0.112 0.145 0.0856 0.113 0.0160 0.00822	0.0269 0.0449 0.0468 0.0437 0.0417 0.0574 0.0657 0.0747 0.0883 0.170	Total TCDF Total PeCDF Total HxCDF Total HpCDF	14.6 13.2 18.4 32.2	- - -		
Internal Standards % R 13C-1,2,3,7,8-PeCDD 10 13C-1,2,3,7,8-PeCDD 10 13C-1,2,3,4,7,8-HxCDD 10 13C-1,2,3,6,7,8-HxCDD 93. 13C-1,2,3,4,6,7,8-HpCDD 93. 13C-1,2,3,7,8-PeCDF 10 13C-1,2,3,7,8-PeCDF 96. 13C-2,3,7,8-PeCDF 96. 13C-1,2,3,4,7,8-PeCDF 98. 13C-1,2,3,4,7,8-HxCDF 91. 13C-1,2,3,4,6,7,8-HxCDF 93. 13C-1,2,3,4,6,7,8-HxCDF 93. 13C-1,2,3,4,6,7,8-HxCDF 93. 13C-1,2,3,4,6,7,8-HxCDF 93. 13C-1,2,3,4,6,7,8-HxCDF 93. 13C-1,2,3,4,6,7,8-HxCDF 93. 13C-0CDF 81. Cleanup Surrogate 81. <td>Acc QC Limits 5 25.0 - 164 1 25.0 - 181 4 32.0 - 141 2 28.0 - 130 2 23.0 - 140 8 17.0 - 157 2 24.0 - 169 9 24.0 - 185 5 21.0 - 178 1 26.0 - 152 3 26.0 - 123 2 28.0 - 136 7 29.0 - 147 0 28.0 - 143 .5 26.0 - 138 8 17.0 - 157</td> <td>Qual</td> <td></td> <td>A Isc sig B Ar C Ct D Pr DNQ Ar E Ar F Ar J Ar M Ma ND Ar NP No P Pr S Sa X Ma X Ma</td> <td>otopic Labeled Signal to noise ratio nalyte is present in memical Interference resence of Diphenalyte concentrat nalyte concentrationalyte concentrat aximum possible nalyte Not Detect of Provided re-filtered through ample acceptance atrix interference esult taken from of</td> <td>tandard outsi o is >10:1 in Method Bla nce nyl Ethers ion is below o ion is below o concentratio ed at Detecti n a Whatman e criteria not s dilution or rei</td> <td>de QC range b ank calibration rang calibration rang ary column calibration rang n on Limit Level 0.7um GF/F fi met njection</td> <td>ge ge ge lter</td>	Acc QC Limits 5 25.0 - 164 1 25.0 - 181 4 32.0 - 141 2 28.0 - 130 2 23.0 - 140 8 17.0 - 157 2 24.0 - 169 9 24.0 - 185 5 21.0 - 178 1 26.0 - 152 3 26.0 - 123 2 28.0 - 136 7 29.0 - 147 0 28.0 - 143 .5 26.0 - 138 8 17.0 - 157	Qual		A Isc sig B Ar C Ct D Pr DNQ Ar E Ar F Ar J Ar M Ma ND Ar NP No P Pr S Sa X Ma X Ma	otopic Labeled Signal to noise ratio nalyte is present in memical Interference resence of Diphenalyte concentrat nalyte concentrationalyte concentrat aximum possible nalyte Not Detect of Provided re-filtered through ample acceptance atrix interference esult taken from of	tandard outsi o is >10:1 in Method Bla nce nyl Ethers ion is below o ion is below o concentratio ed at Detecti n a Whatman e criteria not s dilution or rei	de QC range b ank calibration rang calibration rang ary column calibration rang n on Limit Level 0.7um GF/F fi met njection	ge ge ge lter	

Analyst: Date: 4/19/2018

Reviewed By:____ Date: 4/19/2018

CLIENT INFORMATION INVOICE INFORMATION PROJECT INFORMATION Company Name: BuseA asolations. Inc. Company Name: BaseA asolations. Inc. Company Name: BaseA asolations. Inc. Contract Name: Job BuseA Contract Name: Job BuseA Contract Name: Job BuseA Contract Name: Job BuseA PLO. W: PLO W: </th <th></th> <th></th> <th>Frontier Analyt 5172 Hillsdale El Dorado Hills Tel: 916-934-0 Fax: 916-934-0</th> <th>tical Laborat Circle s, CA 95762 900 9999</th> <th>ory</th> <th colspan="5">FAL USE ONLY Laboratory Project No.: Temperature:</th> <th colspan="4">_<u>₩42.3</u></th> <th colspan="6">Chain of Custody www.frontieranalytical.com Please Print in Pen Page of</th>			Frontier Analyt 5172 Hillsdale El Dorado Hills Tel: 916-934-0 Fax: 916-934-0	tical Laborat Circle s, CA 95762 900 9999	ory	FAL USE ONLY Laboratory Project No.: Temperature:					_ <u>₩42.3</u>				Chain of Custody www.frontieranalytical.com Please Print in Pen Page of						
Company Name: Buse Associates, Inc. Company Name: Same FAL Quote 4: 3310 FAL Quote 4: 3310 Contact Name: Address: Phone: Phone: <td>CLIENT</td> <td>INFORMATI</td> <td>DN</td> <td></td> <td>IN</td> <td>VOICE IN</td> <td>FOR</td> <td>MAT</td> <td>ION</td> <td>(if diff</td> <td>erent fi</td> <td>rom eli</td> <td>ent inf</td> <td>5) I</td> <td>PROJ</td> <td>ECT</td> <td>INF</td> <td>ORMATION</td>	CLIENT	INFORMATI	DN		IN	VOICE IN	FOR	MAT	ION	(if diff	erent fi	rom eli	ent inf	5) I	PROJ	ECT	INF	ORMATION			
Contact Name: doe Busea Contact Name: doe Busea P0.5: $P0.5:$	Company	Name: Brusca	Associates, Inc.		Con	npany Nam	e: Sa	ame						F	FAL Quote #: <u>3310</u>						
Address: Project 32, 2002 43 - 022	Contact N	ame: Joe Brusca	1		Con	tact Name:								F	P.O. #	:	1.000				
Phone: Pax: Prode: Pax: Prode: Prod: Prode: Prode:	Address:	PO Box 332, Ro	seville, CA 95661		Add	ress:									rojec	t #:	13	+-002			
Linking Directly of obstands down Image: Terminic of the second and the second	Phone: <u>91</u> Email: iter	<u>6-677-1470</u>	Fax:		Pno Em:	ne:			- Fax	:				r r	TOJEC	t INan	ne: _	$\frac{ATI+VOP}{15} = \frac{10}{10} = \frac{10}{5*} = \frac{10}{3*} (v) one$			
REPORT INFORMATION REPORT DISTRIBUTION (email only is preferred) ADDITIONAL INSTRUCTIONS Report Level: UII III IV Hardcopy EDD: FAL Basic Geotracker Custom: Contact FAL Contact FAL Email (.pdf including EDDs if requested) California State Drinking Water Form Source R: Source R: <td>Eman, pr</td> <td>usca@bruscaass</td> <td>ociates.com</td> <td></td> <td></td> <td>111.</td> <td></td> <td><u></u></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>FAL</td> <td>must</td> <td>t aore</td> <td>e with price and RUSH TAT in writing</td>	Eman, pr	usca@bruscaass	ociates.com			111.		<u></u>							FAL	must	t aore	e with price and RUSH TAT in writing			
REPORT INFORMATION REPORT DISTRIBUTION (email only is preferred) ADDITIONAL INSTRUCTIONS Report Level: UII III IVI Hardcopy BED: \bigcirc FAL Basic Geotracker CD (pdf including EDDs if requested) **CONGENERS **TEQ California State Drinking Water Form Source #: Source #: ** ** **CONGENERS **TEQ Zash, State Drinking Water Form Source #: Source #: **															1730	muo	t ugit	e with proc and record first in whitig.			
Report Level: I/II III IV Hardcopy EDD: FAL Basic Geotracker CD (.pdf including EDDs if requested) California State Drinking Water Form Source k : Email (.pdf including EDDs if requested) System k : Source k : Source k : Source k : Source k : Sample: Employer: Imployer: Imployer: </td <td>REPORT</td> <td>INFORMATI</td> <td>ON</td> <td>· · · · · · · · · · · · · · · · · · ·</td> <td>R</td> <td>EPORT D</td> <td>IST</td> <td>RIBU</td> <td>FION</td> <td>l (em</td> <td>ail on</td> <td>ly is p</td> <td>orefer</td> <td>red)</td> <td></td> <td></td> <td>AD]</td> <td>DITIONAL INSTRUCTIONS</td>	REPORT	INFORMATI	ON	· · · · · · · · · · · · · · · · · · ·	R	EPORT D	IST	RIBU	FION	l (em	ail on	ly is p	orefer	red)			AD]	DITIONAL INSTRUCTIONS			
$ \begin{array}{ $	Report Le	vel: I/II	III IV			Hardcopy	7														
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	EDD:	FAL Other	Basic Geo Cus	otracker stom: Contac	t FAL	CD (.pdf	inclu df in	iding H	EDDs g EDI	if rec Ds if 1	ueste reque	d) sted)									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	System #	Inia State Drink	Source #				1	T	[1					L			**CONGENERS **TEO			
Sampler: Employer: Image: Sample ID Date Time Matrix Matrix Image: Sample ID Date Time Sample ID Dat	System #.		Boulee #	•			ers						Y.								
Sample IDDateTimeMatrix $\begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 $	Sampler:		Employe	r:			tain	3** *	**0	0	**0	XI X	6/6-	23A	ò			2,3,7,8-1CDD only			
Sample IDDateTimeMatrix $\frac{\pi}{2}$						·	con	161	829	[02	828	ipu	TO	23/.	166	15		2,3,7,8-TCDD/F only 2005 WHO			
CollectedCollectedCollectedCollectedCollectedCollectedCollectedCollectedCollectedRemarks1 $Se [-1]$ $4/4/r3$ $I(S1)$ SouthSouthCollectedCollectedCollectedCollected2 $Se [-2$ $I(2i0)$ X I I I I I I I I 3 $Se [-4$ $I(2i0)$ X I I I I I I I 4 $Se [-4$ $I(2i0)$ X I I I I I I I 5 $Se [-4$ $I(2i0)$ X I I I I I I I 6 $Se [-6$ $I(2i0)$ X I I I I I I I 7 $Se [-8$ $I(2i2)$ X I I I I I I I 8 $Se [-8$ $I(2i2)$ X I I I I I I I I I 10 $Se [-i(2)$ $I(2i3)$ X I	1911	Sample	ID	Date	Time	Matrix	# of	PA	PA	TN	ΡA	bpe	ΡA	ΡA	ΡA	AL	the	✓ PCDD/F (Cl_4 - Cl_8) Other			
1 $SP [-1]$ $4/4/13$ $(1:S^{4})$ $Sold D$ 2 $SP [-2]$ $(1:S^{4})$ $Sold D$ $(1:S^{4})$ $(1:S^{4})$ 3 $SC (-3)$ $(1:S^{4})$ $(1:S^{4})$ $(1:S^{4})$ $(1:S^{4})$ 4 $SP [-2]$ $(1:S^{4})$ $(1:S^{4})$ $(1:S^{4})$ $(1:S^{4})$ 5 $SP [-5]$ $(1:S^{4})$ $(1:S^{4})$ $(1:S^{4})$ $(1:S^{4})$ 5 $SP [-5]$ $(1:S^{4})$ $(1:S^{4})$ $(1:S^{4})$ $(1:S^{4})$ 6 $SP [-6]$ $(1:S^{4})$ $(1:S^{4})$ $(1:S^{4})$ $(1:S^{4})$ 7 $SP [-7]$ $(1:S^{4})$ $(1:S^{4})$ $(1:S^{4})$ $(1:S^{4})$ 8 $SP (-8)$ $(1:S^{2})$ X $(1:S^{4})$ $(1:S^{4})$ 10 $SP (-(1)$ $(1:S^{4})$ $(1:S^{4})$ $(1:S^{4})$ $(1:S^{4})$ 11 $SP (-(1:S)$ $(1:S^{4})$ $(1:S^{4})$ $(1:S^{4})$ $(1:S^{4})$ 12 $SP (-(1:S)$ $(1:S^{4})$ $(1:S^{4})$ $(1:S^{4})$ $(1:S^{4})$ $(1:S^{4})$ $(1:S^{4})$ <				Colle	cted			<u> </u>	ш		щ	~	щ	щ	ш	щ		Remarks			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1 \$	P1-1		4/4/13	11:59	SOLID		\square													
3 $Se(1-3)$ 12.03 X 12.03 4 $Se[1-4]$ 12.05 X 12.05 5 $Se[1-5]$ (2.12 X 12.05 6 $Se[1-6]$ (2.13) X 12.05 7 $Se[1-7]$ (2.17) X 12.05 8 $Se[1-8]$ (2.12) X 12.05 9 $Se[1-9]$ (2.12) X 12.05 9 $Se[1-9]$ (2.22) X 12.05 10 $Se[1-e0]$ (2.31) X 12.05 11 $Se[1-e1]$ (12.35) X 12.05 12 $Se[1-e13]$ (12.37) X 12.05 13 $Se[1-e13]$ (12.42) X 12.05 13 $Se[1-e15]$ (12.44) 12.44 14.16 15 $Se[1-e15]$ (12.44) 12.44 14.16 15 $Se[1-e15]$ (12.44) 14.16 14.16 15 $Se[1-e15]$ (12.44) 14.16 14.16 14 $Se[1-e15]$	2 St	2-1-2			12:01			X	ļ	ļ								e and an			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	<u>3 Se</u>	1-3			12:03			X	<u> </u>								-				
5 $Se_1 - S$ $12:12$ X I 6 $Se_1 - G$ $12:13$ X I 7 $Se_1 - 7$ $12:17$ X I 8 $Se_1 - 9$ $12:22$ X I 9 $Se_1 - 9$ $12:25$ X I 10 $Se_1 - 11$ $12:35$ X I 11 $Se_1 - 11$ $12:35$ X I 12 $Se_1 - 12$ $12:37$ X I 13 $Se_1 - 15$ $12:42$ X I Samples will be disposed of 90 days after sample receipt unless other arrangements have been made and agreed upon in writing. Date Samples will be disposed of 90 days after sample receipt unless other arrangements have been made and agreed upon in writing. Mate	4 SP	1-4			12:05		- wijiwa	X													
6 $Se_1 - 6$ $(2:13)$ X Image: constraint of the second s	5 Se	1-5			12:12			X													
7 $Sel - 7$ $(2:17)$ X Image: constraint of the second se	6 SE	1-6			12:13			X													
8 $Sr(-8)$ $(2:22)$ X Image: Constraint of the state of	7 Se	1-7			12:17			X													
9 $Sel - q$ $(2:25)$ X Image: constraint of the second se	8 Se	1-8		stannin in j	12:22		1995	X													
10 $SP(-iO)$ $12:SI$ X I I 11 $SP(-iI)$ $12:35$ X I I 12 $SP(-iZ)$ $i2:37$ X I I 13 $SP(-iZ)$ $i2:42$ X I I 14 $SP(-iS)$ $i2:45$ X I I 15 $SP(-iS)$ $i2:47$ X I I Samples will be disposed of 90 days after sample receipt unless other arrangements have been made and agreed upon in writing. Samples will be disposed of 90 days after sample receipt unless other arrangements have been made and agreed upon in writing. Mate Mate Time Mate I I Mate I I Mate	9 SP	1-9			12:25			X													
11 $SC[-(1]$ $12:35$ X I I 12 $SC[-(2]$ $12:37$ X I I 13 $SC[-(3]$ $12:42$ X I I 14 $SC[-(4]$ $12:45$ X I I 15 $SC[-(5)$ $12:47$ X I I Samples will be disposed of 90 days after sample receipt unless other arrangements have been made and agreed upon in writing. Samples will be disposed of 90 days after sample receipt unless other arrangements have been made and agreed upon in writing. Mate Time Received by: (Signature and Printed Name) Date Time After V 7:00	10 SE	1-10	1040		12:31			X										- 194 			
12 $SP(-(Z)$ $(Z:37)$ X Q 13 $SP(-(3)$ $(Z:42)$ X Q 14 $SP(-(4)$ $(Z:45)$ X Q 15 $SP(-(5)$ $(Z:47)$ X Q Samples will be disposed of 90 days after sample receipt unless other arrangements have been made and agreed upon in writing. Samples will be disposed of 90 days after sample receipt unless other arrangements have been made and agreed upon in writing. Refinquished by: (Signature and Printed Name) Date Time Received by: (Signature and Printed Name) $M^2 (M^2 (S:13)$	11 SE	²1 −(1			12:35			X			ç										
13 $SP(-13)$ $12:42$ X Image: Second state sta	12 SP	1-12			12:37			X										· ·			
14 SP1-(f 12:45 X Image: Second state in the second sta	13 56	21-13			12:42			X													
15 Set 12:47 X Image: Complex will be disposed of 90 days after sample receipt unless other arrangements have been made and agreed upon in writing. Refinquished by: (Signature and Printed Name) Date Time Received by: (Signature and Printed Name) Date Time Image: Additional complex will be disposed of 90 days after sample receipt unless other arrangements have been made and agreed upon in writing. Image: Date	14 St	21-14			12:45		€	X													
Samples will be disposed of 90 days after sample receipt unless other arrangements have been made and agreed upon in writing. Refinquished by: (Signature and Printed Name) Date Time Received by: (Signature and Printed Name) Date Time Image: Additional content of the second co	15 50	21-15			12:47	l		X													
Refinquished by: (Signature and Printed Name) Date Time Received by: (Signature and Printed Name) Date Time $4/4/6$ $(5:13)$ 6.14 7.00 $(1)14$ 7.00 $(1)14$ 7.00 $(1)14$ 7.00 $(1)14$ 7.00 $(1)14$ 7.00 $(1)14$ 7.00 $(1)14$ <td></td> <td></td> <td>Sampl</td> <td>es will be dispo</td> <td>s after sample</td> <td>recei</td> <td>pt unles</td> <td>s other</td> <td>arrang</td> <td>ements</td> <td>s have</td> <td>been n</td> <td>ade an</td> <td>d agree</td> <td>ed upor</td> <td>n in w</td> <td>riting.</td>			Sampl	es will be dispo	s after sample	recei	pt unles	s other	arrang	ements	s have	been n	ade an	d agree	ed upor	n in w	riting.				
4/4/19 (5:13 Vall 2- 17:00 minute	Refinqu	shed by: (Signa	ture and Printed	Name)		Date		Tim	e.	Rece	ived	by: (Signa	ture a	nd Pr	inted	Nam	ne) Date Time			
	/N	N/2 9			4/4/1	13	(5:1	3	Koi	€	1	\geq	-	10		1/	7:00 minutes				
1 Jury Jup KICITT 04/04/18 15/3					+				ya	AN	$\widehat{}$	\mathcal{O}	m	PP-		K	· LUTT 14/04/18 15/3				

Client understands that all terms described in the proposals, quotations, and/or the general terms provided in the current FAL price schedules will be followed. FAL reserves the rights to terminate its service or withhold delivery of reports, if in FAL's sole discretion the terms of the project have been broken.

	Frontier Analy 5172 Hillsdale El Dorado Hill Tel: 916-934-0 Fax: 916-934-1	rtical Laborato Circle ls, CA 95762 0900 0999	ory	FAL USI Laborator Temperat	E ON ry Pro ture:	<i>ILY</i> oject	No.: 0	^ °(14-	2-2	5			Ch www Pleas	front se Pr	n of Custody tieranalytical.com
CLIENT INFORMATI Company Name: Brusca	ON Associates, Inc.		IN Cor	VOICE IN npany Nam	FOR e: Sa	MAT ne	ION	(if diff	èrent fi	om cli	ent inf	o) F	PROJ Fal (ECT Juote	INF #:_3	ORMATION
Contact Name: <u>Joe Bruse</u> Address: PO Box 332, Bo	oseville, CA 95661		Cor Ado	ntact Name: dress:					·			F F	P.O. # Projec	: t #:	137	7-002
Phone: <u>916-677-1470</u>	Fax:		Pho	one:			Fax	:				F	Projec	t Nan	ne: <u>L</u>	ATHROP 48-AC PROPERTY
Email: jbrusca@bruscaas	sociates.com		Em	ail:				a ka sa shada a		ana akata			FAL	busine:	ss day: t agre	ee with price and RUSH TAT in writing.
DEPORT INFORMAT				ο έρωρτ η	ISTR	IRII	TION	I (em	ail on	lto ic r	refer	red)	T			DITIONAL INSTRUCTIONS
Report Level: I/II				Hardcopy			1101	((em		1y 13 j		ieu)	<u> </u>			
		atua altan			inalu	lina T	מחם	ifro	mosto	<i>.d</i>)						
EDD:FAL	asic Ge	stom: Contac	t FAL		merue	inig r	2DDS	II Ieu	lueste	u)						
				Email (.po	df inc	ludin	g EDI	Ds if :	reque	sted)						
California State Drinl	king Water Form Source #	_ź .			1	<u> </u>	<u> </u>		1							**CONGENERS **TEO
Sampler:	Employ	er:			ners	*	*		*	х	¥6,	A				2.3.7.8-TCDD only 1998 WHO
Sampler.	Employ				ntai	613*	290*)2.0	280*	dix I	/6-0	3/23.	668	5		2.3.7.8-TCDD/F only 2005 WHO
Sampl	e ID	Date	Time	Matrix	of c	A 1	A 8	M	A 8.	open	ΤV	A 2	A 1	AL 1	her	\checkmark PCDD/F (Cl ₄ -Cl ₈) Other
		Collec	ted		#	EF	EF	ā	EF	Ψ	E	EI	E	F/	ō	Remarks
1 SP1-16		4/4/13	12:51	Solap		X									***	
2 SP1-17			12:53	i (j. 1997). Seki Sekiri Sekiri		K	<u> </u>		ļ						-	[5] S. C. M. Market and S. Market and S Market and S. M. Market and S. Market a
3 SPI-18			12:56		a filosopa	Ŕ	 									
4 SPI-19	- 12 /1 /1 / / / / / / / / / / / / / / /		13:05	The part of the second			<u> </u>						<u> </u>			
5 SPI-20			15.00		- Satara anda				┼───							
0 7					1.1				<u> </u>							
8		ting the state of the					<u> </u>									
9	ىيى بەر يېلىكە ئەلتىڭ چەندىلەر بەر چەندانلىكى بەر يېلىكە ئىلى بەر يېلىرىنى يېرىكەن مىند						1									
10								-								
11																
12	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -					ļ	ļ		ļ		<u> </u>					·
13				a laterational		<u> </u>	<u> </u>			ļ			ļ			
14		1244) 				<u> </u>		┢──								
15	Samn	les will be dispo	sed of 90 da	l vs after sample	recein	t unles	s other	arrans	gement	s have	l been n	nade ar	nd agre	ed upor	n in w	riting.
Relinquished by: (Sign	ature and Printed	Name)	407	,Date		Tim	e	Reco	eived	by: (Signa	ture a	and Pr	inted	Nam	ne) Date Time
Jun				474/13	l	5:1	3	11	<u>n 1</u>	1		>				
1								H	27	h	$\overline{}$)B	P		K.	Upp 04/04/2018 15/7
										<u> </u>	<u>َ ر</u>					

Client understands that all terms described in the proposals, quotations, and/or the general terms provided in the current FAL price schedules will be followed? FAL reserves the rights to terminate its service or withhold delivery of reports, if in FAL's sole discretion the terms of the project have been broken. White Copy – Report Yellow Copy – Laboratory

Frontier Analytical Laboratory

Sample Login Form

FAL Project ID: 11423

Client:	Brusca Associates, Inc.
Client Project ID:	137-002
Date Received:	04/04/2018
Time Received:	03:13 pm
Received By:	KZ
Logged In By:	KZ
# of Samples Received:	20
Duplicates:	0
Storage Location:	R-4

Method of Delivery:	Courier
Tracking Number:	NA
Shipping Container Received Intact	Yes
Custody seals(s) present?	No
Custody seals(s) intact?	No
Sample Arrival Temperature (C)	0
Cooling Method	Ice
Chain Of Custody Present?	Yes
Return Shipping Container To Client	Yes
Test aqueous sample for residual Chlorine	No
Sodium Thiosulfate Added	No
Adequate Sample Volume	Yes
Appropriate Sample Container	Yes
pH Range of Aqueous Sample	N/A
Anomalies or additional comments:	

PROVIDING QUALITY ANALYTICAL SERVICES NATIONWIDE

12 April 2018

Joe Brusca Brusca Associates Inc. PO Box 332 Roseville, CA 95661 RE: Lathrop 48 Acre Property

Enclosed are the results of analyses for samples received by the laboratory on 04/05/18 09:55. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Mike Jaroudi Project Manager

Brusca Associates Inc.	Project: Lathrop 48 Acre Property	
PO Box 332	Project Number: 137-002	Reported:
Roseville CA, 95661	Project Manager: Joe Brusca	04/12/18 15:44

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
SP1-1	T181153-01	Soil	04/04/18 11:59	04/05/18 09:55
SP1-2	T181153-02	Soil	04/04/18 12:01	04/05/18 09:55
SP1-3	T181153-03	Soil	04/04/18 12:03	04/05/18 09:55
SP1-4	T181153-04	Soil	04/04/18 12:05	04/05/18 09:55
SP1-5	T181153-05	Soil	04/04/18 12:12	04/05/18 09:55
SP1-6	T181153-06	Soil	04/04/18 12:13	04/05/18 09:55
SP1-7	T181153-07	Soil	04/04/18 12:17	04/05/18 09:55
SP1-8	T181153-08	Soil	04/04/18 12:22	04/05/18 09:55
SP1-9	T181153-09	Soil	04/04/18 12:25	04/05/18 09:55
SP1-10	T181153-10	Soil	04/04/18 12:31	04/05/18 09:55
SP1-11	T181153-11	Soil	04/04/18 12:35	04/05/18 09:55
SP1-12	T181153-12	Soil	04/04/18 12:37	04/05/18 09:55
SP1-13	T181153-13	Soil	04/04/18 12:42	04/05/18 09:55
SP1-14	T181153-14	Soil	04/04/18 12:45	04/05/18 09:55
SP1-15	T181153-15	Soil	04/04/18 12:47	04/05/18 09:55
SP1-16	T181153-16	Soil	04/04/18 12:51	04/05/18 09:55
SP1-17	T181153-17	Soil	04/04/18 12:53	04/05/18 09:55
SP1-18	T181153-18	Soil	04/04/18 12:56	04/05/18 09:55
SP1-19	T181153-19	Soil	04/04/18 13:05	04/05/18 09:55
SP1-20	T181153-20	Soil	04/04/18 13:08	04/05/18 09:55

SunStar Laboratories, Inc.

Brusca Associates Inc.	Project: Lathrop 48 Acre Property	
PO Box 332	Project Number: 137-002	Reported:
Roseville CA, 95661	Project Manager: Joe Brusca	04/12/18 15:44

DETECTIONS SUMMARY

nple ID: SP1-1	Labora	tory ID:	T181153-01		
		Reporting			
Analyte	Result	Limit	Units	Method	Notes
C13-C28 (DRO)	47	10	mg/kg	EPA 8015B	
C29-C40 (MORO)	100	10	mg/kg	EPA 8015B	
Barium	54	1.0	mg/kg	EPA 6010B	
Chromium	5.4	2.0	mg/kg	EPA 6010B	
Cobalt	3.7	2.0	mg/kg	EPA 6010B	
Copper	7.8	1.0	mg/kg	EPA 6010B	
Lead	22	3.0	mg/kg	EPA 6010B	
Nickel	5.1	2.0	mg/kg	EPA 6010B	
Vanadium	12	5.0	mg/kg	EPA 6010B	
Zinc	36	1.0	mg/kg	EPA 6010B	
PCB-1254	35	10	ug/kg	EPA 8082	
Pyrene	2400	300	ug/kg	EPA 8270C	
Benzo (a) anthracene	900	300	ug/kg	EPA 8270C	
Benzo (b) fluoranthene	730	300	ug/kg	EPA 8270C	
Benzo (k) fluoranthene	410	300	ug/kg	EPA 8270C	
Benzo (a) pyrene	360	300	ug/kg	EPA 8270C	
Chrysene	1100	300	ug/kg	EPA 8270C	
Fluoranthene	2100	300	ug/kg	EPA 8270C	
Indeno (1,2,3-cd) pyrene	340	300	ug/kg	EPA 8270C	
Phenanthrene	1300	300	ug/kg	EPA 8270C	

Sample ID: SP1-2	Laborat	ory ID:	T181153-02		
		Reporting			
Analyte	Result	Limit	Units	Method	Notes
C13-C28 (DRO)	13	10	mg/kg	EPA 8015B	
C29-C40 (MORO)	86	10	mg/kg	EPA 8015B	
Barium	65	1.0	mg/kg	EPA 6010B	
Chromium	5.4	2.0	mg/kg	EPA 6010B	
Cobalt	4.0	2.0	mg/kg	EPA 6010B	
Copper	3.7	1.0	mg/kg	EPA 6010B	
Nickel	5.4	2.0	mg/kg	EPA 6010B	
Vanadium	16	5.0	mg/kg	EPA 6010B	

SunStar Laboratories, Inc.

Brusca Associates Inc. PO Box 332 Roseville CA, 95661	Project: Lathrop 48 Acre Property Project Number: 137-002 Project Manager: Joe Brusca			Reported: 04/12/18 15:44	
Sample ID: SP1-2	Labora	tory ID:	T181153-02		
		Reporting			
Analyte	Result	Limit	Units	Method	Notes
Zinc	29	1.0	mg/kg	EPA 6010B	
Sample ID: SP1-3	Labora	tory ID:	T181153-03		
		Reporting			
Analyte	Result	Limit	Units	Method	Notes
C13-C28 (DRO)	47	10	mg/kg	EPA 8015B	
C29-C40 (MORO)	68	10	mg/kg	EPA 8015B	
Barium	61	1.0	mg/kg	EPA 6010B	
Chromium	5.3	2.0	mg/kg	EPA 6010B	
Cobalt	3.9	2.0	mg/kg	EPA 6010B	
Copper	4.0	1.0	mg/kg	EPA 6010B	
Nickel	5.1	2.0	mg/kg	EPA 6010B	
Vanadium	16	5.0	mg/kg	EPA 6010B	
Zine	28	1.0	mg/kg	EPA 6010B	
PCB-1254	25	10	ug/kg	EPA 8082	
Pyrene	300	300	ug/kg	EPA 8270C	
Sample ID: SP1-4	Labora	tory ID:	T181153-04		
		Reporting			
Analyte	Result	Limit	Units	Method	Notes
C13-C28 (DRO)	24	10	mg/kg	EPA 8015B	
C29-C40 (MORO)	75	10	mg/kg	EPA 8015B	
Barium	69	1.0	mg/kg	EPA 6010B	

5.3

4.6

4.2

8.4

5.9

17

32

13

2.0

2.0

1.0

3.0

2.0

5.0

1.0

10

mg/kg

mg/kg mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

ug/kg

SunStar Laboratories, Inc.

Chromium

Cobalt

Copper

Lead

Nickel

Zinc

Vanadium

PCB-1254

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

EPA 6010B

EPA 8082

SunStar Laboratories, Inc. Providing Quality Analytical Services Nationwide

25712 Commercentre Drive Lake Forest, California 92630 949.297.5020 Phone 949.297.5027 Fax

Brusca Associates Inc. PO Box 332 Roseville CA, 95661	Project: Lath Project Number: 137- Project Manager: Joe I	rop 48 Acre F 002 Brusca	Property		Reported: 04/12/18 15:44
Sample ID: SP1-5	Laborat	ory ID:	T181153-05		
		Reporting			
Analyte	Result	Limit	Units	Method	Notes
C13-C28 (DRO)	96	10	mg/kg	EPA 8015B	
C29-C40 (MORO)	52	10	mg/kg	EPA 8015B	
Barium	41	1.0	mg/kg	EPA 6010B	
Chromium	4.6	2.0	mg/kg	EPA 6010B	
Cobalt	3.0	2.0	mg/kg	EPA 6010B	
Copper	11	1.0	mg/kg	EPA 6010B	
Lead	45	3.0	mg/kg	EPA 6010B	
Nickel	3.9	2.0	mg/kg	EPA 6010B	
Vanadium	8.0	5.0	mg/kg	EPA 6010B	
Zinc	30	1.0	mg/kg	EPA 6010B	
PCB-1254	47	10	ug/kg	EPA 8082	
Pyrene	420	300	ug/kg	EPA 8270C	

Sample ID: SP1-6	Laboratory ID:		T181153-06		
		Reporting			
Analyte	Result	Limit	Units	Method	Notes
C13-C28 (DRO)	44	10	mg/kg	EPA 8015B	
C29-C40 (MORO)	78	10	mg/kg	EPA 8015B	
Barium	44	1.0	mg/kg	EPA 6010B	
Chromium	4.2	2.0	mg/kg	EPA 6010B	
Cobalt	3.0	2.0	mg/kg	EPA 6010B	
Copper	5.1	1.0	mg/kg	EPA 6010B	
Lead	24	3.0	mg/kg	EPA 6010B	
Nickel	4.2	2.0	mg/kg	EPA 6010B	
Vanadium	11	5.0	mg/kg	EPA 6010B	
Zinc	24	1.0	mg/kg	EPA 6010B	
PCB-1254	52	10	ug/kg	EPA 8082	

360

300

ug/kg

EPA 8270C

Sample ID: SP1-7	Laboratory ID:		T181153-07			
Reporting						
Analyte	Result	Limit	Units	Method	Notes	
C13-C28 (DRO)	88	10	mg/kg	EPA 8015B		
C29-C40 (MORO)	92	10	mg/kg	EPA 8015B		
Barium	60	1.0	mg/kg	EPA 6010B		

SunStar Laboratories, Inc.

Fluoranthene

Brusca Associates Inc.	Project: Lathrop 48 Acre Property	
PO Box 332	Project Number: 137-002	Reported:
Roseville CA, 95661	Project Manager: Joe Brusca	04/12/18 15:44

Sample ID:	SP1-7	Laboratory ID:		T181153-07		
			Reporting			
Analyte		Result	Limit	Units	Method	Notes
Chromium		5.3	2.0	mg/kg	EPA 6010B	
Cobalt		4.2	2.0	mg/kg	EPA 6010B	
Copper		5.1	1.0	mg/kg	EPA 6010B	
Lead		11	3.0	mg/kg	EPA 6010B	
Nickel		5.5	2.0	mg/kg	EPA 6010B	
Vanadium		14	5.0	mg/kg	EPA 6010B	
Zinc		29	1.0	mg/kg	EPA 6010B	
PCB-1254		43	10	ug/kg	EPA 8082	
Pyrene		490	300	ug/kg	EPA 8270C	
Fluoranthene	2	420	300	ug/kg	EPA 8270C	

Sample ID: SP1-8	Laboratory ID:		T181153-08		
Analyte	Result	Limit	Units	Method	Notes
C13-C28 (DRO)	28	10	mg/kg	EPA 8015B	
C29-C40 (MORO)	64	10	mg/kg	EPA 8015B	
Barium	66	1.0	mg/kg	EPA 6010B	
Chromium	6.1	2.0	mg/kg	EPA 6010B	
Cobalt	3.6	2.0	mg/kg	EPA 6010B	
Copper	7.2	1.0	mg/kg	EPA 6010B	
Lead	13	3.0	mg/kg	EPA 6010B	
Nickel	5.1	2.0	mg/kg	EPA 6010B	
Vanadium	15	5.0	mg/kg	EPA 6010B	
Zinc	46	1.0	mg/kg	EPA 6010B	
PCB-1254	32	10	ug/kg	EPA 8082	
Pyrene	360	300	ug/kg	EPA 8270C	

Sample ID: SP1-9	Laboratory ID:		T181153-09			
Reporting						
Analyte	Result	Limit	Units	Method	Notes	
C13-C28 (DRO)	44	10	mg/kg	EPA 8015B		
C29-C40 (MORO)	28	10	mg/kg	EPA 8015B		
Barium	67	1.0	mg/kg	EPA 6010B		
Chromium	5.7	2.0	mg/kg	EPA 6010B		
Cobalt	4.1	2.0	mg/kg	EPA 6010B		

SunStar Laboratories, Inc.

SunStar Laboratories, Inc. PROVIDING QUALITY ANALYTICAL SERVICES NATIONWIDE

25712 Commercentre Drive Lake Forest, California 92630 949.297.5020 Phone 949.297.5027 Fax

Brusca Associates Inc.		Project:				
PO Box 332		Project Number:	137-002			Reported:
Roseville CA, 95661		Project Manager:	Joe Brusca			04/12/18 15:44
Sample ID: SI	21-9	Lab	ooratory ID:	T181153-09		
			Reporting			
Analyte		Result	Limit	Units	Method	Notes
Copper		5.3	1.0	mg/kg	EPA 6010B	
Nickel		5.6	2.0	mg/kg	EPA 6010B	
Vanadium		17	5.0	mg/kg	EPA 6010B	
Zinc		35	1.0	mg/kg	EPA 6010B	
PCB-1254		11	10	ug/kg	EPA 8082	
Sample ID: S	21-10	Lah	ooratory ID:	T181153-10		
			Demonstra	1101100 10		
Analyta		Desult	Keporting	Units	Mathad	Notos
C12 C28 (DPO)		Kesun		Units		INOTES
C13-C28 (DRO)	N)	10	10	mg/kg	EPA 8015D	
C29-C40 (MORC))	50 64	10	mg/kg	EPA 6013D	
Chromium		04	1.0	mg/kg	EPA 6010B	
Cabalt		3.5	2.0	mg/kg	EPA 6010B	
Copper		5.9	2.0	mg/kg	EPA 6010B	
Nickel		5.8	2.0	mg/kg	EPA 6010B	
Vanadium		3.0	2.0	mg/kg	EPA 6010B	
Zinc		28	1.0	mg/kg	EPA 6010B	
PCB-1254		13	10	ug/kg	EPA 8082	
Sample ID: SI	21-11	Lab	ooratory ID:	T181153-11		
			Reporting			
Analyte		Result	Limit	Units	Method	Notes
C13-C28 (DRO)		75	10	mg/kg	EPA 8015B	
C29-C40 (MORC))	87	10	mg/kg	EPA 8015B	
Barium		54	1.0	mg/kg	EPA 6010B	
Chromium		5.4	2.0	mg/kg	EPA 6010B	
Cobalt		3.7	2.0	mg/kg	EPA 6010B	
Copper		6.1	1.0	mg/kg	EPA 6010B	
Lead		13	3.0	mg/kg	EPA 6010B	
Nickel		4.9	2.0	mg/kg	EPA 6010B	
Vanadium		13	5.0	mg/kg	EPA 6010B	
Zinc		28	1.0	mg/kg	EPA 6010B	
PCB-1254		61	10	ug/kg	EPA 8082	

SunStar Laboratories, Inc.

SunStar Laboratories, Inc. Providing Quality Analytical Services Nationwide

25712 Commercentre Drive Lake Forest, California 92630 949.297.5020 Phone 949.297.5027 Fax

Brusca Associates Inc.	Project: Lathr					
PO Box 332	Project Number: 137-002					
Roseville CA, 95661	Project Manager: Joe E	Brusca			04/12/18 15:44	
Sample ID: SP1-12	Laborate	ory ID:	T181153-12			
		Reporting				
Analyte	Result	Limit	Units	Method	Notes	
C13-C28 (DRO)	97	10	mg/kg	EPA 8015B		
C29-C40 (MORO)	55	10	mg/kg	EPA 8015B		
Barium	55	1.0	mg/kg	EPA 6010B		
Chromium	4.5	2.0	mg/kg	EPA 6010B		
Cobalt	3.7	2.0	mg/kg	EPA 6010B		
Copper	4.6	1.0	mg/kg	EPA 6010B		
Lead	12	3.0	mg/kg	EPA 6010B		
Nickel	4.9	2.0	mg/kg	EPA 6010B		
Vanadium	14	5.0	mg/kg	EPA 6010B		
Zinc	26	1.0	mg/kg	EPA 6010B		
PCB-1254	24	10	ug/kg	EPA 8082		
Sample ID: SP1-13	Laborate	ory ID:	T181153-13			
		Reporting				
Analyte	Result	Limit	Units	Method	Notes	
C13-C28 (DRO)	71	10	mg/kg	EPA 8015B		
C29-C40 (MORO)	74	10	mg/kg	EPA 8015B		
Barium	52	1.0	mg/kg	EPA 6010B		

Darium	52	1.0	III6/KG	LINCOTOD	
Chromium	4.6	2.0	mg/kg	EPA 6010B	
Cobalt	3.6	2.0	mg/kg	EPA 6010B	
Copper	6.0	1.0	mg/kg	EPA 6010B	
Lead	22	3.0	mg/kg	EPA 6010B	
Nickel	4.5	2.0	mg/kg	EPA 6010B	
Vanadium	13	5.0	mg/kg	EPA 6010B	
Zinc	29	1.0	mg/kg	EPA 6010B	
PCB-1254	43	10	ug/kg	EPA 8082	

Sample ID: SP1-14	Laboratory ID	: T181153-14					
Reporting							
Analyte	Result L	imit Units	Method	Notes			
C13-C28 (DRO)	16	10 mg/kg	EPA 8015B				
C29-C40 (MORO)	35	10 mg/kg	EPA 8015B				
Barium	52	1.0 mg/kg	EPA 6010B				
Chromium	4.2	2.0 mg/kg	EPA 6010B				
Cobalt	3.6	2.0 mg/kg	EPA 6010B				

SunStar Laboratories, Inc.

Brusca Associates Inc.	Project: Lathrop 48 Acre Property				
PO Box 332	Project Number: 137-	002			Reported:
Roseville CA, 95661	Project Manager: Joe I	Brusca			04/12/18 15:44
Sample ID: SP1-14	Laborat	ory ID:	T181153-14		
		Reporting			
Analyte	Result	Limit	Units	Method	Notes
Copper	3.2	1.0	mg/kg	EPA 6010B	
Lead	21	3.0	mg/kg	EPA 6010B	
Nickel	3.9	2.0	mg/kg	EPA 6010B	
Vanadium	12	5.0	mg/kg	EPA 6010B	
Zinc	21	1.0	mg/kg	EPA 6010B	
PCB-1254	19	10	ug/kg	EPA 8082	
Sample ID: SP1-15	Laborat	ory ID.	T181153-15		
~·····p •··· 01 10		Donaut-	1101100-10		
Analyte	Result	Limit	Units	Method	Notes
C13-C28 (DRO)	170	10	mg/kg	EPA 8015B	110103
C29-C40 (MORO)	240	10	mg/kg	EPA 8015B	
Barium	52	1.0	mg/kg	EPA 6010B	
Chromium	6.0	2.0	mg/kg	EPA 6010B	
Cobalt	3.9	2.0	mg/kg	EPA 6010B	
Copper	5.7	1.0	mg/kg	EPA 6010B	
Lead	18	3.0	mg/kg	EPA 6010B	
Nickel	5.0	2.0	mg/kg	EPA 6010B	
Vanadium	14	5.0	mg/kg	EPA 6010B	
Zinc	27	1.0	mg/kg	EPA 6010B	
PCB-1254	110	10	ug/kg	EPA 8082	
Sample ID: SP1-16	Laborat	tory ID:	T181153-16		
		Reporting			
Analyte	Result	Limit	Units	Method	Notes
C13-C28 (DRO)	85	10	mg/kg	EPA 8015B	
C29-C40 (MORO)	55	10	mg/kg	EPA 8015B	
Barium	64	1.0	mg/kg	EPA 6010B	
Chromium	5.6	2.0	mg/kg	EPA 6010B	
Cobalt	5.1	2.0	mg/kg	EPA 6010B	
Copper	5.2	1.0	mg/kg	EPA 6010B	
Nickel	6.5	2.0	mg/kg	EPA 6010B	
Vanadium	17	5.0	mg/kg	EPA 6010B	
Zinc	31	1.0	mg/kg	EPA 6010B	
PCB-1254	25	10	ug/kg	EPA 8082	

SunStar Laboratories, Inc.

SunStar Laboratories, Inc. Providing Quality Analytical Services Nationwide

25712 Commercentre Drive Lake Forest, California 92630 949.297.5020 Phone 949.297.5027 Fax

Brusca Associates Inc.	Project: Lathr				
PO Box 332	Project Number: 137-0	002			Reported:
Roseville CA, 95661	Project Manager: Joe B	Brusca			04/12/18 15:44
Sample ID: SP1-17	Laborate	ory ID:	T181153-17		
		Reporting			
Analyte	Result	Limit	Units	Method	Notes
C13-C28 (DRO)	81	10	mg/kg	EPA 8015B	
C29-C40 (MORO)	40	10	mg/kg	EPA 8015B	
Barium	49	1.0	mg/kg	EPA 6010B	
Chromium	5.0	2.0	mg/kg	EPA 6010B	
Cobalt	3.6	2.0	mg/kg	EPA 6010B	
Copper	3.9	1.0	mg/kg	EPA 6010B	
Lead	9.4	3.0	mg/kg	EPA 6010B	
Nickel	4.6	2.0	mg/kg	EPA 6010B	
Vanadium	13	5.0	mg/kg	EPA 6010B	
Zinc	23	1.0	mg/kg	EPA 6010B	
PCB-1254	18	10	ug/kg	EPA 8082	
Sample ID: SP1-18	Laborate	ory ID:	T181153-18		
		Reporting			
Analyte	Result	Limit	Units	Method	Notes
C_{12} C_{22} (DBO)	2(10		EDA 0015D	

· · · · · · · · · · · · · · · · · · ·	Itesuit	2	emes	nicenou	110000
C13-C28 (DRO)	26	10	mg/kg	EPA 8015B	
C29-C40 (MORO)	82	10	mg/kg	EPA 8015B	
Barium	62	1.0	mg/kg	EPA 6010B	
Chromium	5.2	2.0	mg/kg	EPA 6010B	
Cobalt	3.9	2.0	mg/kg	EPA 6010B	
Copper	4.4	1.0	mg/kg	EPA 6010B	
Lead	13	3.0	mg/kg	EPA 6010B	
Nickel	5.7	2.0	mg/kg	EPA 6010B	
Vanadium	15	5.0	mg/kg	EPA 6010B	
Zinc	27	1.0	mg/kg	EPA 6010B	
PCB-1254	42	10	ug/kg	EPA 8082	

Sample ID: SP1-19	Laboratory ID:	T181153-19					
Reporting							
Analyte	Result Lim	it Units	Method	Notes			
C13-C28 (DRO)	39	0 mg/kg	EPA 8015B				
C29-C40 (MORO)	51	0 mg/kg	EPA 8015B				
Barium	58 1	0 mg/kg	EPA 6010B				
Chromium	5.4 2	0 mg/kg	EPA 6010B				
Cobalt	3.8 2	0 mg/kg	EPA 6010B				
		0.0					

SunStar Laboratories, Inc.

Brusca Associates Inc.	Project: Lathrop 48 Acre Property	
PO Box 332	Project Number: 137-002	Reported:
Roseville CA, 95661	Project Manager: Joe Brusca	04/12/18 15:44

Sample ID:	SP1-19	Laborato	Laboratory ID: T181153-19			
		J	Reporting			
Analyte		Result	Limit	Units	Method	Notes
Copper		4.6	1.0	mg/kg	EPA 6010B	
Nickel		5.3	2.0	mg/kg	EPA 6010B	
Vanadium		14	5.0	mg/kg	EPA 6010B	
Zinc		28	1.0	mg/kg	EPA 6010B	
PCB-1254		21	10	ug/kg	EPA 8082	

Sample ID: SP1-20	Laboratory ID:		T181153-20				
Reporting							
Analyte	Result	Limit	Units	Method	Notes		
C13-C28 (DRO)	76	10	mg/kg	EPA 8015B			
C29-C40 (MORO)	150	10	mg/kg	EPA 8015B			
Barium	57	1.0	mg/kg	EPA 6010B			
Chromium	5.9	2.0	mg/kg	EPA 6010B			
Cobalt	3.9	2.0	mg/kg	EPA 6010B			
Copper	4.6	1.0	mg/kg	EPA 6010B			
Lead	10	3.0	mg/kg	EPA 6010B			
Nickel	5.3	2.0	mg/kg	EPA 6010B			
Vanadium	16	5.0	mg/kg	EPA 6010B			
Zinc	30	1.0	mg/kg	EPA 6010B			
PCB-1254	50	10	ug/kg	EPA 8082			
Pyrene	420	300	ug/kg	EPA 8270C			
Fluoranthene	340	300	ug/kg	EPA 8270C			

SunStar Laboratories, Inc.

Brusca Associates Inc. PO Box 332		Reported:							
Roseville CA, 95661	I	Project Manag	ger: Joe Br	usca				04/12/18 15	:44
			SP1-1						
		T181	153-01 (So	oil)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	ies, Inc.					
Extractable Petroleum Hydrocarb	ons by 8015B with Silica	Gel Cleanu	p						
C6-C12 (GRO)	ND	10	mg/kg	1	8040518	04/05/18	04/09/18	EPA 8015B	
C13-C28 (DRO)	47	10	"	"	"	"	"	"	
C29-C40 (MORO)	100	10	"	"	"	"	"	"	
Surrogate: p-Terphenyl		74.3 %	65-	135	"	"	"	"	
Metals by EPA 6010B									
Antimony	ND	3.0	mg/kg	1	8040603	04/06/18	04/06/18	EPA 6010B	
Silver	ND	2.0	"	"	"	"	"	"	
Arsenic	ND	5.0	"	"	"	"	"	"	
Barium	54	1.0	"	"	"	"	"	"	
Beryllium	ND	1.0	"	"	"	"	"	"	
Cadmium	ND	2.0	"	"	"	"	"	"	
Chromium	5.4	2.0	"	"	"	"	"	"	
Cobalt	3.7	2.0	"	"	"	"	"	"	
Copper	7.8	1.0	"	"	"	"	"	"	
Lead	22	3.0	"	"	"	"	"	"	
Molybdenum	ND	5.0	"	"	"	"	"	"	
Nickel	5.1	2.0	"	"	"	"	"	"	
Selenium	ND	5.0	"	"	"	"	"	"	
Thallium	ND	2.0	"	"	"	"	"	"	
Vanadium	12	5.0	"	"	"	"	"	"	
Zinc	36	1.0	"	"	"	"	"	"	
Cold Vapor Extraction EPA 7470/7	471								
Mercury	ND	0.10	mg/kg	1	8040605	04/06/18	04/06/18	EPA 7471A Soil	

SunStar Laboratories, Inc.

Brusca Associates Inc.	c. Project: Lathrop 48 Acre Property									
PO Box 332	Project Numb	ber: 137-00	02				Reported	:		
Roseville CA, 95661	Project Manag	ger: Joe Br	rusca				04/12/18 15:44			
	1	SP1-1								
	T1811	53-01 (So	oil)							
Analyte Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes		
	SunStar L	aboratori	ies, Inc.							
Polychlorinated Biphenyls by EPA Method 8082										
PCB-1016 ND	10	ug/kg	1	8040520	04/05/18	04/06/18	EPA 8082			
PCB-1221 ND	10	"	"	"	"		"			
PCB-1232 ND	10	"	"	"	"		"			
PCB-1242 ND	10	"	"	"	"		"			
PCB-1248 ND	10	"	"	"	"		"			
PCB-1254 35	10	"	"	"	"	"	"			
PCB-1260 ND	10	"	"	"	"		"			
Surrogate: Tetrachloro-meta-xylene	131 %	35-	140	"	"	"	"			
Surrogate: Decachlorobiphenyl	136 %	35-	140	"	"	"	"			
Somivolatile Organia Compounds by EDA Mathad 9270	C									
Semivolatile Organic Compounds by EPA Method 8270	200	ug/kg	1	8040522	04/05/19	04/00/18	EDA 9270C			
Dhanal ND	1000	ug/kg "	"	8040323	04/03/18	04/09/18	EFA 8270C			
Aniline ND	300		"		"					
2 Chlorophenol ND	1000		"		"					
1.4 Dichlorobenzene ND	300				"		"			
N Nitrosodi n propularine ND	300			"			"			
1.2.4 Trichlorobenzene ND	300			"			"			
4 Chloro 3 methylphenol	1000			"			"			
2 Methylpaphthalene ND	300			"			"			
1 Methylnaphthalene ND	300			"			"			
Acenaphthene ND	300	"	"		"					
A-Nitrophenol ND	1000		"	"	"					
2 4-Dinitrotoluene ND	300		"	"	"					
Pentachlorophenol ND	1000		"	"	"					
Purene 2400	300		"	"	"					
Acenaphthylene ND	300		"		"					
Anthracene ND	300	"	"		"		"			
Benzo (a) anthracene 900	300	"	"		"		"			
Benzo (b) fluoranthene 730	300	"	"	"	"		"			
Benzo (k) fluoranthene 410	300	"	"		"		"			
Benzo (g,h,i) perylene ND	1000	"	"	"	"					
Benzo (a) pyrene 360	300	"	"	"	"	"	"			

SunStar Laboratories, Inc.

Brusca Associates Inc.		Project Numb	ect: Lathro	op 48 Acre Pi	roperty			Demonto			
Roseville CA. 95661		Project Manager: Joe Brusca									
		.,	~~						-		
		S T1811	SP1-1 .53-01 (So	oil)							
		Reporting									
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes		
		SunStar L	aborator	ies, Inc.							
Semivolatile Organic Compounds b	y EPA Method 8270C										
Benzyl alcohol	ND	300	ug/kg	1	8040523	04/05/18	04/09/18	EPA 8270C			
Bis(2-chloroethoxy)methane	ND	300	"	"	"	"		"			
Bis(2-chloroethyl)ether	ND	300	"	"	"	"	"	"			
Bis(2-chloroisopropyl)ether	ND	300	"	"	"	"	"	"			
Bis(2-ethylhexyl)phthalate	ND	300	"	"	"	"	"	"			
4-Bromophenyl phenyl ether	ND	300	"	"	"	"	"	"			
Butyl benzyl phthalate	ND	300	"	"	"	"	"	"			
4-Chloroaniline	ND	300	"	"	"	"	"	"			
2-Chloronaphthalene	ND	300	"	"	"	"	"	"			
4-Chlorophenyl phenyl ether	ND	300	"	"	"	"	"	"			
Chrysene	1100	300	"	"	"	"	"	"			
Dibenz (a,h) anthracene	ND	300	"	"	"	"	"	"			
Dibenzofuran	ND	300	"	"	"	"	"	"			
Di-n-butyl phthalate	ND	300	"	"	"	"	"	"			
1,2-Dichlorobenzene	ND	300	"	"	"	"	"	"			
1,3-Dichlorobenzene	ND	300	"	"	"	"	"	"			
2,4-Dichlorophenol	ND	1000	"	"	"	"	"	"			
Diethyl phthalate	ND	300	"	"	"	"	"	"			
2,4-Dimethylphenol	ND	1000	"	"	"	"	"	"			
Dimethyl phthalate	ND	300	"	"	"	"	"	"			
4,6-Dinitro-2-methylphenol	ND	1000	"	"	"	"	"	"			
2,4-Dinitrophenol	ND	1000	"	"	"	"	"	"			
2,6-Dinitrotoluene	ND	1000	"	"	"	"	"	"			
Di-n-octyl phthalate	ND	300	"	"	"	"	"	"			
Fluoranthene	2100	300	"	"	"	"	"	"			
Fluorene	ND	300	"	"	"	"	"	"			
Hexachlorobenzene	ND	1500	"	"	"	"	"	"			
Hexachlorobutadiene	ND	300	"	"	"	"	"	"			
Hexachlorocyclopentadiene	ND	1000	"	"	"	"	"	"			
Hexachloroethane	ND	300	"	"	"	"	"	"			
Indeno (1,2,3-cd) pyrene Isophorone	340 ND	300 300	"	"	"	"	"	"			
*											

SunStar Laboratories, Inc.

Brusca Associates Inc. PO Box 332 Roseville CA, 95661		Reported 04/12/18 15	: 5:44						
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	ies, Inc.					
Semivolatile Organic Compounds by I	EPA Method 8270C								
2-Methylphenol	ND	1000	ug/kg	1	8040523	04/05/18	04/09/18	EPA 8270C	
4-Methylphenol	ND	1000	"	"		"	"	"	
Naphthalene	ND	300	"	"		"	"	"	
2-Nitroaniline	ND	300	"	"		"	"	"	
3-Nitroaniline	ND	300	"	"	"	"	"	"	
4-Nitroaniline	ND	300	"	"	"	"	"	"	
Nitrobenzene	ND	1000	"	"	"	"	"	"	
2-Nitrophenol	ND	1000	"	"	"	"	"	"	
N-Nitrosodimethylamine	ND	300	"	"	"	"	"	"	
N-Nitrosodiphenylamine	ND	300	"	"	"	"	"	"	
2,3,5,6-Tetrachlorophenol	ND	300	"	"	"	"	"	"	
2,3,4,6-Tetrachlorophenol	ND	300	"	"	"	"	"	"	
Phenanthrene	1300	300	"	"	"	"	"	"	
Azobenzene	ND	300	"	"	"	"	"	"	
Pyridine	ND	300	"	"	"	"	"	"	
2,4,5-Trichlorophenol	ND	1000	"	"	"	"	"	"	
2,4,6-Trichlorophenol	ND	1000	"	"	"	"	"	"	
Surrogate: 2-Fluorophenol		52.5 %	15-	121	"	"	"	"	
Surrogate: Phenol-d6		56.4 %	24-	113	"	"	"	"	
Surrogate: Nitrobenzene-d5		74.7 %	21.3	-119	"	"	"	"	
Surrogate: 2-Fluorobiphenyl		67.5 %	32.4	-102	"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		74.9 % 18.1-105				"	"	"	
Surrogate: Terphenyl-dl4		118 % 29.1-130					"	"	

SunStar Laboratories, Inc.

A

Brusca Associates Inc. PO Box 332 Roseville CA, 95661		Reported: 04/12/18 15:44							
		T181	SP1-2 153-02 (So	oil)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Extractable Petroleum Hydrocarl	bons by 8015B with Silica	Gel Cleanu	p						
C6-C12 (GRO)	ND	10	mg/kg	1	8040518	04/05/18	04/09/18	EPA 8015B	
C13-C28 (DRO)	13	10	"	"	"	"	"	"	
C29-C40 (MORO)	86	10	"	"	"	"		"	
Surrogate: p-Terphenyl		75.8 %	65-	135	"	"	"	"	
Metals by EPA 6010B									
Antimony	ND	3.0	mg/kg	1	8040603	04/06/18	04/06/18	EPA 6010B	
Silver	ND	2.0	"	"	"	"		"	
Arsenic	ND	5.0	"	"	"	"		"	
Barium	65	1.0	"	"	"	"		"	
Beryllium	ND	1.0	"	"	"	"	"	"	
Cadmium	ND	2.0	"	"	"	"		"	
Chromium	5.4	2.0	"	"	"	"	"	"	
Cobalt	4.0	2.0	"	"	"	"	"	"	
Copper	3.7	1.0	"	"	"	"	"	"	
Lead	ND	3.0	"	"	"	"	"	"	
Molybdenum	ND	5.0	"	"	"	"	"	"	
Nickel	5.4	2.0	"	"	"	"		"	
Selenium	ND	5.0	"	"	"	"		"	
Thallium	ND	2.0	"	"	"	"	"	"	
Vanadium	16	5.0	"	"	"	"		"	
Zinc	29	1.0	"	"	"	"	"	"	
Cold Vapor Extraction EPA 7470/	7471								
Mercury	ND	0.10	mg/kg	1	8040605	04/06/18	04/06/18	EPA 7471A Soil	

SunStar Laboratories, Inc.

Brusca Associates Inc.	ca Associates Inc. Project: Lathrop 48 Acre Property										
PO Box 332			Reported:								
Roseville CA, 95661		Project Manag	ger: Joe Br	usca				04/12/18 15	:44		
		1	SP1-2								
		T1811	53-02 (So	oil)							
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes		
		SunStar L	aboratori	ies, Inc.							
Polychlorinated Biphenyls by EPA Met	hod 8082										
PCB-1016	ND	10	ug/kg	1	8040520	04/05/18	04/06/18	EPA 8082			
PCB-1221	ND	10	"	"	"	"	"	"			
PCB-1232	ND	10	"	"	"	"	"	"			
PCB-1242	ND	10	"	"	"	"	"	"			
PCB-1248	ND	10	"	"	"	"	"	"			
PCB-1254	ND	10	"	"	"	"	"	"			
PCB-1260	ND	10	"	"	"	"	"	"			
Surrogate: Tetrachloro-meta-xylene		119 %	35-	140	"	"	"	"			
Surrogate: Decachlorobiphenyl		127 %	35-	140	"	"	"	"			
Semivolatile Organic Compounds by Fl	PA Method 8270C										
Carbazole	ND	300	110/kg	1	8040523	04/05/18	04/09/18	FPA 8270C			
Phenol	ND	1000	"	"	"	"	"	"			
Aniline	ND	300	"	"		"		"			
2-Chlorophenol	ND	1000	"	"		"		"			
1.4-Dichlorobenzene	ND	300	"	"			"	"			
N-Nitrosodi-n-propylamine	ND	300	"	"		"	"	"			
1,2,4-Trichlorobenzene	ND	300	"	"		"					
4-Chloro-3-methylphenol	ND	1000	"	"		"	"	"			
2-Methylnaphthalene	ND	300	"	"		"	"	"			
1-Methylnaphthalene	ND	300	"	"	"	"	"	"			
Acenaphthene	ND	300	"	"		"	"	"			
4-Nitrophenol	ND	1000	"	"	"	"	"	"			
2,4-Dinitrotoluene	ND	300	"	"	"	"	"	"			
Pentachlorophenol	ND	1000	"	"	"	"	"	"			
Pyrene	ND	300	"	"	"	"	"	"			
Acenaphthylene	ND	300	"	"	"	"	"	"			
Anthracene	ND	300	"	"	"	"	"	"			
Benzo (a) anthracene	ND	300	"	"		"	"	"			
Benzo (b) fluoranthene	ND	300	"	"		"	"	"			
Benzo (k) fluoranthene	ND	300	"	"		"	"	"			
Benzo (g,h,i) perylene	ND	1000	"	"	"	"	"	"			

SunStar Laboratories, Inc.

Brusca Associates Inc.		Project: Lathrop 48 Acre Property									
PO Box 332		Project Number: 137-002									
Roseville CA, 95661		Project Manag	ger: Joe Br	usca				04/12/18 15:44			
			SP1-2								
		T1811	153-02 (So	oil)							
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes		
		SunStar L	aboratori	ies, Inc.							
Semivolatile Organic Compounds by	EPA Method 8270C										
Benzo (a) pyrene	ND	300	ug/kg	1	8040523	04/05/18	04/09/18	EPA 8270C			
Benzyl alcohol	ND	300	"	"	"	"	"	"			
Bis(2-chloroethoxy)methane	ND	300	"	"	"	"	"	"			
Bis(2-chloroethyl)ether	ND	300	"	"	"	"	"	"			
Bis(2-chloroisopropyl)ether	ND	300	"	"	"	"	"	"			
Bis(2-ethylhexyl)phthalate	ND	300	"	"	"	"	"	"			
4-Bromophenyl phenyl ether	ND	300	"	"	"	"	"	"			
Butyl benzyl phthalate	ND	300	"	"	"	"	"	"			
4-Chloroaniline	ND	300	"	"	"	"	"	"			
2-Chloronaphthalene	ND	300	"	"	"	"	"	"			
4-Chlorophenyl phenyl ether	ND	300	"	"	"	"	"	"			
Chrysene	ND	300	"	"	"	"	"	"			
Dibenz (a,h) anthracene	ND	300	"	"	"	"	"	"			
Dibenzofuran	ND	300	"	"	"	"	"	"			
Di-n-butyl phthalate	ND	300	"	"	"	"	"	"			
1,2-Dichlorobenzene	ND	300	"	"	"	"	"	"			
1,3-Dichlorobenzene	ND	300	"	"	"	"	"	"			
2,4-Dichlorophenol	ND	1000	"	"	"	"	"	"			
Diethyl phthalate	ND	300	"	"	"	"	"	"			
2,4-Dimethylphenol	ND	1000	"	"	"	"	"	"			
Dimethyl phthalate	ND	300	"	"	"	"	"	"			
4,6-Dinitro-2-methylphenol	ND	1000	"	"	"	"	"	"			
2,4-Dinitrophenol	ND	1000	"	"	"	"	"	"			
2,6-Dinitrotoluene	ND	1000	"	"	"	"	"	"			
Di-n-octyl phthalate	ND	300	"	"	"	"	"	"			
Fluoranthene	ND	300	"	"	"	"	"	"			
Fluorene	ND	300	"	"	"	"	"	"			
Hexachlorobenzene	ND	1500	"	"	"	"	"	"			
Hexachlorobutadiene	ND	300	"	"	"	"	"	"			
Hexachlorocyclopentadiene	ND	1000	"	"	"	"	"	"			
Hexachloroethane	ND	300	"	"	"	"	"	"			
Indeno (1,2,3-cd) pyrene	ND	300	"	"	"	"	"	"			

SunStar Laboratories, Inc.

Brusca Associates Inc. PO Box 332 Roseville CA, 95661		Reported: 04/12/18 15:44							
		T1811	SP1-2 53-02 (So	il)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Semivolatile Organic Compounds by EPA	Method 8270C								
Isophorone	ND	300	ug/kg	1	8040523	04/05/18	04/09/18	EPA 8270C	
2-Methylphenol	ND	1000	"	"	"	"	"	"	
4-Methylphenol	ND	1000	"	"	"	"	"	"	
Naphthalene	ND	300	"	"	"	"	"	"	
2-Nitroaniline	ND	300	"	"	"	"	"	"	
3-Nitroaniline	ND	300	"	"	"	"	"	"	
4-Nitroaniline	ND	300	"	"	"	"	"	"	
Nitrobenzene	ND	1000	"	"	"	"	"	"	
2-Nitrophenol	ND	1000	"	"	"	"	"	"	
N-Nitrosodimethylamine	ND	300	"	"	"	"	"	"	
N-Nitrosodiphenylamine	ND	300	"	"	"	"	"	"	
2,3,5,6-Tetrachlorophenol	ND	300	"	"	"	"	"	"	
2,3,4,6-Tetrachlorophenol	ND	300	"	"	"	"	"	"	
Phenanthrene	ND	300	"	"	"	"	"	"	
Azobenzene	ND	300	"	"	"	"	"	"	
Pyridine	ND	300	"	"	"	"	"	"	
2,4,5-Trichlorophenol	ND	1000	"	"	"	"	"	"	
2,4,6-Trichlorophenol	ND	1000	"	"	"	"	"	"	
Surrogate: 2-Fluorophenol		58.2 %	15-1	121	"	"	"	"	
Surrogate: Phenol-d6		58.8 %	24-1	113	"	"	"	"	
Surrogate: Nitrobenzene-d5		79.6 %	21.3-	-119	"	"	"	"	
Surrogate: 2-Fluorobiphenyl		70.4 %	32.4-	-102	"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		70.2 %	18.1-	-105	"	"	"	"	
Surrogate: Terphenyl-dl4		116 %	29.1-	-130	"	"	"	"	

SunStar Laboratories, Inc.

Brusca Associates Inc. PO Box 332	Associates Inc. Project: Lathrop 48 Acre Property x 332 Project Number: 137-002										
Roseville CA, 95661	I	Project Manager: Joe Brusca									
			SP1-3								
		T181	153-03 (So	oil)							
		Reporting									
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes		
		SunStar L	aboratori	ies, Inc.							
Extractable Petroleum Hydrocarb	ons by 8015B with Silica	Gel Cleanu	р								
C6-C12 (GRO)	ND	10	mg/kg	1	8040518	04/05/18	04/09/18	EPA 8015B			
C13-C28 (DRO)	47	10	"	"	"	"	"	"			
C29-C40 (MORO)	68	10	"	"	"	"	"	"			
Surrogate: p-Terphenyl		77.9 %	65-	135	"	"	"	"			
Metals by EPA 6010B											
Antimony	ND	3.0	mg/kg	1	8040603	04/06/18	04/06/18	EPA 6010B			
Silver	ND	2.0	"	"	"	"	"	"			
Arsenic	ND	5.0	"	"	"	"	"	"			
Barium	61	1.0	"	"	"	"	"	"			
Beryllium	ND	1.0	"	"	"	"	"	"			
Cadmium	ND	2.0	"	"	"	"	"	"			
Chromium	5.3	2.0	"	"	"	"	"	"			
Cobalt	3.9	2.0	"	"	"	"	"	"			
Copper	4.0	1.0	"	"	"	"	"	"			
Lead	ND	3.0	"	"	"	"	"	"			
Molybdenum	ND	5.0	"	"	"	"	"	"			
Nickel	5.1	2.0	"	"	"	"	"	"			
Selenium	ND	5.0	"	"	"	"	"	"			
Thallium	ND	2.0	"	"	"	"	"	"			
Vanadium	16	5.0	"	"	"	"	"	"			
Zinc	28	1.0	"	"	"	"	"	"			
Cold Vapor Extraction EPA 7470/7	7471										
Mercury	ND	0.10	mg/kg	1	8040605	04/06/18	04/06/18	EPA 7471A Soil			

SunStar Laboratories, Inc.

Brusca Associates Inc.	ssociates Inc. Project: Lathrop 48 Acre Property										
PO Box 332			Reported:								
Roseville CA, 95661		Project Manag	ger: Joe Br	usca				04/12/18 15	:44		
			SP1-3								
		T1811	153-03 (So	oil)							
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes		
		SunStar L	aboratori	ies, Inc.							
Polychlorinated Biphenyls by EPA Me	ethod 8082										
PCB-1016	ND	10	ug/kg	1	8040520	04/05/18	04/06/18	EPA 8082			
PCB-1221	ND	10	"	"	"	"	"	"			
PCB-1232	ND	10	"	"	"	"	"	"			
PCB-1242	ND	10	"	"	"	"	"	"			
PCB-1248	ND	10	"	"	"	"	"	"			
PCB-1254	25	10	"	"	"	"	"	"			
PCB-1260	ND	10	"	"	"	"	"	"			
Surrogate: Tetrachloro-meta-xylene		122 %	35-	140	"	"	"	"			
Surrogate: Decachlorobiphenyl		132 %	35-	140	"	"	"	"			
Semivolatile Organic Compounds by l	FPA Method 8270C										
Carbazole	ND	300	110/ko	1	8040523	04/05/18	04/09/18	EPA 8270C			
Phenol	ND	1000	"	"	"	"	"	"			
Aniline	ND	300	"	"	"	"					
2-Chlorophenol	ND	1000	"	"	"	"					
1 4-Dichlorobenzene	ND	300	"	"	"	"					
N-Nitrosodi-n-propylamine	ND	300	"	"	"	"					
1.2.4-Trichlorobenzene	ND	300	"	"		"		"			
4-Chloro-3-methylphenol	ND	1000	"	"		"		"			
2-Methylnaphthalene	ND	300	"	"		"		"			
1-Methylnaphthalene	ND	300	"	"		"		"			
Acenaphthene	ND	300	"	"		"	"	"			
4-Nitrophenol	ND	1000	"	"		"	"	"			
2.4-Dinitrotoluene	ND	300	"	"		"	"	"			
Pentachlorophenol	ND	1000	"	"		"		"			
Pvrene	300	300	"	"		"		"			
Acenaphthylene	ND	300	"	"	"	"	"	"			
Anthracene	ND	300	"	"		"	"				
Benzo (a) anthracene	ND	300	"	"		"	"				
Benzo (b) fluoranthene	ND	300	"	"		"	"				
Benzo (k) fluoranthene	ND	300	"	"		"	"	"			
Benzo (g,h,i) perylene	ND	1000	"	"	"	"	"	"			

SunStar Laboratories, Inc.

Brusca Associates Inc.		Project: Lathrop 48 Acre Property								
PO Box 332		Project Number: 137-002								
Roseville CA, 95661		Project Manag	ger: Joe Br	rusca				04/12/18 15:44		
			SP1-3							
		T1811	153-03 (So	oil)						
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes	
		SunStar L	aboratori	ies, Inc.						
Semivolatile Organic Compounds by	y EPA Method 8270C									
Benzo (a) pyrene	ND	300	ug/kg	1	8040523	04/05/18	04/09/18	EPA 8270C		
Benzyl alcohol	ND	300	"	"	"	"		"		
Bis(2-chloroethoxy)methane	ND	300	"	"	"	"	"	"		
Bis(2-chloroethyl)ether	ND	300	"	"	"	"	"	"		
Bis(2-chloroisopropyl)ether	ND	300	"	"	"	"	"	"		
Bis(2-ethylhexyl)phthalate	ND	300	"	"	"	"	"	"		
4-Bromophenyl phenyl ether	ND	300	"	"	"	"	"	"		
Butyl benzyl phthalate	ND	300	"	"	"	"	"	"		
4-Chloroaniline	ND	300	"	"	"	"	"	"		
2-Chloronaphthalene	ND	300	"	"	"	"		"		
4-Chlorophenyl phenyl ether	ND	300	"	"	"	"		"		
Chrysene	ND	300	"	"	"	"		"		
Dibenz (a,h) anthracene	ND	300	"	"	"	"		"		
Dibenzofuran	ND	300	"	"	"	"		"		
Di-n-butyl phthalate	ND	300	"	"	"	"		"		
1,2-Dichlorobenzene	ND	300	"	"	"	"		"		
1,3-Dichlorobenzene	ND	300	"	"	"	"		"		
2,4-Dichlorophenol	ND	1000	"	"	"	"		"		
Diethyl phthalate	ND	300	"	"	"	"	"	"		
2,4-Dimethylphenol	ND	1000	"	"	"	"		"		
Dimethyl phthalate	ND	300	"	"	"	"	"	"		
4,6-Dinitro-2-methylphenol	ND	1000	"	"	"	"	"	"		
2,4-Dinitrophenol	ND	1000	"	"	"	"	"	"		
2,6-Dinitrotoluene	ND	1000	"	"	"	"		"		
Di-n-octyl phthalate	ND	300	"	"	"	"		"		
Fluoranthene	ND	300	"	"	"	"	"	"		
Fluorene	ND	300	"	"	"	"	"	"		
Hexachlorobenzene	ND	1500	"	"	"	"	"	"		
Hexachlorobutadiene	ND	300	"	"		"	"	"		
Hexachlorocyclopentadiene	ND	1000	"	"		"	"	"		
Hexachloroethane	ND	300	"	"		"	"	"		
Indeno (1,2,3-cd) pyrene	ND	300	"	"		"	"	"		

SunStar Laboratories, Inc.

Brusca Associates Inc. PO Box 332 Roseville CA, 95661	Project: Lathrop 48 Acre Property Project Number: 137-002 Project Manager: Joe Brusca									
		T1811	SP1-3 53-03 (So	oil)						
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes	
		SunStar L	aboratori	ies, Inc.						
Semivolatile Organic Compounds by EPA Metho	d 8270C									
Isophorone	ND	300	ug/kg	1	8040523	04/05/18	04/09/18	EPA 8270C		
2-Methylphenol	ND	1000	"	"	"	"	"	"		
4-Methylphenol	ND	1000	"	"	"	"	"	"		
Naphthalene	ND	300	"	"	"	"	"	"		
2-Nitroaniline	ND	300	"	"	"	"	"	"		
3-Nitroaniline	ND	300	"	"	"	"	"	"		
4-Nitroaniline	ND	300	"	"	"	"	"	"		
Nitrobenzene	ND	1000	"	"	"	"	"	"		
2-Nitrophenol	ND	1000	"	"	"	"	"	"		
N-Nitrosodimethylamine	ND	300	"	"	"	"	"	"		
N-Nitrosodiphenylamine	ND	300	"	"	"	"	"	"		
2,3,5,6-Tetrachlorophenol	ND	300	"	"	"	"	"	"		
2,3,4,6-Tetrachlorophenol	ND	300	"	"	"	"	"	"		
Phenanthrene	ND	300	"	"	"	"	"	"		
Azobenzene	ND	300	"	"	"	"	"	"		
Pyridine	ND	300	"	"	"	"	"	"		
2,4,5-Trichlorophenol	ND	1000	"	"	"	"	"	"		
2,4,6-Trichlorophenol	ND	1000	"	"	"	"	"	"		
Surrogate: 2-Fluorophenol		59.7 %	15-	121	"	"	"	"		
Surrogate: Phenol-d6		63.1 %	24-	113	"	"	"	"		
Surrogate: Nitrobenzene-d5		80.9 %	21.3	-119	"	"	"	"		
Surrogate: 2-Fluorobiphenyl		75.6 %	32.4	-102	"	"	"	"		
Surrogate: 2,4,6-Tribromophenol		73.9 %	18.1	-105	"	"	"	"		
Surrogate: Terphenyl-dl4		121 %	29.1	-130	"	"	"	"		

SunStar Laboratories, Inc.

Brusca Associates Inc. PO Box 332	Inc. Project: Lathrop 48 Acre Property 32 Project Number: 137-002								Reported:	
Roseville CA, 95661		Project Manager: Joe Brusca						04/12/18 15:44		
			SP1-4							
		T181	153-04 (So	oil)						
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes	
		SunStar L	aboratori	es, Inc.						
Extractable Petroleum Hydrocart	oons by 8015B with Silica	Gel Cleanu	D							
C6-C12 (GRO)	ND	10	mg/kg	1	8040518	04/05/18	04/09/18	EPA 8015B		
C13-C28 (DRO)	24	10	"	"	"	"	"	"		
C29-C40 (MORO)	75	10	"	"	"	"	"	"		
Surrogate: p-Terphenyl		76.2 %	65-135		"	"	"	"		
Metals by EPA 6010B										
Antimony	ND	3.0	mg/kg	1	8040603	04/06/18	04/06/18	EPA 6010B		
Silver	ND	2.0	"	"	"	"	"	"		
Arsenic	ND	5.0	"	"	"	"	"	"		
Barium	69	1.0	"	"	"	"	"	"		
Beryllium	ND	1.0	"	"	"	"	"	"		
Cadmium	ND	2.0	"	"	"	"	"	"		
Chromium	5.3	2.0	"	"	"	"	"	"		
Cobalt	4.6	2.0	"	"	"	"	"	"		
Copper	4.2	1.0	"	"	"	"	"	"		
Lead	8.4	3.0	"	"	"	"	"	"		
Molybdenum	ND	5.0	"	"	"	"	"	"		
Nickel	5.9	2.0	"	"	"	"	"	"		
Selenium	ND	5.0	"	"	"	"	"	"		
Thallium	ND	2.0	"	"	"	"	"	"		
Vanadium	17	5.0	"	"	"	"	"	"		
Zinc	32	1.0	"	"	"	"		"		
Cold Vapor Extraction EPA 7470/	7471									
Mercury	ND	0.10	mg/kg	1	8040605	04/06/18	04/06/18	EPA 7471A Soil		

SunStar Laboratories, Inc.

Brusca Associates Inc.	ates Inc. Project: Lathrop 48 Acre Property									
PO Box 332		Project Number: 137-002							Reported:	
Roseville CA, 95661		Project Manager: Joe Brusca						04/12/18 15:44		
			SP1-4							
T181153-04 (Soil)										
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes	
		SunStar L	aboratori	es, Inc.						
Polychlorinated Biphenyls by EPA M	Iethod 8082									
PCB-1016	ND	10	ug/kg	1	8040520	04/05/18	04/06/18	EPA 8082		
PCB-1221	ND	10	"	"	"	"	"	"		
PCB-1232	ND	10	"	"	"	"	"	"		
PCB-1242	ND	10	"	"	"	"	"	"		
PCB-1248	ND	10	"	"	"	"	"	"		
PCB-1254	13	10	"	"	"	"	"	"		
PCB-1260	ND	10	"	"	"	"	"	"		
Surrogate: Tetrachloro-meta-xylene		106 %	35-	140	"	"	"	"		
Surrogate: Decachlorobiphenyl		123 %	35-140		"	"	"	"		
Somivolatile Organic Compounds by	FDA Mothod 8270C									
Semivolatile Organic Compounds by	ND	200	ug/kg	1	8040522	04/05/18	04/00/19	EDA 8270C		
Phenol	ND	1000	ug/kg "	"	"	"	"	EIA 8270C		
Aniline	ND	300		"	"	"				
2 Chlorophenol	ND	1000		"	"	"				
1 4-Dichlorobenzene	ND	300		"	"	"				
N-Nitrosodi-n-propylamine	ND	300		"	"	"				
1.2.4-Trichlorobenzene	ND	300				"				
A-Chloro-3-methylphenol	ND	1000		"	"	"				
1-Methylnanhthalene	ND	300				"				
2-Methylnaphthalene	ND	300				"				
Acenanhthene	ND	300				"				
4-Nitrophenol	ND	1000				"		"		
2 4-Dinitrotoluene	ND	300				"		"		
Pentachlorophenol	ND	1000				"		"		
Pyrene	ND	300				"		"		
Acenaphthylene	ND	300		"	"	"		"		
Anthracene	ND	300				"		"		
Benzo (a) anthracene	ND	300	"		"	"	"			
Benzo (b) fluoranthene	ND	300	"				"			
Benzo (k) fluoranthene	ND	300	"			"	"			
Benzo (g h i) pervlene	ND	1000			"	"	"			
Denzo (g,ii,i) peryiene	ND	1000								

SunStar Laboratories, Inc.

Brusca Associates Inc.		Proje	Project: Lathrop 48 Acre Property								
PO Box 332		Project Number: 137-002									
Roseville CA, 95661		Project Manag	ger: Joe Br	usca				04/12/18 15:44			
			SP1-4								
		T1811	53-04 (So	oil)							
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes		
		SunStar L	aboratori	ies, Inc.							
Semivolatile Organic Compounds by	EPA Method 8270C										
Benzo (a) pyrene	ND	300	ug/kg	1	8040523	04/05/18	04/09/18	EPA 8270C			
Benzyl alcohol	ND	300	"	"	"	"	"	"			
Bis(2-chloroethoxy)methane	ND	300	"	"	"	"	"	"			
Bis(2-chloroethyl)ether	ND	300	"	"	"	"	"	"			
Bis(2-chloroisopropyl)ether	ND	300	"	"	"	"	"	"			
Bis(2-ethylhexyl)phthalate	ND	300	"	"	"	"	"	"			
4-Bromophenyl phenyl ether	ND	300	"	"	"	"	"	"			
Butyl benzyl phthalate	ND	300	"	"	"	"	"	"			
4-Chloroaniline	ND	300	"	"	"	"	"	"			
2-Chloronaphthalene	ND	300	"	"	"	"	"	"			
4-Chlorophenyl phenyl ether	ND	300	"	"	"	"	"	"			
Chrysene	ND	300	"	"	"	"	"	"			
Dibenz (a,h) anthracene	ND	300	"	"	"	"	"	"			
Dibenzofuran	ND	300	"	"	"	"	"	"			
Di-n-butyl phthalate	ND	300	"	"	"	"	"	"			
1,2-Dichlorobenzene	ND	300	"	"	"	"	"	"			
1,3-Dichlorobenzene	ND	300	"	"	"	"	"	"			
2,4-Dichlorophenol	ND	1000	"	"	"	"	"	"			
Diethyl phthalate	ND	300	"	"	"	"	"	"			
2,4-Dimethylphenol	ND	1000	"	"	"	"	"	"			
Dimethyl phthalate	ND	300	"	"	"	"	"	"			
4,6-Dinitro-2-methylphenol	ND	1000	"	"	"	"	"	"			
2,4-Dinitrophenol	ND	1000	"	"	"	"	"	"			
2,6-Dinitrotoluene	ND	1000	"	"	"	"	"	"			
Di-n-octyl phthalate	ND	300	"	"	"	"	"	"			
Fluoranthene	ND	300	"	"	"	"	"	"			
Fluorene	ND	300	"	"	"	"	"	"			
Hexachlorobenzene	ND	1500	"	"	"	"	"	"			
Hexachlorobutadiene	ND	300	"	"	"	"	"	"			
Hexachlorocyclopentadiene	ND	1000	"	"	"	"	"	"			
Hexachloroethane	ND	300	"	"	"	"	"	"			
Indeno (1,2,3-cd) pyrene	ND	300	"	"	"	"	"	"			

SunStar Laboratories, Inc.

Brusca Associates Inc. PO Box 332 Roseville CA, 95661		Reported: 04/12/18 15:44							
		T1811	SP1-4 53-04 (So	oil)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	ies, Inc.					
Semivolatile Organic Compounds by EPA Metho	d 8270C								
Isophorone	ND	300	ug/kg	1	8040523	04/05/18	04/09/18	EPA 8270C	
2-Methylphenol	ND	1000	"	"	"	"	"	"	
4-Methylphenol	ND	1000	"	"	"	"	"	"	
Naphthalene	ND	300	"	"	"	"	"	"	
2-Nitroaniline	ND	300	"	"	"	"	"	"	
3-Nitroaniline	ND	300	"	"	"	"	"	"	
4-Nitroaniline	ND	300	"	"	"	"	"	"	
Nitrobenzene	ND	1000	"	"	"	"	"	"	
2-Nitrophenol	ND	1000	"	"	"	"	"	"	
N-Nitrosodimethylamine	ND	300	"	"	"	"	"	"	
N-Nitrosodiphenylamine	ND	300	"	"	"	"	"	"	
2,3,5,6-Tetrachlorophenol	ND	300	"	"	"	"	"	"	
2,3,4,6-Tetrachlorophenol	ND	300	"	"	"	"	"	"	
Phenanthrene	ND	300	"	"	"	"	"	"	
Azobenzene	ND	300	"	"	"	"	"	"	
Pyridine	ND	300	"	"	"	"	"	"	
2,4,5-Trichlorophenol	ND	1000	"	"	"	"	"	"	
2,4,6-Trichlorophenol	ND	1000	"	"	"	"	"	"	
Surrogate: 2-Fluorophenol		42.7 %	15-	121	"	"	"	"	
Surrogate: Phenol-d6		45.7 %	24-	113	"	"	"	"	
Surrogate: Nitrobenzene-d5		60.3 %	21.3	-119	"	"	"	"	
Surrogate: 2-Fluorobiphenyl		56.3 %	32.4	-102	"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		61.2 %	18.1	-105	"	"	"	"	
Surrogate: Terphenyl-dl4		108 %	29.1	-130	"	"	"	"	

SunStar Laboratories, Inc.

Brusca Associates Inc. PO Box 332 Roseville CA, 95661		Reported: 04/12/18 15:44							
		T181 1	SP1-5 153-05 (So	oil)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Extractable Petroleum Hydrocarl	bons by 8015B with Silica	Gel Cleanu	p						
C6-C12 (GRO)	ND	10	mg/kg	1	8040518	04/05/18	04/10/18	EPA 8015B	
C13-C28 (DRO)	96	10	"	"	"	"	"	"	
C29-C40 (MORO)	52	10	"	"	"	"		"	
Surrogate: p-Terphenyl		74.7 %	65	135	"	"	"	"	
Metals by EPA 6010B									
Antimony	ND	3.0	mg/kg	1	8040603	04/06/18	04/06/18	EPA 6010B	
Silver	ND	2.0	"	"	"	"		"	
Arsenic	ND	5.0	"	"	"	"		"	
Barium	41	1.0	"	"	"	"		"	
Beryllium	ND	1.0	"	"	"	"		"	
Cadmium	ND	2.0	"	"	"	"		"	
Chromium	4.6	2.0	"	"	"	"	"	"	
Cobalt	3.0	2.0	"	"	"	"	"	"	
Copper	11	1.0	"	"	"	"	"	"	
Lead	45	3.0	"	"	"	"	"	"	
Molybdenum	ND	5.0	"	"	"	"	"	"	
Nickel	3.9	2.0	"	"	"	"	"	"	
Selenium	ND	5.0	"	"	"	"	"	"	
Thallium	ND	2.0	"	"	"	"	"	"	
Vanadium	8.0	5.0	"	"	"	"	"	"	
Zinc	30	1.0	"	"	"	"	"	"	
Cold Vapor Extraction EPA 7470/	/7471								
Mercury	ND	0.10	mg/kg	1	8040605	04/06/18	04/06/18	EPA 7471A Soil	

SunStar Laboratories, Inc.

Mike Jaroudi, Project Manager

Brusca Associates Inc.	Project: Lathrop 48 Acre Property									
PO Box 332			Reported:							
Roseville CA, 95661		Project Manag	ger: Joe Br	usca				04/12/18 15:44		
			SP1-5							
		T1811	53-05 (So	oil)						
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes	
		SunStar L	aboratori	ies, Inc.						
Polychlorinated Biphenyls by EPA M	1ethod 8082									
PCB-1016	ND	10	ug/kg	1	8040520	04/05/18	04/06/18	EPA 8082		
PCB-1221	ND	10	"	"	"	"	"	"		
PCB-1232	ND	10	"	"	"	"	"	"		
PCB-1242	ND	10	"	"	"	"	"	"		
PCB-1248	ND	10	"	"	"	"	"	"		
PCB-1254	47	10	"	"	"	"	"	"		
PCB-1260	ND	10	"	"	"	"	"	"		
Surrogate: Tetrachloro-meta-xylene		118 %	35-	140	"	"	"	"		
Surrogate: Decachlorobiphenyl		123 %	35-	140	"	"	"	"		
Semivolatile Organic Compounds by	v EPA Method 8270C									
Carbazole	ND	300	119/kg	1	8040523	04/05/18	04/09/18	EPA 8270C		
Phenol	ND	1000	"	"	"	"	"	"		
Aniline	ND	300	"	"	"	"		"		
2-Chlorophenol	ND	1000	"	"	"	"		"		
1 4-Dichlorobenzene	ND	300	"	"	"	"		"		
N-Nitrosodi-n-propylamine	ND	300	"	"	"	"		"		
1.2.4-Trichlorobenzene	ND	300	"	"	"	"		"		
4-Chloro-3-methylphenol	ND	1000	"	"	"	"		"		
2-Methylnaphthalene	ND	300	"	"	"	"	"	"		
1-Methylnaphthalene	ND	300	"	"	"	"	"	"		
Acenaphthene	ND	300	"	"	"	"	"	"		
4-Nitrophenol	ND	1000	"	"	"	"	"	"		
2.4-Dinitrotoluene	ND	300	"	"	"	"	"	"		
Pentachlorophenol	ND	1000	"	"	"	"	"	"		
Pvrene	420	300	"	"	"	"				
Acenaphthylene	ND	300	"	"	"	"		"		
Anthracene	ND	300	"	"	"	"	"	"		
Benzo (a) anthracene	ND	300	"	"	"	"	"	"		
Benzo (b) fluoranthene	ND	300	"	"	"	"	"	"		
Benzo (k) fluoranthene	ND	300	"	"	"	"	"	"		
Benzo (g,h,i) perylene	ND	1000	"	"	"	"	"	"		

SunStar Laboratories, Inc.

Brusca Associates Inc.		Proje									
PO Box 332		Project Number: 137-002									
Roseville CA, 95661		Project Manag	ger: Joe Br	usca				04/12/18 15	:44		
		T101	SP1-5								
		T1811	153-05 (Se	oil)							
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes		
		SunStar L	aboratori	ies, Inc.							
Semivolatile Organic Compounds by	EPA Method 8270C										
Benzo (a) pyrene	ND	300	ug/kg	1	8040523	04/05/18	04/09/18	EPA 8270C			
Benzyl alcohol	ND	300	"	"	"	"	"	"			
Bis(2-chloroethoxy)methane	ND	300	"	"	"	"	"	"			
Bis(2-chloroethyl)ether	ND	300	"	"	"	"	"	"			
Bis(2-chloroisopropyl)ether	ND	300	"	"	"	"	"	"			
Bis(2-ethylhexyl)phthalate	ND	300	"	"	"	"	"	"			
4-Bromophenyl phenyl ether	ND	300	"	"	"	"	"	"			
Butyl benzyl phthalate	ND	300	"	"	"	"	"	"			
4-Chloroaniline	ND	300	"	"	"	"	"	"			
2-Chloronaphthalene	ND	300	"	"	"	"	"	"			
4-Chlorophenyl phenyl ether	ND	300	"	"	"	"	"	"			
Chrysene	ND	300	"	"	"	"	"	"			
Dibenz (a,h) anthracene	ND	300	"	"	"	"	"	"			
Dibenzofuran	ND	300	"	"	"	"	"	"			
Di-n-butyl phthalate	ND	300	"	"	"	"	"	"			
1,2-Dichlorobenzene	ND	300	"	"	"	"	"	"			
1,3-Dichlorobenzene	ND	300	"	"	"	"	"	"			
2,4-Dichlorophenol	ND	1000	"	"	"	"	"	"			
Diethyl phthalate	ND	300	"	"	"	"	"	"			
2,4-Dimethylphenol	ND	1000	"	"	"	"	"	"			
Dimethyl phthalate	ND	300	"	"	"	"	"	"			
4,6-Dinitro-2-methylphenol	ND	1000	"	"	"	"	"	"			
2,4-Dinitrophenol	ND	1000	"	"	"	"	"	"			
2,6-Dinitrotoluene	ND	1000	"	"	"	"	"	"			
Di-n-octyl phthalate	ND	300	"	"	"	"	"	"			
Fluoranthene	360	300	"	"	"	"	"	"			
Fluorene	ND	300	"	"	"	"	"	"			
Hexachlorobenzene	ND	1500	"	"	"	"	"	"			
Hexachlorobutadiene	ND	300	"	"	"	"	"	"			
Hexachlorocyclopentadiene	ND	1000	"	"	"	"	"	"			
Hexachloroethane	ND	300	"	"	"	"	"	"			
Indeno (1,2,3-cd) pyrene	ND	300	"	"		"	"	"			

SunStar Laboratories, Inc.

Brusca Associates Inc. PO Box 332 Roseville CA, 95661		Reported: 04/12/18 15:44							
		T1811	SP1-5 53-05 (So	il)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Semivolatile Organic Compounds by EP.	A Method 8270C								
Isophorone	ND	300	ug/kg	1	8040523	04/05/18	04/09/18	EPA 8270C	
2-Methylphenol	ND	1000		"	"	"	"	"	
4-Methylphenol	ND	1000		"	"	"	"	"	
Naphthalene	ND	300	"	"	"	"	"	"	
2-Nitroaniline	ND	300	"	"	"	"	"	"	
3-Nitroaniline	ND	300	"	"	"	"	"	"	
4-Nitroaniline	ND	300		"	"	"	"	"	
Nitrobenzene	ND	1000	"	"	"	"	"	"	
2-Nitrophenol	ND	1000	"	"	"	"	"	"	
N-Nitrosodimethylamine	ND	300	"	"	"	"	"	"	
N-Nitrosodiphenylamine	ND	300	"	"	"	"	"	"	
2,3,5,6-Tetrachlorophenol	ND	300		"	"	"	"	"	
2,3,4,6-Tetrachlorophenol	ND	300		"	"	"	"	"	
Phenanthrene	ND	300		"	"	"	"	"	
Azobenzene	ND	300	"	"	"	"	"	"	
Pyridine	ND	300	"	"	"	"	"	"	
2,4,5-Trichlorophenol	ND	1000	"	"	"	"	"	"	
2,4,6-Trichlorophenol	ND	1000	"	"	"	"	"	"	
Surrogate: 2-Fluorophenol		57.7%	15-1	121	"	"	"	"	
Surrogate: Phenol-d6		61.4 %	24-	113	"	"	"	"	
Surrogate: Nitrobenzene-d5		80.7 %	21.3-	-119	"	"	"	"	
Surrogate: 2-Fluorobiphenyl		75.5 %	32.4-	-102	"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		75.7%	18.1-	-105	"	"	"	"	
Surrogate: Terphenyl-dl4		126 %	29.1-	-130	"	"	"	"	

SunStar Laboratories, Inc.

Brusca Associates Inc. PO Box 332 Roseville CA, 95661		Reported: 04/12/18 15:44							
		T1011	SP1-6	.:1)					
		1101	133-00 (30	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Extractable Petroleum Hydrocar	bons by 8015B with Silica	Gel Cleanu	р						
C6-C12 (GRO)	ND	10	mg/kg	1	8040518	04/05/18	04/10/18	EPA 8015B	
C13-C28 (DRO)	44	10	"	"	"	"		"	
C29-C40 (MORO)	78	10	"	"	"	"	"	"	
Surrogate: p-Terphenyl		78.7 %	65-	135	"	"	"	"	
Metals by EPA 6010B									
Antimony	ND	3.0	mg/kg	1	8040603	04/06/18	04/06/18	EPA 6010B	
Silver	ND	2.0	"	"	"	"	"	"	
Arsenic	ND	5.0	"	"	"	"	"	"	
Barium	44	1.0	"	"	"	"	"	"	
Beryllium	ND	1.0	"	"	"	"	"	"	
Cadmium	ND	2.0	"	"	"	"	"	"	
Chromium	4.2	2.0	"	"	"	"	"	"	
Cobalt	3.0	2.0	"	"	"	"	"	"	
Copper	5.1	1.0	"	"	"	"	"	"	
Lead	24	3.0	"	"	"	"	"	"	
Molybdenum	ND	5.0	"	"	"	"	"	"	
Nickel	4.2	2.0	"	"	"	"	"	"	
Selenium	ND	5.0	"	"	"	"	"	"	
Thallium	ND	2.0	"	"	"	"	"	"	
Vanadium	11	5.0	"	"	"	"	"	"	
Zinc	24	1.0	"	"	"	"	"	"	
Cold Vapor Extraction EPA 7470	/7471								
Mercury	ND	0.10	mg/kg	1	8040605	04/06/18	04/06/18	EPA 7471A Soil	

SunStar Laboratories, Inc.

Mike Jaroudi, Project Manager

Brusca Associates Inc.	ociates Inc. Project: Lathrop 48 Acre Property										
PO Box 332		Project Numb	ber: 137-00)2				Reported:			
Roseville CA, 95661		Project Manag	ger: Joe Br	usca				04/12/18 15	:44		
		1	SP1-6								
		T1811	153-06 (So	oil)							
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes		
		SunStar L	aboratori	ies, Inc.							
Polychlorinated Biphenyls by EPA M	1ethod 8082										
PCB-1016	ND	10	ug/kg	1	8040520	04/05/18	04/06/18	EPA 8082			
PCB-1221	ND	10	"	"	"	"	"	"			
PCB-1232	ND	10	"	"	"	"	"	"			
PCB-1242	ND	10	"	"	"	"	"	"			
PCB-1248	ND	10	"	"	"	"	"	"			
PCB-1254	52	10	"	"	"	"	"	"			
PCB-1260	ND	10	"	"	"	"	"	"			
Surrogate: Tetrachloro-meta-xylene		133 %	35-	140	"	"	"	"			
Surrogate: Decachlorobiphenyl		128 %	35-	140	"	"	"	"			
Semivolatile Organic Compounds by	FPA Method 8270C										
Carbazole	ND	300	110/ko	1	8040523	04/05/18	04/09/18	EPA 8270C			
Phenol	ND	1000	"	"	"	"	"	"			
Aniline	ND	300	"	"	"	"					
2-Chlorophenol	ND	1000	"	"		"		"			
1 4-Dichlorobenzene	ND	300	"	"	"	"					
N-Nitrosodi-n-propylamine	ND	300	"	"	"	"					
1.2.4-Trichlorobenzene	ND	300	"	"		"		"			
4-Chloro-3-methylphenol	ND	1000	"	"		"		"			
1-Methylnaphthalene	ND	300	"	"		"		"			
2-Methylnaphthalene	ND	300	"	"		"	"	"			
Acenaphthene	ND	300	"	"		"	"	"			
4-Nitrophenol	ND	1000	"	"		"		"			
2.4-Dinitrotoluene	ND	300	"	"		"	"	"			
Pentachlorophenol	ND	1000	"	"		"		"			
Pyrene	ND	300	"	"	"	"		"			
Acenaphthylene	ND	300	"	"	"	"	"	"			
Anthracene	ND	300	"	"		"	"	"			
Benzo (a) anthracene	ND	300	"	"		"	"	"			
Benzo (b) fluoranthene	ND	300	"	"		"	"	"			
Benzo (k) fluoranthene	ND	300	"	"		"	"	"			
Benzo (g,h,i) perylene	ND	1000	"	"	"	"	"	"			

SunStar Laboratories, Inc.

Brusca Associates Inc.		Proje	ect: Lathro	et: Lathrop 48 Acre Property						
PO Box 332		Project Number: 137-002								
Roseville CA, 95661		Project Manag	ger: Joe Br	rusca				04/12/18 15:44		
		:	SP1-6							
		T1811	53-06 (So	oil)						
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes	
		SunStar L	aboratori	ies, Inc.						
Semivolatile Organic Compounds by	EPA Method 8270C									
Benzo (a) pyrene	ND	300	ug/kg	1	8040523	04/05/18	04/09/18	EPA 8270C		
Benzyl alcohol	ND	300	"	"	"	"	"	"		
Bis(2-chloroethoxy)methane	ND	300	"	"	"	"	"	"		
Bis(2-chloroethyl)ether	ND	300	"	"	"	"	"	"		
Bis(2-chloroisopropyl)ether	ND	300	"	"	"	"	"	"		
Bis(2-ethylhexyl)phthalate	ND	300	"	"	"	"	"	"		
4-Bromophenyl phenyl ether	ND	300	"	"	"	"	"	"		
Butyl benzyl phthalate	ND	300	"	"	"	"	"	"		
4-Chloroaniline	ND	300	"	"	"	"	"	"		
2-Chloronaphthalene	ND	300	"	"	"	"	"	"		
4-Chlorophenyl phenyl ether	ND	300	"	"	"	"	"	"		
Chrysene	ND	300	"	"	"	"	"	"		
Dibenz (a,h) anthracene	ND	300	"	"	"	"	"	"		
Dibenzofuran	ND	300	"	"	"	"	"	"		
Di-n-butyl phthalate	ND	300	"	"	"	"	"	"		
1,2-Dichlorobenzene	ND	300	"	"	"	"	"	"		
1,3-Dichlorobenzene	ND	300	"	"	"	"	"	"		
2,4-Dichlorophenol	ND	1000	"	"	"	"	"	"		
Diethyl phthalate	ND	300	"	"	"	"	"	"		
2,4-Dimethylphenol	ND	1000	"	"	"	"	"	"		
Dimethyl phthalate	ND	300	"	"	"	"	"	"		
4,6-Dinitro-2-methylphenol	ND	1000	"	"	"	"	"	"		
2,4-Dinitrophenol	ND	1000	"	"	"	"	"	"		
2,6-Dinitrotoluene	ND	1000	"	"	"	"	"	"		
Di-n-octyl phthalate	ND	300	"	"	"	"	"	"		
Fluoranthene	ND	300	"	"	"	"	"	"		
Fluorene	ND	300	"	"	"	"	"	"		
Hexachlorobenzene	ND	1500	"	"	"	"	"	"		
Hexachlorobutadiene	ND	300	"	"	"	"	"	"		
Hexachlorocyclopentadiene	ND	1000	"	"	"	"	"	"		
Hexachloroethane	ND	300	"	"	"	"	"	"		
Indeno (1,2,3-cd) pyrene	ND	300	"	"	"	"	"	"		

SunStar Laboratories, Inc.

Brusca Associates Inc. PO Box 332 Roseville CA, 95661			Reported: 04/12/18 15:44						
		T1811	SP1-6 53-06 (So	oil)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	ies, Inc.					
Semivolatile Organic Compounds by EPA Mo	ethod 8270C								
Isophorone	ND	300	ug/kg	1	8040523	04/05/18	04/09/18	EPA 8270C	
2-Methylphenol	ND	1000	"	"	"	"	"	"	
4-Methylphenol	ND	1000	"	"	"	"	"	"	
Naphthalene	ND	300	"	"	"	"	"	"	
2-Nitroaniline	ND	300	"	"	"	"	"	"	
3-Nitroaniline	ND	300	"	"	"	"	"	"	
4-Nitroaniline	ND	300	"	"	"	"	"	"	
Nitrobenzene	ND	1000	"	"	"	"	"	"	
2-Nitrophenol	ND	1000	"	"	"	"	"	"	
N-Nitrosodimethylamine	ND	300	"	"	"	"	"	"	
N-Nitrosodiphenylamine	ND	300	"	"	"	"	"	"	
2,3,5,6-Tetrachlorophenol	ND	300	"	"	"	"	"	"	
2,3,4,6-Tetrachlorophenol	ND	300	"	"	"	"	"	"	
Phenanthrene	ND	300	"	"	"	"	"	"	
Azobenzene	ND	300	"	"	"	"	"	"	
Pyridine	ND	300	"	"	"	"	"	"	
2,4,5-Trichlorophenol	ND	1000	"	"	"	"	"	"	
2,4,6-Trichlorophenol	ND	1000	"	"	"	"	"	"	
Surrogate: 2-Fluorophenol		58.6 %	15-	121	"	"	"	"	
Surrogate: Phenol-d6		62.0 %	24-	113	"	"	"	"	
Surrogate: Nitrobenzene-d5		80.3 %	21.3	-119	"	"	"	"	
Surrogate: 2-Fluorobiphenyl		73.8 %	32.4	-102	"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		74.3 %	18.1	-105	"	"	"	"	
Surrogate: Terphenyl-dl4		127 %	29.1	-130	"	"	"	"	

SunStar Laboratories, Inc.

Brusca Associates Inc. PO Box 332		Reported:							
Roseville CA, 95661		Project Manag	ger: Joe Br	usca				04/12/18 15	:44
			SP1-7						
		T181	153-07 (So	oil)					
		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Extractable Petroleum Hydrocar	bons by 8015B with Silica	Gel Cleanu	p						
C6-C12 (GRO)	ND	10	mg/kg	1	8040518	04/05/18	04/10/18	EPA 8015B	
C13-C28 (DRO)	88	10	"	"	"	"	"	"	
C29-C40 (MORO)	92	10	"	"	"	"	"	"	
Surrogate: p-Terphenyl		81.8 %	65-	135	"	"	"	"	
Metals by EPA 6010B									
Antimony	ND	3.0	mg/kg	1	8040603	04/06/18	04/06/18	EPA 6010B	
Silver	ND	2.0	"	"	"	"	"	"	
Arsenic	ND	5.0	"	"	"	"	"	"	
Barium	60	1.0	"	"	"	"	"	"	
Beryllium	ND	1.0	"	"	"	"	"	"	
Cadmium	ND	2.0	"	"	"	"	"	"	
Chromium	5.3	2.0	"	"	"	"	"	"	
Cobalt	4.2	2.0	"	"	"	"	"	"	
Copper	5.1	1.0	"	"	"	"	"	"	
Lead	11	3.0	"	"	"	"	"	"	
Molybdenum	ND	5.0	"	"	"	"	"	"	
Nickel	5.5	2.0	"	"	"	"	"	"	
Selenium	ND	5.0	"	"	"	"	"	"	
Thallium	ND	2.0	"	"	"	"	"	"	
Vanadium	14	5.0	"	"	"	"	"	"	
Zinc	29	1.0	"	"		"	"	"	
Cold Vapor Extraction EPA 7470	/7471								
Mercury	ND	0.10	mg/kg	1	8040605	04/06/18	04/06/18	EPA 7471A Soil	

SunStar Laboratories, Inc.

Brusca Associates Inc.	Project: Lathrop 48 Acre Property										
PO Box 332			Reported:								
Roseville CA, 95661		Project Manag	ger: Joe Br	usca				04/12/18 15:44			
		;	SP1-7								
		T1811	53-07 (So	oil)							
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes		
		SunStar L	aboratori	es, Inc.							
Polychlorinated Biphenyls by EPA M	ethod 8082										
PCB-1016	ND	10	ug/kg	1	8040520	04/05/18	04/06/18	EPA 8082			
PCB-1221	ND	10	"	"	"	"	"	"			
PCB-1232	ND	10	"	"	"	"	"	"			
PCB-1242	ND	10	"	"	"	"	"	"			
PCB-1248	ND	10	"	"	"	"	"	"			
PCB-1254	43	10	"	"	"	"	"	"			
PCB-1260	ND	10	"	"	"	"	"	"			
Surrogate: Tetrachloro-meta-xylene		128 %	35-	140	"	"	"	"			
Surrogate: Decachlorobiphenyl		140 %	35-	140	"	"	"	"			
Semivolatile Organic Compounds by	EPA Method 8270C										
Carbazole	ND	300	119/kg	1	8040523	04/05/18	04/09/18	EPA 8270C			
Phenol	ND	1000	"	"	"	"	"	"			
Aniline	ND	300		"	"	"	"	"			
2-Chlorophenol	ND	1000	"	"		"	"	"			
1.4-Dichlorobenzene	ND	300	"	"	"	"	"	"			
N-Nitrosodi-n-propylamine	ND	300	"	"		"	"	"			
1.2.4-Trichlorobenzene	ND	300	"	"		"		"			
4-Chloro-3-methylphenol	ND	1000	"	"		"		"			
1-Methylnaphthalene	ND	300	"	"		"		"			
2-Methylnaphthalene	ND	300	"	"		"	"	"			
Acenaphthene	ND	300	"	"		"	"	"			
4-Nitrophenol	ND	1000	"	"		"	"	"			
2,4-Dinitrotoluene	ND	300	"	"		"	"	"			
Pentachlorophenol	ND	1000	"	"		"	"	"			
Pyrene	490	300	"	"		"	"	"			
Acenaphthylene	ND	300	"	"	"	"	"	"			
Anthracene	ND	300	"	"		"	"	"			
Benzo (a) anthracene	ND	300	"	"		"	"	"			
Benzo (b) fluoranthene	ND	300	"	"		"	"	"			
Benzo (k) fluoranthene	ND	300	"	"		"	"	"			
Benzo (g,h,i) perylene	ND	1000	"	"	"	"	"	"			

SunStar Laboratories, Inc.

Brusca Associates Inc.	Proje	ect: Lathro	p 48 Acre Pi	roperty				
PO Box 332	Project Numb	Reported:						
Roseville CA, 95661	Project Manag	er: Joe Br	usca				04/12/18 15:44	
	Ş	SP1-7						
	T1811	53-07 (So	oil)					
Analyte Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	SunStar L	aboratori	ies, Inc.					
Semivolatile Organic Compounds by EPA Method 8270C								
Benzo (a) pyrene ND	300	ug/kg	1	8040523	04/05/18	04/09/18	EPA 8270C	
Benzyl alcohol ND	300	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane ND	300	"	"	"	"	"	"	
Bis(2-chloroethyl)ether ND	300	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether ND	300	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate ND	300	"	"	"	"	"	"	
4-Bromophenyl phenyl ether ND	300	"	"	"	"	"	"	
Butyl benzyl phthalate ND	300	"	"	"	"	"	"	
4-Chloroaniline ND	300	"	"	"	"	"	"	
2-Chloronaphthalene ND	300	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether ND	300	"	"		"	"	"	
Chrysene ND	300	"	"		"	"	"	
Dibenz (a,h) anthracene ND	300	"	"		"	"	"	
Dibenzofuran ND	300	"	"	"	"	"	"	
Di-n-butyl phthalate ND	300	"	"	"	"	"	"	
1,2-Dichlorobenzene ND	300	"	"	"	"	"	"	
1,3-Dichlorobenzene ND	300	"	"		"	"	"	
2,4-Dichlorophenol ND	1000	"	"	"	"	"	"	
Diethyl phthalate ND	300	"	"	"	"	"	"	
2,4-Dimethylphenol ND	1000	"	"	"	"	"	"	
Dimethyl phthalate ND	300	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol ND	1000	"	"	"	"	"	"	
2,4-Dinitrophenol ND	1000	"	"		"	"	"	
2,6-Dinitrotoluene ND	1000	"	"	"	"	"	"	
Di-n-octyl phthalate ND	300	"	"	"	"	"	"	
Fluoranthene 420	300	"	"		"	"	"	
Fluorene ND	300	"	"	"	"	"	"	
Hexachlorobenzene ND	1500	"	"	"	"	"	"	
Hexachlorobutadiene ND	300	"	"		"	"	"	
Hexachlorocyclopentadiene ND	1000	"	"	"	"	"	"	
Hexachloroethane ND	300	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene ND	300	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Brusca Associates Inc. PO Box 332 Roseville CA, 95661	Project: Lathrop 48 Acre Property Project Number: 137-002 Project Manager: Joe Brusca									
	T1811	SP1-7 53-07 (So	vil)							
Analyte Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes		
	SunStar L	aboratori	es, Inc.							
Semivolatile Organic Compounds by EPA Method 8270C										
Isophorone ND	300	ug/kg	1	8040523	04/05/18	04/09/18	EPA 8270C			
2-Methylphenol ND	1000	"	"	"	"		"			
4-Methylphenol ND	1000	"	"	"	"		"			
Naphthalene ND	300	"	"	"	"		"			
2-Nitroaniline ND	300	"	"	"	"		"			
3-Nitroaniline ND	300	"	"	"	"		"			
4-Nitroaniline ND	300	"	"	"	"		"			
Nitrobenzene ND	1000	"	"	"	"	"	"			
2-Nitrophenol ND	1000	"	"	"	"	"	"			
N-Nitrosodimethylamine ND	300	"	"	"	"	"	"			
N-Nitrosodiphenylamine ND	300	"	"	"	"		"			
2,3,5,6-Tetrachlorophenol ND	300	"	"	"	"		"			
2,3,4,6-Tetrachlorophenol ND	300	"	"	"	"		"			
Phenanthrene ND	300	"	"	"	"		"			
Azobenzene ND	300	"	"	"	"		"			
Pyridine ND	300		"	"	"	"	"			
2,4,5-Trichlorophenol ND	1000		"	"	"	"	"			
2,4,6-Trichlorophenol ND	1000	"	"	"	"	"	"			
Surrogate: 2-Fluorophenol	63.6 %	15-	121	"	"	"	"			
Surrogate: Phenol-d6	66.3 %	24-	113	"	"	"	"			
Surrogate: Nitrobenzene-d5	86.5 %	21.3	-119	"	"	"	"			
Surrogate: 2-Fluorobiphenyl	80.1 %	32.4-	-102	"	"	"	"			
Surrogate: 2,4,6-Tribromophenol	80.0 % 18.1-105			"	"	"	"			
Surrogate: Terphenyl-dl4	136 % 29.1-130 "				"	"	"	S-GC		

SunStar Laboratories, Inc.

Brusca Associates Inc.	ates Inc. Project: Lathrop 48 Acre Property									
PO Box 332 Roseville CA, 95661	F	Reported: 04/12/18 15:44								
·		5								
		T181	SP1-8 153-08 (So	oil)						
		Reporting								
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes	
		SunStar L	aboratori	ies, Inc.						
Extractable Petroleum Hydrocarb	ons by 8015B with Silica (Gel Cleanu	р							
C6-C12 (GRO)	ND	10	mg/kg	1	8040518	04/05/18	04/10/18	EPA 8015B		
C13-C28 (DRO)	28	10	"	"	"	"	"	"		
C29-C40 (MORO)	64	10	"	"	"	"	"	"		
Surrogate: p-Terphenyl		77.5 %	65-	135	"	"	"	"		
Metals by EPA 6010B										
Antimony	ND	3.0	mg/kg	1	8040603	04/06/18	04/06/18	EPA 6010B		
Silver	ND	2.0	"	"	"	"	"	"		
Arsenic	ND	5.0	"	"	"	"	"	"		
Barium	66	1.0	"	"	"	"	"	"		
Beryllium	ND	1.0	"	"	"	"	"	"		
Cadmium	ND	2.0	"	"	"	"	"	"		
Chromium	6.1	2.0	"	"	"	"	"	"		
Cobalt	3.6	2.0	"	"	"	"	"	"		
Copper	7.2	1.0	"	"	"	"	"	"		
Lead	13	3.0	"	"	"	"	"	"		
Molybdenum	ND	5.0	"	"	"	"	"	"		
Nickel	5.1	2.0	"	"	"	"	"	"		
Selenium	ND	5.0	"	"	"	"	"	"		
Thallium	ND	2.0	"	"	"	"	"	"		
Vanadium	15	5.0	"	"	"	"	"	"		
Zinc	46	1.0	"	"	"		"	"		
Cold Vapor Extraction EPA 7470/7	/471									
Mercury	ND	0.10	mg/kg	1	8040605	04/06/18	04/06/18	EPA 7471A Soil		

SunStar Laboratories, Inc.

Mike Jaroudi, Project Manager

Brusca Associates Inc.		Proje	ect: Lathro	p 48 Acre Pi	roperty				
PO Box 332		Project Numb	er: 137-00)2				Reported	:
Roseville CA, 95661		Project Manag	ger: Joe Br	usca				04/12/18 15	:44
		1	SP1-8						
		T1811	53-08 (So	oil)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Polychlorinated Biphenyls by EPA Me	thod 8082								
PCB-1016	ND	10	ug/kg	1	8040520	04/05/18	04/06/18	EPA 8082	
PCB-1221	ND	10	"	"	"	"	"	"	
PCB-1232	ND	10	"	"	"	"	"	"	
PCB-1242	ND	10	"	"	"	"	"	"	
PCB-1248	ND	10	"	"	"	"	"	"	
PCB-1254	32	10	"	"	"	"	"	"	
PCB-1260	ND	10	"	"	"	"	"	"	
Surrogate: Tetrachloro-meta-xylene		118 %	35-	140	"	"	"	"	
Surrogate: Decachlorobiphenyl		140 %	35-	140	"	"	"	"	
Semivalatile Organic Compounds by F	PA Method 8270C								
Carbazole	ND	300	119/kg	1	8040523	04/05/18	04/09/18	EPA 8270C	
Aniline	ND	300	"	"	"	"	"	"	
Phenol	ND	1000		"	"		"	"	
2-Chlorophenol	ND	1000	"	"				"	
1.4-Dichlorobenzene	ND	300	"	"	"		"	"	
N-Nitrosodi-n-propylamine	ND	300	"	"				"	
1,2,4-Trichlorobenzene	ND	300	"	"		"	"	"	
4-Chloro-3-methylphenol	ND	1000	"	"		"		"	
1-Methylnaphthalene	ND	300	"	"		"	"	"	
2-Methylnaphthalene	ND	300	"	"		"	"	"	
Acenaphthene	ND	300	"	"		"	"	"	
4-Nitrophenol	ND	1000	"	"		"	"	"	
2,4-Dinitrotoluene	ND	300	"	"		"	"	"	
Pentachlorophenol	ND	1000	"	"	"	"	"	"	
Pyrene	360	300	"	"	"	"	"	"	
Acenaphthylene	ND	300	"	"		"	"	"	
Anthracene	ND	300	"	"		"	"	"	
Benzo (a) anthracene	ND	300	"	"		"	"	"	
Benzo (b) fluoranthene	ND	300	"	"		"	"	"	
Benzo (k) fluoranthene	ND	300	"	"		"	"	"	
Benzo (g,h,i) perylene	ND	1000	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Brusca Associates Inc.		Proje	ect: Lathro	p 48 Acre P	roperty					
PO Box 332		Project Number: 137-002								
Roseville CA, 95661		Project Manag	ger: Joe Br	usca				04/12/18 15	:44	
			SP1-8							
		T1811	53-08 (So	oil)						
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes	
		SunStar L	aboratori	ies, Inc.						
Semivolatile Organic Compounds by	EPA Method 8270C									
Benzo (a) pyrene	ND	300	ug/kg	1	8040523	04/05/18	04/09/18	EPA 8270C		
Benzyl alcohol	ND	300	"	"	"	"	"	"		
Bis(2-chloroethoxy)methane	ND	300	"	"	"	"	"	"		
Bis(2-chloroethyl)ether	ND	300	"	"	"	"	"	"		
Bis(2-chloroisopropyl)ether	ND	300	"	"	"	"	"	"		
Bis(2-ethylhexyl)phthalate	ND	300	"	"	"	"	"	"		
4-Bromophenyl phenyl ether	ND	300	"	"	"	"	"	"		
Butyl benzyl phthalate	ND	300	"	"	"	"	"	"		
4-Chloroaniline	ND	300	"	"	"	"	"	"		
2-Chloronaphthalene	ND	300	"	"	"	"	"	"		
4-Chlorophenyl phenyl ether	ND	300	"	"	"	"	"	"		
Chrysene	ND	300	"	"	"	"	"	"		
Dibenz (a,h) anthracene	ND	300	"	"	"	"	"	"		
Dibenzofuran	ND	300	"	"	"	"	"	"		
Di-n-butyl phthalate	ND	300	"	"	"	"	"	"		
1,2-Dichlorobenzene	ND	300	"	"	"	"	"	"		
1,3-Dichlorobenzene	ND	300	"	"	"	"	"	"		
2,4-Dichlorophenol	ND	1000	"	"	"	"	"	"		
Diethyl phthalate	ND	300	"	"	"	"	"	"		
2,4-Dimethylphenol	ND	1000	"	"	"	"	"	"		
Dimethyl phthalate	ND	300	"	"	"	"	"	"		
4,6-Dinitro-2-methylphenol	ND	1000	"	"	"	"	"	"		
2,4-Dinitrophenol	ND	1000	"	"	"	"	"	"		
2,6-Dinitrotoluene	ND	1000	"	"	"	"	"	"		
Di-n-octyl phthalate	ND	300	"	"	"	"	"	"		
Fluoranthene	ND	300	"	"	"	"	"	"		
Fluorene	ND	300	"	"	"	"	"	"		
Hexachlorobenzene	ND	1500	"	"		"	"	"		
Hexachlorobutadiene	ND	300	"	"	"	"	"	"		
Hexachlorocyclopentadiene	ND	1000	"	"	"	"	"	"		
Hexachloroethane	ND	300	"	"	"	"	"	"		
Indeno (1,2,3-cd) pyrene	ND	300	"	"		"	"	"		

SunStar Laboratories, Inc.

Brusca Associates Inc. PO Box 332 Roseville CA, 95661]		Reported: 04/12/18 15:44						
		T1811	SP1-8 53-08 (So	il)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Semivolatile Organic Compounds by EP	A Method 8270C								
Isophorone	ND	300	ug/kg	1	8040523	04/05/18	04/09/18	EPA 8270C	
2-Methylphenol	ND	1000	"	"	"	"	"	"	
4-Methylphenol	ND	1000	"	"	"	"	"	"	
Naphthalene	ND	300	"	"	"	"	"	"	
2-Nitroaniline	ND	300	"	"	"	"	"	"	
3-Nitroaniline	ND	300	"	"	"	"	"	"	
4-Nitroaniline	ND	300	"	"	"	"	"	"	
Nitrobenzene	ND	1000	"	"	"	"	"	"	
2-Nitrophenol	ND	1000	"	"	"	"	"	"	
N-Nitrosodimethylamine	ND	300	"	"	"	"	"	"	
N-Nitrosodiphenylamine	ND	300	"	"	"	"	"	"	
2,3,5,6-Tetrachlorophenol	ND	300	"	"	"	"	"	"	
2,3,4,6-Tetrachlorophenol	ND	300	"	"	"	"	"	"	
Phenanthrene	ND	300	"	"	"	"	"	"	
Azobenzene	ND	300	"	"	"	"	"	"	
2,4,5-Trichlorophenol	ND	1000	"	"	"	"	"	"	
Pyridine	ND	300	"	"	"	"	"	"	
2,4,6-Trichlorophenol	ND	1000	"	"	"	"	"	"	
Surrogate: 2-Fluorophenol		57.6 %	15-1	121	"	"	"	"	
Surrogate: Phenol-d6		60.4 %	24-1	113	"	"	"	"	
Surrogate: Nitrobenzene-d5		77.3 %	21.3-	-119	"	"	"	"	
Surrogate: 2-Fluorobiphenyl		72.4 %	32.4-	102	"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		71.7% 18.1-105 "			"	"	"	"	
Surrogate: Terphenyl-dl4		118 %	29.1-	130	"	"	"	"	

SunStar Laboratories, Inc.

Brusca Associates Inc. PO Box 332 Roseville CA, 95661		Reported: 04/12/18 15:44							
			SP1-9						
		T181	153-09 (So	oil)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Extractable Petroleum Hydrocar	bons by 8015B with Silica	Gel Cleanu	р						
C6-C12 (GRO)	ND	10	mg/kg	1	8040518	04/05/18	04/10/18	EPA 8015B	
C13-C28 (DRO)	44	10	"	"	"	"	"	"	
C29-C40 (MORO)	28	10	"	"	"	"		"	
Surrogate: p-Terphenyl		78.0 %	65	135	"	"	"	"	
Metals by EPA 6010B									
Antimony	ND	3.0	mg/kg	1	8040603	04/06/18	04/06/18	EPA 6010B	
Silver	ND	2.0	"	"	"	"	"	"	
Arsenic	ND	5.0	"	"	"	"	"	"	
Barium	67	1.0	"	"	"	"	"	"	
Beryllium	ND	1.0	"	"	"	"		"	
Cadmium	ND	2.0	"	"	"	"		"	
Chromium	5.7	2.0	"	"	"	"	"	"	
Cobalt	4.1	2.0	"	"	"	"	"	"	
Copper	5.3	1.0	"	"	"	"		"	
Lead	ND	3.0	"	"	"	"	"	"	
Molybdenum	ND	5.0	"	"	"	"	"	"	
Nickel	5.6	2.0	"	"	"	"	"	"	
Selenium	ND	5.0	"	"	"	"	"	"	
Thallium	ND	2.0	"	"	"	"	"	"	
Vanadium	17	5.0	"	"	"	"		"	
Zinc	35	1.0	"	"	"	"	"	"	
Cold Vapor Extraction EPA 7470	/7471								
Mercury	ND	0.10	mg/kg	1	8040605	04/06/18	04/06/18	EPA 7471A Soil	

SunStar Laboratories, Inc.

Mike Jaroudi, Project Manager

Brusca Associates Inc.		Proje	ect: Lathro	p 48 Acre Pi	roperty				
PO Box 332		Project Numb	ber: 137-00)2				Reported	:
Roseville CA, 95661		Project Manag	ger: Joe Br	usca				04/12/18 15:44	
		:	SP1-9						
		T1811	153-09 (So	oil)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	ies, Inc.					
Polychlorinated Biphenyls by EPA M	ethod 8082								
PCB-1016	ND	10	ug/kg	1	8040520	04/05/18	04/06/18	EPA 8082	
PCB-1221	ND	10	"	"	"	"	"	"	
PCB-1232	ND	10	"	"	"	"	"	"	
PCB-1242	ND	10	"	"	"	"	"	"	
PCB-1248	ND	10	"	"	"	"	"	"	
PCB-1254	11	10	"	"	"	"	"	"	
PCB-1260	ND	10	"	"	"	"	"	"	
Surrogate: Tetrachloro-meta-xylene		112 %	35-	140	"	"	"	"	
Surrogate: Decachlorobiphenyl		112 %	35-	140	"	"	"	"	
Semivolatile Organic Compounds by	EPA Method 8270C								
Carbazole	ND	300	ug/kg	1	8040523	04/05/18	04/09/18	EPA 8270C	
Phenol	ND	1000	"	"	"	"	"	"	
Aniline	ND	300	"	"		"	"	"	
2-Chlorophenol	ND	1000	"	"		"		"	
1,4-Dichlorobenzene	ND	300	"	"	"	"			
N-Nitrosodi-n-propylamine	ND	300	"	"	"	"		"	
1,2,4-Trichlorobenzene	ND	300	"	"	"	"		"	
4-Chloro-3-methylphenol	ND	1000	"	"	"	"		"	
2-Methylnaphthalene	ND	300	"	"		"	"	"	
1-Methylnaphthalene	ND	300	"	"	"	"	"	"	
Acenaphthene	ND	300	"	"	"	"	"	"	
4-Nitrophenol	ND	1000	"	"	"	"	"	"	
2,4-Dinitrotoluene	ND	300	"	"	"	"	"	"	
Pentachlorophenol	ND	1000	"	"	"	"	"	"	
Pyrene	ND	300	"	"	"	"	"	"	
Acenaphthylene	ND	300	"	"	"	"	"	"	
Anthracene	ND	300	"	"	"	"	"	"	
Benzo (a) anthracene	ND	300	"	"	"	"	"	"	
Benzo (b) fluoranthene	ND	300	"	"	"	"	"	"	
Benzo (k) fluoranthene	ND	300	"	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	1000	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Brusca Associates Inc.		Proje	ect: Lathro	op 48 Acre Pi	roperty					
PO Box 332		Project Number: 137-002								
Roseville CA, 95661		Project Manag	ger: Joe Br	rusca				04/12/18 15:44		
			SP1-9							
		T1811	153-09 (So	oil)						
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes	
		SunStar L	aboratori	ies, Inc.						
Semivolatile Organic Compounds by	y EPA Method 8270C									
Benzo (a) pyrene	ND	300	ug/kg	1	8040523	04/05/18	04/09/18	EPA 8270C		
Benzyl alcohol	ND	300	"	"	"	"	"	"		
Bis(2-chloroethoxy)methane	ND	300	"	"	"	"		"		
Bis(2-chloroethyl)ether	ND	300	"	"	"	"	"	"		
Bis(2-chloroisopropyl)ether	ND	300	"	"	"	"	"	"		
Bis(2-ethylhexyl)phthalate	ND	300	"	"	"	"	"	"		
4-Bromophenyl phenyl ether	ND	300	"	"	"	"	"	"		
Butyl benzyl phthalate	ND	300	"	"	"	"	"	"		
4-Chloroaniline	ND	300	"	"	"	"	"	"		
2-Chloronaphthalene	ND	300	"	"	"	"	"	"		
4-Chlorophenyl phenyl ether	ND	300	"	"	"	"		"		
Chrysene	ND	300	"	"	"	"		"		
Dibenz (a,h) anthracene	ND	300	"	"	"	"		"		
Dibenzofuran	ND	300	"	"	"	"		"		
Di-n-butyl phthalate	ND	300	"	"	"	"		"		
1,2-Dichlorobenzene	ND	300	"	"	"	"		"		
1,3-Dichlorobenzene	ND	300	"	"	"	"	"	"		
2,4-Dichlorophenol	ND	1000	"	"	"	"		"		
Diethyl phthalate	ND	300	"	"	"	"	"	"		
2,4-Dimethylphenol	ND	1000	"	"	"	"		"		
Dimethyl phthalate	ND	300	"	"	"	"	"	"		
4,6-Dinitro-2-methylphenol	ND	1000	"	"	"	"		"		
2,4-Dinitrophenol	ND	1000	"	"	"	"	"	"		
2,6-Dinitrotoluene	ND	1000	"	"	"	"		"		
Di-n-octyl phthalate	ND	300	"	"	"	"		"		
Fluoranthene	ND	300	"	"	"	"	"	"		
Fluorene	ND	300	"	"	"	"	"	"		
Hexachlorobenzene	ND	1500	"	"		"	"	"		
Hexachlorobutadiene	ND	300	"	"		"	"	"		
Hexachlorocyclopentadiene	ND	1000	"	"		"	"	"		
Hexachloroethane	ND	300	"	"		"	"	"		
Indeno (1,2,3-cd) pyrene	ND	300	"	"		"	"	"		

SunStar Laboratories, Inc.

Brusca Associates Inc. PO Box 332 Roseville CA, 95661		Reported: 04/12/18 15:44							
		T1811	SP1-9 53-09 (So	oil)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	ies, Inc.					
Semivolatile Organic Compounds by EPA	Method 8270C								
Isophorone	ND	300	ug/kg	1	8040523	04/05/18	04/09/18	EPA 8270C	
2-Methylphenol	ND	1000	"	"	"	"	"	"	
4-Methylphenol	ND	1000	"	"	"	"	"	"	
Naphthalene	ND	300	"	"	"	"	"	"	
2-Nitroaniline	ND	300	"	"	"	"	"	"	
3-Nitroaniline	ND	300	"	"	"	"	"	"	
4-Nitroaniline	ND	300		"	"	"	"	"	
Nitrobenzene	ND	1000	"	"	"	"	"	"	
2-Nitrophenol	ND	1000	"	"	"	"	"	"	
N-Nitrosodimethylamine	ND	300	"	"	"	"	"	"	
N-Nitrosodiphenylamine	ND	300	"	"	"	"	"	"	
2,3,5,6-Tetrachlorophenol	ND	300	"	"	"	"	"	"	
2,3,4,6-Tetrachlorophenol	ND	300		"	"	"	"	"	
Phenanthrene	ND	300		"	"	"	"	"	
Azobenzene	ND	300	"	"	"	"	"	"	
Pyridine	ND	300	"	"	"	"	"	"	
2,4,5-Trichlorophenol	ND	1000	"	"	"	"	"	"	
2,4,6-Trichlorophenol	ND	1000	"	"	"	"	"	"	
Surrogate: 2-Fluorophenol		52.0 %	15-	121	"	"	"	"	
Surrogate: Phenol-d6		54.4 %	24-	113	"	"	"	"	
Surrogate: Nitrobenzene-d5		70.5 %	21.3	-119	"	"	"	"	
Surrogate: 2-Fluorobiphenyl		66.0 %	32.4	-102	"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		75.9 %	0% 18.1-105		"	"	"	"	
Surrogate: Terphenyl-dl4		116 %	29.1	-130	"	"	"	"	

SunStar Laboratories, Inc.

Brusca Associates Inc. PO Box 332	Project: Lathrop 48 Acre Property Project Number: 137-002										
Roseville CA, 95661	I	Project Manag	ger: Joe Br	usca				04/12/18 15:44			
			SP1-10								
		T181	153-10 (So	oil)							
		Reporting									
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes		
		SunStar L	aboratori	ies, Inc.							
Extractable Petroleum Hydrocarb	ons by 8015B with Silica	Gel Cleanu	р								
C6-C12 (GRO)	ND	10	mg/kg	1	8040518	04/05/18	04/10/18	EPA 8015B			
C13-C28 (DRO)	18	10	"	"	"	"	"	"			
C29-C40 (MORO)	58	10	"	"	"	"	"	"			
Surrogate: p-Terphenyl		80.4 %	65-	135	"	"	"	"			
Metals by EPA 6010B											
Antimony	ND	3.0	mg/kg	1	8040603	04/06/18	04/06/18	EPA 6010B			
Silver	ND	2.0	"	"	"	"	"	"			
Arsenic	ND	5.0	"	"	"	"	"	"			
Barium	64	1.0	"	"	"	"	"	"			
Beryllium	ND	1.0	"	"	"	"	"	"			
Cadmium	ND	2.0	"	"	"	"	"	"			
Chromium	5.5	2.0	"	"	"	"	"	"			
Cobalt	3.9	2.0	"	"	"	"	"	"			
Copper	5.8	1.0	"	"	"	"	"	"			
Lead	ND	3.0	"	"	"	"	"	"			
Molybdenum	ND	5.0	"	"	"	"	"	"			
Nickel	5.8	2.0	"	"	"	"	"	"			
Selenium	ND	5.0	"	"	"	"	"	"			
Thallium	ND	2.0	"	"	"	"	"	"			
Vanadium	16	5.0	"	"	"	"	"	"			
Zinc	28	1.0	"	"	"	"	"	"			
Cold Vapor Extraction EPA 7470/7	7471										
Mercury	ND	0.10	mg/kg	1	8040605	04/06/18	04/06/18	EPA 7471A Soil			

SunStar Laboratories, Inc.

SP1-10 T181153-10 (Soil) Analyte Result Reporting tame Dilation Batch Prepared Analyzed Method Notes SunStar Laboratories, Inc. POte-horinated Biphenyls by EPA Method 8082 PCB-121 ND 10 " *	Brusca Associates Inc. PO Box 332 Roseville CA, 95661	ttes Inc. Project: Lathrop 48 Acre Property Project Number: 137-002 Project Manager: Joe Brusca								
Analyse Reporting Limit Dilution Batch Prepared Analyzed Method Notes SunStar Laboratories, Inc. Pols-fulof ND 10 ug/kg 1 \$900520 040518 040618 EPA 8082 PCB-1016 ND 10 "			S T1811	SP1-10 53-10 (So	oil)					
Analytic Result Lam Units Database Prepared Analyzed Method Notes SunStar Laboratorics, Inc. Parketion and state in the state i			Reporting			D (1				N
BUBLIFIENDE DEVIEWENDED DEVIEWE	Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Pock-lorinated Biphenvis by EPA Method 8082 PCB-1016 ND 10 ug/kg 1 804023 0405/18 0406/18 EPA 8082 PCB-1232 ND 10 " " " " " PCB-1232 ND 10 " " " " " PCB-1242 ND 10 " " " " " " PCB-1248 ND 10 " " " " " " PCB-1254 13 10 " " " " " " " PCB-1254 13 10 "			SunStar L	aboratori	es, Inc.					
PCB-1016NDND10ug/kg180405780440678DEX 8082PCB-1221ND10"""""""PCB-1232ND1010"""""""PCB-1244ND10""<	Polychlorinated Biphenyls by EPA M	lethod 8082								
PCB-1221ND10""	PCB-1016	ND	10	ug/kg	1	8040520	04/05/18	04/06/18	EPA 8082	
PCB-1232ND10""	PCB-1221	ND	10	"	"	"	"	"	"	
PCB-1242NDIO""	PCB-1232	ND	10	"	"	"	"	"	"	
PCB-1248ND10""	PCB-1242	ND	10	"	"	"	"	"	"	
PCB-12541310""	PCB-1248	ND	10	"	"	"	"	"	"	
PCB-1260ND10""	PCB-1254	13	10	"	"	"	"	"	"	
Surrogate: Tetrachloro-meta-xylene116 % 133 %35-140""""""Surrogate: Decachlorobyphenyl133 %35-140""<	PCB-1260	ND	10	"	"	"	"	"	"	
Surrogate: Decaddroobiphenyl133 %35-140""" <td>Surrogate: Tetrachloro-meta-xylene</td> <td></td> <td>116 %</td> <td>35-</td> <td>140</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td></td>	Surrogate: Tetrachloro-meta-xylene		116 %	35-	140	"	"	"	"	
Semivolatile Organic Compounds by EPA Method 8270C Carbazole ND 300 ug/kg 1 8040523 04/05/18 04/09/18 EPA 8270C Phenol ND 1000 " " " " " " Aniline ND 300 " " " " " " 2-Chlorophenol ND 300 " <	Surrogate: Decachlorobiphenyl		133 %	35-	140	"	"	"	"	
Shift Originit Componends of ETA Picture device. Carbazole ND 300 ug/kg 1 8040523 04/05/18 04/09/18 EPA 8270C Phenol ND 1000 " " " " " " Aniline ND 300 " " " " " " 2-Chlorophenol ND 300 " " " " " " " 2-Chlorophenol ND 300 " " " " " " N-Nitrosodi-n-propylamine ND 300 " " " " " " 1,2,4-Trichlorobenzene ND 300 " " " " " " 2-Methylnaphthalene ND 300 " " " " " " 1-Methylnaphthalene ND 300 " " " " " 2,4-Dinitrotoluene ND	Semivolatile Organic Compounds by	FPA Method 8270C								
Carl active ND 100 000 "	Carbazole	ND	300	ug/kg	1	8040523	04/05/18	04/09/18	EPA 8270C	
Aniline ND 100 "	Phenol	ND	1000	" "	"	"	"	"	"	
2-Chlorophenol ND 100 " " " " " 1,4-Dichlorobenzene ND 300 " " " " " N-Nitrosodi-n-propylamine ND 300 " " " " " " 1,2,4-Trichlorobenzene ND 300 " " " " " " " 4-Chloro-3-methylphenol ND 1000 "	Aniline	ND	300		"	"	"			
1.4-Dichlorobenzene ND 300 " <td>2-Chlorophenol</td> <td>ND</td> <td>1000</td> <td></td> <td>"</td> <td>"</td> <td>"</td> <td></td> <td></td> <td></td>	2-Chlorophenol	ND	1000		"	"	"			
N-Nitrosodi-n-propylamine ND 300 " <td< td=""><td>1 4-Dichlorobenzene</td><td>ND</td><td>300</td><td></td><td>"</td><td>"</td><td>"</td><td></td><td></td><td></td></td<>	1 4-Dichlorobenzene	ND	300		"	"	"			
1,2,4-Trichlorobenzene ND 300 " " " " " " 4-Chloro-3-methylphenol ND 1000 " " " " " " 2-Methylnaphthalene ND 300 " " " " " " 1-Methylnaphthalene ND 300 " " " " " " 4-Chloro-dentylnaphthalene ND 300 " " " " " " " 1-Methylnaphthalene ND 300 "	N-Nitrosodi-n-propylamine	ND	300		"	"	"			
4-Chloro-3-methylphenol ND 1000 "	1.2.4-Trichlorobenzene	ND	300		"	"	"		"	
2-Methylnaphthalene ND 300 " <td>4-Chloro-3-methylphenol</td> <td>ND</td> <td>1000</td> <td></td> <td>"</td> <td>"</td> <td>"</td> <td></td> <td>"</td> <td></td>	4-Chloro-3-methylphenol	ND	1000		"	"	"		"	
1-Methylnaphthalene ND 300 " <td>2-Methylnaphthalene</td> <td>ND</td> <td>300</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td></td>	2-Methylnaphthalene	ND	300	"	"	"	"	"	"	
Acenaphthene ND 300 "	1-Methylnaphthalene	ND	300	"	"	"	"			
4-Nitrophenol ND 1000 "	Acenaphthene	ND	300	"	"	"	"			
2,4-Dinitrotoluene ND 300 "	4-Nitrophenol	ND	1000	"	"	"	"		"	
Pentachlorophenol ND 1000 "	2,4-Dinitrotoluene	ND	300	"	"	"	"		"	
Pyrene ND 300 "	Pentachlorophenol	ND	1000	"	"	"	"		"	
Acenaphthylene ND 300 "	Pyrene	ND	300	"	"	"	"		"	
Anthracene ND 300 " <	Acenaphthylene	ND	300	"	"	"	"	"	"	
Benzo (a) anthracene ND 300 " <td>Anthracene</td> <td>ND</td> <td>300</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td></td>	Anthracene	ND	300	"	"	"	"	"	"	
Benzo (b) fluoranthene ND 300 " <td>Benzo (a) anthracene</td> <td>ND</td> <td>300</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td></td> <td></td>	Benzo (a) anthracene	ND	300	"	"	"	"	"		
Benzo (k) fluoranthene ND 300 " <td>Benzo (b) fluoranthene</td> <td>ND</td> <td>300</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td></td>	Benzo (b) fluoranthene	ND	300	"	"	"	"	"	"	
Benzo (g,h,i) perylene ND 1000 " " " " " " "	Benzo (k) fluoranthene	ND	300	"	"	"	"	"		
	Benzo (g,h,i) perylene	ND	1000	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Brusca Associates Inc.	Proje	ect: Lathro	p 48 Acre Pi	roperty					
PO Box 332	Project Number: 137-002								
Roseville CA, 95661	Project Manag	er: Joe Br	usca				04/12/18 15	:44	
	S	P1-10							
	T1811	53-10 (So	oil)						
Analyte Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes	
	SunStar La	aboratori	ies, Inc.						
Semivolatile Organic Compounds by EPA Method 8270C									
Benzo (a) pyrene ND	300	ug/kg	1	8040523	04/05/18	04/09/18	EPA 8270C		
Benzyl alcohol ND	300	"	"	"	"	"	"		
Bis(2-chloroethoxy)methane ND	300	"	"	"	"	"	"		
Bis(2-chloroethyl)ether ND	300	"	"	"	"	"	"		
Bis(2-chloroisopropyl)ether ND	300	"	"	"	"	"	"		
Bis(2-ethylhexyl)phthalate ND	300	"	"	"	"	"	"		
4-Bromophenyl phenyl ether ND	300	"	"		"	"	"		
Butyl benzyl phthalate ND	300	"	"		"	"	"		
4-Chloroaniline ND	300	"	"		"	"	"		
2-Chloronaphthalene ND	300	"	"		"	"	"		
4-Chlorophenyl phenyl ether ND	300	"	"	"	"	"	"		
Chrysene ND	300	"	"		"	"	"		
Dibenz (a,h) anthracene ND	300	"	"		"	"	"		
Dibenzofuran ND	300	"	"	"	"	"	"		
Di-n-butyl phthalate ND	300	"	"		"	"	"		
1,2-Dichlorobenzene ND	300	"	"		"	"	"		
1,3-Dichlorobenzene ND	300	"	"	"	"	"	"		
2,4-Dichlorophenol ND	1000	"	"	"	"	"	"		
Diethyl phthalate ND	300	"	"	"	"	"	"		
2,4-Dimethylphenol ND	1000	"	"	"	"	"	"		
Dimethyl phthalate ND	300	"	"	"	"	"	"		
4,6-Dinitro-2-methylphenol ND	1000	"	"	"	"	"	"		
2,4-Dinitrophenol ND	1000	"	"	"	"	"	"		
2,6-Dinitrotoluene ND	1000	"	"	"	"	"	"		
Di-n-octyl phthalate ND	300	"	"	"	"	"	"		
Fluoranthene ND	300	"	"	"	"	"	"		
Fluorene ND	300	"	"	"	"	"	"		
Hexachlorobenzene ND	1500	"	"	"	"	"	"		
Hexachlorobutadiene ND	300	"	"		"	"	"		
Hexachlorocyclopentadiene ND	1000	"	"		"	"	"		
Hexachloroethane ND	300	"	"	"	"	"	"		
Indeno (1,2,3-cd) pyrene ND	300	"	"	"	"	"	"		

SunStar Laboratories, Inc.

Brusca Associates Inc. PO Box 332 Roseville CA, 95661		Reported: 04/12/18 15:44							
		S T1811	SP1-10 53-10 (So	il)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Semivolatile Organic Compounds by EP	A Method 8270C								
Isophorone	ND	300	ug/kg	1	8040523	04/05/18	04/09/18	EPA 8270C	
2-Methylphenol	ND	1000		"	"	"	"	"	
4-Methylphenol	ND	1000		"	"	"	"	"	
Naphthalene	ND	300	"	"	"	"	"	"	
2-Nitroaniline	ND	300	"	"	"	"	"	"	
3-Nitroaniline	ND	300	"	"	"	"	"	"	
4-Nitroaniline	ND	300		"	"	"	"	"	
Nitrobenzene	ND	1000	"	"	"	"	"	"	
2-Nitrophenol	ND	1000	"	"	"	"	"	"	
N-Nitrosodimethylamine	ND	300	"	"	"	"	"	"	
N-Nitrosodiphenylamine	ND	300	"	"	"	"	"	"	
2,3,5,6-Tetrachlorophenol	ND	300		"	"	"	"	"	
2,3,4,6-Tetrachlorophenol	ND	300		"	"	"	"	"	
Phenanthrene	ND	300		"	"	"	"	"	
Azobenzene	ND	300	"	"	"	"	"	"	
Pyridine	ND	300	"	"	"	"	"	"	
2,4,5-Trichlorophenol	ND	1000	"	"	"	"	"	"	
2,4,6-Trichlorophenol	ND	1000	"	"	"	"	"	"	
Surrogate: 2-Fluorophenol		53.1 %	15-1	121	"	"	"	"	
Surrogate: Phenol-d6		56.2 %	24-	113	"	"	"	"	
Surrogate: Nitrobenzene-d5		73.1 %	21.3-	-119	"	"	"	"	
Surrogate: 2-Fluorobiphenyl		66.8 %	32.4-	-102	"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		69.5 %	18.1-	-105	"	"	"	"	
Surrogate: Terphenyl-dl4		119 %	29.1-	-130	"	"	"	"	

SunStar Laboratories, Inc.

Brusca Associates Inc.	Brusca Associates Inc. Project: Lathrop 48 Acre Property									
PO Box 332 Posovillo CA 05661	I	Project Numl	per: 137-00)2				Reported:	: • 4 4	
Koseville CA, 95001	Г 		gei. Joe Bi	usca				Reported: 04/12/18 15:44 Analyzed Method 04/10/18 EPA 8015B " " " " " " 04/06/18 EPA 6010B " "	.44	
		1	SP1-11							
		T181	153-11 (So	oil)						
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes	
		SunStar L	aboratori	es, Inc.						
Extractable Petroleum Hydrocarb	ons by 8015B with Silica (Gel Cleanu	р							
C6-C12 (GRO)	ND	10	mg/kg	1	8040518	04/05/18	04/10/18	EPA 8015B		
C13-C28 (DRO)	75	10	"	"	"	"	"	"		
C29-C40 (MORO)	87	10	"	"	"	"	"	"		
Surrogate: p-Terphenyl		80.8 %	65-	135	"	"	"	"		
Metals by EPA 6010B										
Antimony	ND	3.0	mg/kg	1	8040603	04/06/18	04/06/18	EPA 6010B		
Silver	ND	2.0	"	"	"	"	"	"		
Arsenic	ND	5.0	"	"	"	"	"	"		
Barium	54	1.0	"	"	"	"	"	"		
Beryllium	ND	1.0	"	"	"	"	"	"		
Cadmium	ND	2.0	"	"	"	"	"	"		
Chromium	5.4	2.0	"	"	"	"	"	"		
Cobalt	3.7	2.0	"	"	"	"	"	"		
Copper	6.1	1.0	"	"	"	"	"	"		
Lead	13	3.0	"	"	"	"	"	"		
Molybdenum	ND	5.0	"	"	"	"	"	"		
Nickel	4.9	2.0	"	"	"	"	"	"		
Selenium	ND	5.0	"	"	"	"	"	"		
Thallium	ND	2.0	"	"	"	"	"	"		
Vanadium	13	5.0	"	"	"	"	"	"		
Zinc	28	1.0	"	"	"	"	"	"		
Cold Vapor Extraction EPA 7470/7	/471									
Mercury	ND	0.10	mg/kg	1	8040605	04/06/18	04/06/18	EPA 7471A Soil		

SunStar Laboratories, Inc.

Brusca Associates Inc. PO Box 332 Roseville CA, 95661		Proje Project Numb Project Manag	ect: Lathro ber: 137-00 ger: Joe Br	p 48 Acre Pi 02 usca	roperty			Reported 04/12/18 15	: ::44
		S T1811	SP1-11 53-11 (So	oil)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	ahoratori	es Inc					
Polychloringted Rinhenyls by EPA N	Lethod 8082	Sunstar L							
PCB-1016	ND	10	ug/kg	1	8040520	04/05/18	04/06/18	EPA 8082	
PCB-1221	ND	10	"0"0	"	"	"	"	"	
PCB-1232	ND	10	"	"	"	"	"		
PCB-1242	ND	10	"	"	"	"	"		
PCB-1248	ND	10	"	"	"	"	"		
PCB-1254	61	10	"	"	"	"	"	"	
PCB-1260	ND	10	"	"	"	"	"	"	
Surrogate: Tetrachloro-meta-xylene		115 %	35-	140	"	"	"	"	
Surrogate: Decachlorobiphenyl		129 %	35-	140	"	"	"	"	
	EDA M (L. 10250C								
Semivolatile Organic Compounds By	EPA Method 82/0C	200	л	1	0040500	04/05/10	04/00/10	ED4 0270C	
Carbazole	ND	1000	ug/kg	1	8040523	04/05/18	04/09/18	EPA 8270C	
Aniline	ND	1000							
Annine 2 Chlorenhenel	ND	1000	"	"					
2-Chiorophenoi	ND	200	"						
N. Nitrogodi n propulamino	ND	200	"	"					
1.2.4 Trichlorohonzono	ND	300	"	"				"	
4 Chloro 3 methylphenol	ND	1000	"	"					
1 Mathylnanhthalana	ND	300	"	"	"	"		"	
2-Methylnaphthalene	ND	300	"	"	"	"	"		
Acenanhthene	ND	300	"	"			"		
4-Nitrophenol	ND	1000	"	"			"		
2 4-Dinitrotoluene	ND	300	"	"			"	"	
Pentachlorophenol	ND	1000	"	"	"	"	"	"	
Pyrene	ND	300	"	"	"	"	"	"	
Acenaphthylene	ND	300	"	"	"	"	"	"	
Anthracene	ND	300	"	"			"		
Benzo (a) anthracene	ND	300	"	"			"		
Benzo (b) fluoranthene	ND	300	"	"	"	"	"		
Benzo (k) fluoranthene	ND	300	"	"	"	"	"		
Benzo (g,h,i) perylene	ND	1000	"	"	"	"	"		
·····									

SunStar Laboratories, Inc.

Brusca Associates Inc.	Proje	ect: Lathro	p 48 Acre Pi	operty					
PO Box 332	Project Numb	er: 137-00	02				Reported:		
Roseville CA, 95661	Project Manag	er: Joe Br	usca				04/12/18 15	44	
	S	SP1-11							
	T1811	53-11 (So	oil)						
Analyte Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes	
	SunStar L	aboratori	ies, Inc.						
Semivolatile Organic Compounds by EPA Method 8270C									
Benzo (a) pyrene ND	300	ug/kg	1	8040523	04/05/18	04/09/18	EPA 8270C		
Benzyl alcohol ND	300	"	"	"	"	"	"		
Bis(2-chloroethoxy)methane ND	300	"	"	"	"	"	"		
Bis(2-chloroethyl)ether ND	300	"	"	"	"	"	"		
Bis(2-chloroisopropyl)ether ND	300	"	"	"	"	"	"		
Bis(2-ethylhexyl)phthalate ND	300	"	"	"	"	"	"		
4-Bromophenyl phenyl ether ND	300	"	"	"	"	"	"		
Butyl benzyl phthalate ND	300	"	"	"	"	"	"		
4-Chloroaniline ND	300	"	"	"	"	"	"		
2-Chloronaphthalene ND	300	"	"	"	"	"	"		
4-Chlorophenyl phenyl ether ND	300	"	"	"	"	"	"		
Chrysene ND	300	"	"	"	"	"	"		
Dibenz (a,h) anthracene ND	300	"	"	"	"	"	"		
Dibenzofuran ND	300	"	"	"	"	"	"		
Di-n-butyl phthalate ND	300	"	"	"	"	"	"		
1,2-Dichlorobenzene ND	300	"	"	"	"	"	"		
1,3-Dichlorobenzene ND	300	"	"	"	"	"	"		
2,4-Dichlorophenol ND	1000	"	"	"	"	"	"		
Diethyl phthalate ND	300	"	"	"	"	"	"		
2,4-Dimethylphenol ND	1000	"	"	"	"	"	"		
Dimethyl phthalate ND	300	"	"	"	"	"	"		
4,6-Dinitro-2-methylphenol ND	1000	"	"	"	"	"	"		
2,4-Dinitrophenol ND	1000	"	"	"	"	"	"		
2,6-Dinitrotoluene ND	1000	"	"	"	"	"	"		
Di-n-octyl phthalate ND	300	"	"	"	"	"	"		
Fluoranthene ND	300	"	"	"	"	"	"		
Fluorene ND	300	"	"	"	"	"	"		
Hexachlorobenzene ND	1500	"	"	"	"	"	"		
Hexachlorobutadiene ND	300	"	"	"	"	"	"		
Hexachlorocyclopentadiene ND	1000	"	"	"	"	"	"		
Hexachloroethane ND	300	"	"	"	"	"	"		
Indeno (1,2,3-cd) pyrene ND	300	"	"	"		"	"		

SunStar Laboratories, Inc.

Brusca Associates Inc. PO Box 332 Roseville CA, 95661		Reported: 04/12/18 15:44							
		S T1811	SP1-11 53-11 (So	il)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Semivolatile Organic Compounds by EP	A Method 8270C								
Isophorone	ND	300	ug/kg	1	8040523	04/05/18	04/09/18	EPA 8270C	
2-Methylphenol	ND	1000	"	"	"	"	"	"	
4-Methylphenol	ND	1000	"	"	"	"	"	"	
Naphthalene	ND	300	"	"	"	"	"	"	
2-Nitroaniline	ND	300	"	"	"	"	"	"	
3-Nitroaniline	ND	300	"	"	"	"	"	"	
4-Nitroaniline	ND	300	"	"	"	"	"	"	
Nitrobenzene	ND	1000	"	"	"	"	"	"	
2-Nitrophenol	ND	1000	"	"	"	"	"	"	
N-Nitrosodimethylamine	ND	300	"	"	"	"	"	"	
N-Nitrosodiphenylamine	ND	300	"	"	"	"	"	"	
2,3,5,6-Tetrachlorophenol	ND	300	"	"	"	"	"	"	
2,3,4,6-Tetrachlorophenol	ND	300	"	"	"	"	"	"	
Phenanthrene	ND	300	"	"	"	"	"	"	
Azobenzene	ND	300	"	"	"	"	"	"	
Pyridine	ND	300	"	"	"	"	"	"	
2,4,5-Trichlorophenol	ND	1000	"	"	"	"	"	"	
2,4,6-Trichlorophenol	ND	1000	"	"	"	"	"	"	
Surrogate: 2-Fluorophenol		57.8 %	15-1	121	"	"	"	"	
Surrogate: Phenol-d6		61.0 %	24-1	113	"	"	"	"	
Surrogate: Nitrobenzene-d5		77.9 %	21.3-	-119	"	"	"	"	
Surrogate: 2-Fluorobiphenyl		72.1 %	32.4-	-102	"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		72.8 %	18.1-	-105	"	"	"	"	
Surrogate: Terphenyl-dl4		124 %	29.1-	-130	"	"	"	"	

SunStar Laboratories, Inc.

Brusca Associates Inc. PO Box 332 Roseville CA, 95661	1	Reported: 04/12/18 15:44							
			SP1-12						
		T181	153-12 (So	oil)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Extractable Petroleum Hydrocarb	oons by 8015B with Silica	Gel Cleanu	р						
C6-C12 (GRO)	ND	10	mg/kg	1	8040518	04/05/18	04/10/18	EPA 8015B	
C13-C28 (DRO)	97	10	"	"	"	"		"	
C29-C40 (MORO)	55	10	"	"	"	"	"	"	
Surrogate: p-Terphenyl		83.8 %	65-	135	"	"	"	"	
Metals by EPA 6010B									
Antimony	ND	3.0	mg/kg	1	8040603	04/06/18	04/06/18	EPA 6010B	
Silver	ND	2.0	"	"	"	"		"	
Arsenic	ND	5.0	"	"	"	"		"	
Barium	55	1.0	"	"	"	"		"	
Beryllium	ND	1.0	"	"	"	"	"	"	
Cadmium	ND	2.0	"	"	"	"		"	
Chromium	4.5	2.0	"	"	"	"		"	
Cobalt	3.7	2.0	"	"	"	"		"	
Copper	4.6	1.0	"	"	"	"	"	"	
Lead	12	3.0	"	"	"	"	"	"	
Molybdenum	ND	5.0	"	"	"	"	"	"	
Nickel	4.9	2.0	"	"	"	"	"	"	
Selenium	ND	5.0	"	"	"	"	"	"	
Thallium	ND	2.0	"	"	"	"	"	"	
Vanadium	14	5.0	"	"	"	"	"	"	
Zinc	26	1.0	"	"	"	"	"	"	
Cold Vapor Extraction EPA 7470/	7471								
Mercury	ND	0.10	mg/kg	1	8040605	04/06/18	04/06/18	EPA 7471A Soil	

SunStar Laboratories, Inc.

Mike Jaroudi, Project Manager

Brusca Associates Inc. PO Box 332 Roseville CA, 95661	Proje Project Numb Project Manag	ect: Lathro er: 137-00 er: Joe Br	p 48 Acre Pi)2 usca	roperty			Reported 04/12/18 15	: :44
	S T1811	591-12 53-12 (So	pil)					
	Reporting)					
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	SunStar L	aboratori	es, Inc.					
Polychlorinated Biphenyls by EPA Method 8082								
PCB-1016 ND	10	ug/kg	1	8040520	04/05/18	04/06/18	EPA 8082	
PCB-1221 ND	10	"	"	"	"	"	"	
PCB-1232 ND	10	"	"	"	"	"	"	
PCB-1242 ND	10	"	"	"	"	"	"	
PCB-1248 ND	10		"	"	"	"	"	
PCB-1254 24	10		"	"	"	"	"	
PCB-1260 ND	10	"	"	"	"	"	"	
Surrogate: Tetrachloro-meta-xylene	122 %	35-	140	"	"	"	"	
Surrogate: Decachlorobiphenyl	134 %	35-	140	"	"	"	"	
Semivolatile Organic Compounds by EPA Method 8270C								
Carbazole ND	300	ug/kg	1	8040523	04/05/18	04/09/18	EPA 8270C	
Phenol ND	1000	"	"	"	"	"	"	
Aniline ND	300		"		"	"		
2-Chlorophenol ND	1000		"					
1,4-Dichlorobenzene ND	300		"		"	"		
N-Nitrosodi-n-propylamine ND	300		"		"	"	"	
1,2,4-Trichlorobenzene ND	300		"		"	"	"	
4-Chloro-3-methylphenol ND	1000		"		"	"	"	
2-Methylnaphthalene ND	300		"		"	"	"	
1-Methylnaphthalene ND	300		"	"	"	"	"	
Acenaphthene ND	300		"	"	"	"	"	
4-Nitrophenol ND	1000		"	"	"	"	"	
2,4-Dinitrotoluene ND	300	"	"	"	"	"	"	
Pentachlorophenol ND	1000	"	"	"	"	"	"	
Pyrene ND	300	"	"	"	"	"	"	
Acenaphthylene ND	300	"	"	"	"	"	"	
Anthracene ND	300		"		"	"	"	
Benzo (a) anthracene ND	300		"		"	"	"	
Benzo (b) fluoranthene ND	300		"		"	"	"	
Benzo (k) fluoranthene ND	300	"	"	"	"	"	"	
Benzo (g,h,i) perylene ND	1000			"		"	"	

SunStar Laboratories, Inc.

Brusca Associates Inc.	Proje	ect: Lathro	p 48 Acre Pi	roperty						
PO Box 332	Project Number: 137-002									
Roseville CA, 95661	Project Manag	er: Joe Bi	rusca				04/12/18 15	:44		
	S	SP1-12								
	T1811	53-12 (Se	oil)							
Analyte Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes		
	SunStar L	aborator	ies, Inc.							
Semivolatile Organic Compounds by EPA Method 8270C										
Benzo (a) pyrene ND	300	ug/kg	1	8040523	04/05/18	04/09/18	EPA 8270C			
Benzyl alcohol ND	300	"	"	"	"	"	"			
Bis(2-chloroethoxy)methane ND	300	"	"	"	"	"	"			
Bis(2-chloroethyl)ether ND	300	"	"	"	"	"	"			
Bis(2-chloroisopropyl)ether ND	300	"	"	"	"	"	"			
Bis(2-ethylhexyl)phthalate ND	300	"	"	"	"	"	"			
4-Bromophenyl phenyl ether ND	300	"	"	"	"	"	"			
Butyl benzyl phthalate ND	300	"	"	"	"	"	"			
4-Chloroaniline ND	300	"	"	"	"	"	"			
2-Chloronaphthalene ND	300	"	"	"	"	"	"			
4-Chlorophenyl phenyl ether ND	300	"	"	"	"	"	"			
Chrysene ND	300	"	"	"	"	"	"			
Dibenz (a,h) anthracene ND	300	"	"	"	"	"	"			
Dibenzofuran ND	300	"	"	"	"	"	"			
Di-n-butyl phthalate ND	300	"	"	"	"	"	"			
1,2-Dichlorobenzene ND	300	"	"	"	"	"	"			
1,3-Dichlorobenzene ND	300	"	"	"	"	"	"			
2,4-Dichlorophenol ND	1000	"	"	"	"	"	"			
Diethyl phthalate ND	300	"	"	"	"	"	"			
2,4-Dimethylphenol ND	1000	"	"	"	"	"	"			
Dimethyl phthalate ND	300	"	"	"	"	"	"			
4,6-Dinitro-2-methylphenol ND	1000	"	"	"	"	"	"			
2,4-Dinitrophenol ND	1000	"	"	"	"	"	"			
2,6-Dinitrotoluene ND	1000	"	"	"	"	"	"			
Di-n-octyl phthalate ND	300	"	"	"	"	"	"			
Fluoranthene ND	300	"	"	"	"	"	"			
Fluorene ND	300	"	"	"	"	"	"			
Hexachlorobenzene ND	1500	"	"	"	"	"	"			
Hexachlorobutadiene ND	300	"	"		"	"	"			
Hexachlorocyclopentadiene ND	1000	"	"		"	"	"			
Hexachloroethane ND	300	"	"		"	"	"			
Indeno (1,2,3-cd) pyrene ND	300	"	"		"	"	"			

SunStar Laboratories, Inc.

Brusca Associates Inc. PO Box 332 Roseville CA, 95661		Project: Lathrop 48 Acre Property Project Number: 137-002 Project Manager: Joe Brusca								
		S T1811	SP1-12 53-12 (So	il)						
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes	
		SunStar L	aboratori	es, Inc.						
Semivolatile Organic Compounds by H	EPA Method 8270C									
Isophorone	ND	300	ug/kg	1	8040523	04/05/18	04/09/18	EPA 8270C		
2-Methylphenol	ND	1000		"	"	"	"	"		
4-Methylphenol	ND	1000		"	"	"	"	"		
Naphthalene	ND	300		"	"	"	"	"		
2-Nitroaniline	ND	300	"	"	"	"	"	"		
3-Nitroaniline	ND	300	"	"	"	"	"	"		
4-Nitroaniline	ND	300		"	"	"	"	"		
Nitrobenzene	ND	1000	"	"	"	"	"	"		
2-Nitrophenol	ND	1000	"	"	"	"	"	"		
N-Nitrosodimethylamine	ND	300	"	"	"	"	"	"		
N-Nitrosodiphenylamine	ND	300	"	"	"	"	"	"		
2,3,5,6-Tetrachlorophenol	ND	300		"	"	"	"	"		
2,3,4,6-Tetrachlorophenol	ND	300		"	"	"	"	"		
Phenanthrene	ND	300	"	"	"	"	"	"		
Azobenzene	ND	300	"	"	"	"	"	"		
Pyridine	ND	300	"	"	"	"	"	"		
2,4,5-Trichlorophenol	ND	1000	"	"	"	"	"	"		
2,4,6-Trichlorophenol	ND	1000	"	"	"	"	"	"		
Surrogate: 2-Fluorophenol		52.8 %	15-	121	"	"	"	"		
Surrogate: Phenol-d6		57.1 %	24-	113	"	"	"	"		
Surrogate: Nitrobenzene-d5		72.5 %	21.3	-119	"	"	"	"		
Surrogate: 2-Fluorobiphenyl		70.1 %	32.4-	-102	"	"	"	"		
Surrogate: 2,4,6-Tribromophenol		71.9 %	18.1-	-105	"	"	"	"		
Surrogate: Terphenyl-dl4		126 %	29.1-	-130	"	"	"	"		

SunStar Laboratories, Inc.

Brusca Associates Inc. PO Box 332 Roseville CA, 95661	Project: Lathrop 48 Acre Property Project Number: 137-002 Project Manager: Joe Brusca								:44
		5 T181 1	SP1-13 153-13 (So	oil)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Extractable Petroleum Hydrocart	oons by 8015B with Silica	Gel Cleanu	p						
C6-C12 (GRO)	ND	10	mg/kg	1	8040518	04/05/18	04/10/18	EPA 8015B	
C13-C28 (DRO)	71	10	"	"	"	"	"	"	
C29-C40 (MORO)	74	10	"	"	"	"		"	
Surrogate: p-Terphenyl		75.7 %	65-	135	"	"	"	"	
Metals by EPA 6010B									
Antimony	ND	3.0	mg/kg	1	8040603	04/06/18	04/06/18	EPA 6010B	
Silver	ND	2.0	"	"	"	"		"	
Arsenic	ND	5.0	"	"	"	"		"	
Barium	52	1.0	"	"	"	"		"	
Beryllium	ND	1.0	"	"	"	"		"	
Cadmium	ND	2.0	"	"	"	"		"	
Chromium	4.6	2.0	"	"	"	"		"	
Cobalt	3.6	2.0	"	"	"	"		"	
Copper	6.0	1.0	"	"	"	"		"	
Lead	22	3.0	"	"	"	"	"	"	
Molybdenum	ND	5.0	"	"	"	"	"	"	
Nickel	4.5	2.0	"	"	"	"	"	"	
Selenium	ND	5.0	"	"	"	"	"	"	
Thallium	ND	2.0	"	"	"	"	"	"	
Vanadium	13	5.0	"	"	"	"	"	"	
Zinc	29	1.0	"	"	"	"	"	"	
Cold Vapor Extraction EPA 7470/	7471								
Mercury	ND	0.10	mg/kg	1	8040605	04/06/18	04/06/18	EPA 7471A Soil	

SunStar Laboratories, Inc.

Mike Jaroudi, Project Manager

Brusca Associates Inc. PO Box 332 Roseville CA, 95661	Project Numl Project Numl Project Manag	ect: Lathro ber: 137-0 ger: Joe Bi	op 48 Acre Pi 02 rusca	roperty			Reported 04/12/18 15	: 5:44
	S T1811	SP1-13 153-13 (Se	oil)					
	Reporting)					
Analyte Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	SunStar L	aborator	ies, Inc.					
Polychlorinated Biphenyls by EPA Method 8082								
PCB-1016 ND	10	ug/kg	1	8040520	04/05/18	04/06/18	EPA 8082	
PCB-1221 ND	10	"	"	"	"	"	"	
PCB-1232 ND	10	"	"	"	"	"	"	
PCB-1242 ND	10	"	"	"	"	"	"	
PCB-1248 ND	10		"	"	"	"		
PCB-1254 43	10		"	"	"	"		
PCB-1260 ND	10	"	"	"	"	"	"	
Surrogate: Tetrachloro-meta-xylene	118 %	35-	-140	"	"	"	"	
Surrogate: Decachlorobiphenyl	140 %	35-	-140	"	"	"	"	
Semivolatile Organic Compounds by EPA Method 827	/0C							
Carbazole ND	300	ug/kg	1	8040523	04/05/18	04/09/18	EPA 8270C	
Aniline ND	300	"0"0	"		"			
Phenol ND	1000		"	"	"			
2-Chlorophenol ND	1000	"	"	"	"			
1,4-Dichlorobenzene ND	300	"	"	"	"	"		
N-Nitrosodi-n-propylamine ND	300	"	"	"	"	"		
1,2,4-Trichlorobenzene ND	300		"		"	"		
4-Chloro-3-methylphenol ND	1000		"	"	"	"		
1-Methylnaphthalene ND	300		"	"	"	"	"	
2-Methylnaphthalene ND	300	"	"	"	"	"	"	
Acenaphthene ND	300	"	"	"	"	"	"	
4-Nitrophenol ND	1000	"	"	"	"	"	"	
2,4-Dinitrotoluene ND	300	"	"	"	"	"		
Pentachlorophenol ND	1000	"	"	"	"	"		
Pyrene ND	300	"	"	"	"	"		
Acenaphthylene ND	300		"	"	"	"		
Anthracene ND	300	"	"		"	"	"	
Benzo (a) anthracene ND	300	"	"		"	"	"	
Benzo (b) fluoranthene ND	300	"	"	"	"	"		
Benzo (k) fluoranthene ND	300		"		"	"	"	
Benzo (g,h,i) perylene ND	1000		"	"	"	"	"	

SunStar Laboratories, Inc.

Brusca Associates Inc.		Proje	ect: Lathro	p 48 Acre Pr	roperty				
PO Box 332 Roseville CA 95661		Project Numb	er: 157-00)2 115Ca				Reported: 04/12/18 15	: -44
		i roject manag		useu				0 10 12, 10 10	
		S	P1-13						
		T1811	53-13 (So	oil)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	ies, Inc.					
Semivolatile Organic Compounds by EPA	Method 8270C								
Benzo (a) pyrene	ND	300	ug/kg	1	8040523	04/05/18	04/09/18	EPA 8270C	
Benzyl alcohol	ND	300	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	300	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	300	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	300	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	300	"	"	"	"	"	"	
4-Bromophenyl phenyl ether	ND	300	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	300	"	"	"	"	"	"	
4-Chloroaniline	ND	300	"	"	"	"	"	"	
2-Chloronaphthalene	ND	300	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether	ND	300	"	"	"	"	"	"	
Chrysene	ND	300	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	300	"	"	"	"	"	"	
Dibenzofuran	ND	300	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	300	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	300	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	300	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	1000	"	"	"	"	"	"	
Diethyl phthalate	ND	300	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	1000	"	"	"	"	"	"	
Dimethyl phthalate	ND	300	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol	ND	1000	"	"	"	"	"	"	
2,4-Dinitrophenol	ND	1000	"	"	"	"	"	"	
2,6-Dinitrotoluene	ND	1000	"	"	"	"	"	"	
Di-n-octyl phthalate	ND	300	"	"	"	"	"	"	
Fluoranthene	ND	300	"	"	"	"	"	"	
Fluorene	ND	300	"	"	"	"	"	"	
Hexachlorobenzene	ND	1500	"	"	"	"	"	"	
Hexachlorobutadiene	ND	300	"	"	"	"	"	"	
Hexachlorocyclopentadiene	ND	1000	"	"	"	"	"	"	
Hexachloroethane	ND	300	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene	ND	300	"	"		"	"	"	

SunStar Laboratories, Inc.

Brusca Associates Inc. PO Box 332 Roseville CA, 95661		Reported: 04/12/18 15:44							
		S T1811	SP1-13 53-13 (So	il)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Semivolatile Organic Compounds by	EPA Method 8270C								
Isophorone	ND	300	ug/kg	1	8040523	04/05/18	04/09/18	EPA 8270C	
2-Methylphenol	ND	1000	"	"	"	"	"	"	
4-Methylphenol	ND	1000	"	"	"	"	"	"	
Naphthalene	ND	300	"	"	"	"	"	"	
2-Nitroaniline	ND	300		"	"	"	"	"	
3-Nitroaniline	ND	300	"	"	"	"	"	"	
4-Nitroaniline	ND	300	"	"	"	"	"	"	
Nitrobenzene	ND	1000	"	"	"	"	"	"	
2-Nitrophenol	ND	1000	"	"	"	"	"	"	
N-Nitrosodimethylamine	ND	300	"	"	"	"	"	"	
N-Nitrosodiphenylamine	ND	300		"	"	"	"	"	
2,3,5,6-Tetrachlorophenol	ND	300		"	"	"	"	"	
2,3,4,6-Tetrachlorophenol	ND	300		"	"	"	"	"	
Phenanthrene	ND	300		"	"	"	"	"	
Azobenzene	ND	300		"	"	"	"	"	
Pyridine	ND	300		"	"	"	"	"	
2,4,5-Trichlorophenol	ND	1000	"	"	"	"	"	"	
2,4,6-Trichlorophenol	ND	1000	"	"	"	"	"	"	
Surrogate: 2-Fluorophenol		48.9 %	15-	121	"	"	"	"	
Surrogate: Phenol-d6		53.2 %	24-	113	"	"	"	"	
Surrogate: Nitrobenzene-d5		68.6 %	21.3	-119	"	"	"	"	
Surrogate: 2-Fluorobiphenyl		67.8 %	32.4	-102	"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		71.4 %	18.1	-105	"	"	"	"	
Surrogate: Terphenyl-dl4		125 %	29.1	-130	"	"	"	"	

SunStar Laboratories, Inc.

V

Brusca Associates Inc. PO Box 332 Roseville CA, 95661	ciates Inc. Project: Lathrop 48 Acre Property Project Number: 137-002 A, 95661 Project Manager: Joe Brusca								
		5 T1811	SP1-14 153-14 (So	oil)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Extractable Petroleum Hydrocarb	oons by 8015B with Silica	Gel Cleanu	p						
C6-C12 (GRO)	ND	10	mg/kg	1	8040518	04/05/18	04/10/18	EPA 8015B	
C13-C28 (DRO)	16	10	"	"	"	"	"	"	
C29-C40 (MORO)	35	10	"	"	"	"	"	"	
Surrogate: p-Terphenyl		72.6 %	65-	135	"	"	"	"	
Metals by EPA 6010B									
Antimony	ND	3.0	mg/kg	1	8040603	04/06/18	04/06/18	EPA 6010B	
Silver	ND	2.0	"	"	"	"	"	"	
Arsenic	ND	5.0	"	"	"	"	"	"	
Barium	52	1.0	"	"	"	"	"	"	
Beryllium	ND	1.0	"	"	"	"	"	"	
Cadmium	ND	2.0	"	"	"	"	"	"	
Chromium	4.2	2.0	"	"	"	"	"	"	
Cobalt	3.6	2.0	"	"	"	"	"	"	
Copper	3.2	1.0	"	"	"	"	"	"	
Lead	21	3.0	"	"	"	"	"	"	
Molybdenum	ND	5.0	"	"	"	"	"	"	
Nickel	3.9	2.0	"	"	"	"	"	"	
Selenium	ND	5.0	"	"	"	"	"	"	
Thallium	ND	2.0	"	"	"	"	"	"	
Vanadium	12	5.0	"	"	"	"	"	"	
Zinc	21	1.0	"	"		"	"	"	
Cold Vapor Extraction EPA 7470/	7471								
Mercury	ND	0.10	mg/kg	1	8040605	04/06/18	04/06/18	EPA 7471A Soil	

SunStar Laboratories, Inc.

Brusca Associates Inc.Project:Lathrop 48 Acre PropertyPO Box 332Project Number:137-002Roseville CA, 95661Project Manager:Joe Brusca04									
		S T1811	SP1-14 53-14 (So	oil)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	ies, Inc.					
Polychlorinated Biphenyls by EPA M	lethod 8082								
PCB-1016	ND	10	ug/kg	1	8040520	04/05/18	04/06/18	EPA 8082	
PCB-1221	ND	10	"	"	"	"	"	"	
PCB-1232	ND	10	"	"	"	"	"	"	
PCB-1242	ND	10	"	"	"	"	"	"	
PCB-1248	ND	10	"	"	"	"	"	"	
PCB-1254	19	10		"	"	"	"	"	
PCB-1260	ND	10	"	"	"	"	"	"	
Surrogate: Tetrachloro-meta-xylene		116 %	35-	140	"	"	"	"	
Surrogate: Decachlorobiphenyl		122 %	35-	140	"	"	"	"	
Somivolatile Organia Compounds by	EDA Mothed 9270C								
Semivolatile Organic Compounds by	ND	200	wa/ka	1	8040522	04/05/19	04/00/18	EDA 9270C	
Anilino	ND	200	ug/kg "	1	8040323	04/03/18	04/09/18	EFA 8270C	
Dhanal	ND	1000		"		"		"	
2 Chlorophonol	ND	1000		"		"		"	
1.4 Dishlorohonzono	ND	200		"		"		"	
N Nitrosodi n propulamine	ND	300		"		"		"	
1.2.4 Trichlorobenzene	ND	300		"		"		"	
4-Chloro-3-methylphenol	ND	1000		"		"			
1-Methylnanhthalene	ND	300		"		"			
2-Methylnaphthalene	ND	300		"		"	"		
Acenanhthene	ND	300		"		"	"		
4-Nitrophenol	ND	1000		"		"	"		
2 4-Dinitrotoluene	ND	300		"		"	"		
Pentachlorophenol	ND	1000		"		"		"	
Pyrene	ND	300		"		"		"	
Acenaphthylene	ND	300		"	"	"		"	
Anthracene	ND	300		"	"	"		"	
Benzo (a) anthracene	ND	300		"		"	"	"	
Benzo (b) fluoranthene	ND	300		"		"	"	"	
Benzo (k) fluoranthene	ND	300		"			"	"	
Benzo (g h i) pervlene	ND	1000		"			"	"	
Server (5, ii, i) per jiene		1000							

SunStar Laboratories, Inc.

Brusca Associates Inc. Project: Lathrop 48 Acre Property									
Roseville CA, 95661	Project Manag	ger: Joe B	rusca				04/12/18 15:44		
		SP1-14							
	T181	153-14 (S	oil)						
Analyte Resul	Reporting It Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes	
	SunStar L	aborator	ies. Inc.		_				
Semivolatile Organic Compounds by EPA Method 82	70C								
Benzo (a) pyrene NI) 300	ug/kg	1	8040523	04/05/18	04/09/18	EPA 8270C		
Benzyl alcohol NI	300	"	"	"	"		"		
Bis(2-chloroethoxy)methane NI	300	"	"	"	"		"		
Bis(2-chloroethyl)ether NI	300	"	"	"	"		"		
Bis(2-chloroisopropyl)ether NI	300	"	"	"	"		"		
Bis(2-ethylhexyl)phthalate NI	300	"	"	"	"	"	"		
4-Bromophenyl phenyl ether NI	300	"	"	"	"	"	"		
Butyl benzyl phthalate NI	300	"	"	"	"	"	"		
4-Chloroaniline NI	300	"	"	"	"	"	"		
2-Chloronaphthalene NI	300	"	"	"	"	"	"		
4-Chlorophenyl phenyl ether NI	300	"	"	"	"		"		
Chrysene NI	300	"	"	"	"		"		
Dibenz (a,h) anthracene NI	300	"	"	"	"		"		
Dibenzofuran NI	300	"	"	"	"	"	"		
Di-n-butyl phthalate NI	300	"	"	"	"	"	"		
1,2-Dichlorobenzene NI	300	"	"	"	"	"	"		
1,3-Dichlorobenzene NI	300	"	"	"	"	"	"		
2,4-Dichlorophenol NI	D 1000	"	"	"	"	"	"		
Diethyl phthalate NI	300	"	"	"	"	"	"		
2,4-Dimethylphenol NI	D 1000	"	"	"	"	"	"		
Dimethyl phthalate NI	300	"	"	"	"	"	"		
4,6-Dinitro-2-methylphenol NI	D 1000	"	"	"	"	"	"		
2,4-Dinitrophenol NI	D 1000	"	"	"	"	"	"		
2,6-Dinitrotoluene NI	D 1000	"	"	"	"	"	"		
Di-n-octyl phthalate NI	300	"	"	"	"	"	"		
Fluoranthene NI	300	"	"	"	"	"	"		
Fluorene NI	300	"	"	"	"	"	"		
Hexachlorobenzene NI	D 1500	"	"	"	"	"	"		
Hexachlorobutadiene NI	300	"	"	"	"	"	"		
Hexachlorocyclopentadiene NI	D 1000	"	"	"	"	"	"		
Hexachloroethane NI	300	"	"	"	"	"	"		
Indeno (1,2,3-cd) pyrene NI	300	"	"	"	"		"		

SunStar Laboratories, Inc.

Brusca Associates Inc. PO Box 332 Roseville CA, 95661		Reported: 04/12/18 15:44							
		S T1811	SP1-14 53-14 (So	vil)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Semivolatile Organic Compounds by E	EPA Method 8270C								
Isophorone	ND	300	ug/kg	1	8040523	04/05/18	04/09/18	EPA 8270C	
2-Methylphenol	ND	1000	"	"	"	"	"	"	
4-Methylphenol	ND	1000		"	"	"	"	"	
Naphthalene	ND	300		"	"	"	"	"	
2-Nitroaniline	ND	300		"	"	"	"	"	
3-Nitroaniline	ND	300		"	"	"	"	"	
4-Nitroaniline	ND	300	"	"	"	"	"	"	
Nitrobenzene	ND	1000		"	"	"	"	"	
2-Nitrophenol	ND	1000	"	"	"	"	"	"	
N-Nitrosodimethylamine	ND	300	"	"	"	"	"	"	
N-Nitrosodiphenylamine	ND	300	"	"	"	"	"	"	
2,3,5,6-Tetrachlorophenol	ND	300	"	"	"	"	"	"	
2,3,4,6-Tetrachlorophenol	ND	300	"	"	"	"	"	"	
Phenanthrene	ND	300	"	"	"	"	"	"	
Azobenzene	ND	300		"	"	"	"	"	
Pyridine	ND	300		"	"	"	"	"	
2,4,5-Trichlorophenol	ND	1000	"	"	"	"	"	"	
2,4,6-Trichlorophenol	ND	1000	"	"	"	"	"	"	
Surrogate: 2-Fluorophenol		55.7%	15-	121	"	"	"	"	
Surrogate: Phenol-d6		56.3 %	24-	113	"	"	"	"	
Surrogate: Nitrobenzene-d5		74.6 %	21.3	-119	"	"	"	"	
Surrogate: 2-Fluorobiphenyl		69.0 %	32.4-	-102	"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		68.6 %	18.1-	-105	"	"	"	"	
Surrogate: Terphenyl-dl4		120 %	29.1-	-130	"	"	"	"	

SunStar Laboratories, Inc.

Brusca Associates Inc.		Proj	ect: Lathro	p 48 Acre P	roperty				
PO Box 332 Roseville CA 95661	I	Reported:							
Kösevine CA, 75001	1		ger. Joe Br	usea				04/12/10 15:	. + +
			SP1-15	•1					
		1181	155-15 (50	911)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Extractable Petroleum Hydrocarb	ons by 8015B with Silica	Gel Cleanu	р						
C6-C12 (GRO)	ND	10	mg/kg	1	8040518	04/05/18	04/10/18	EPA 8015B	
C13-C28 (DRO)	170	10	"	"	"	"	"	"	
C29-C40 (MORO)	240	10	"	"	"	"	"	"	
Surrogate: p-Terphenyl		73.1 %	65-	135	"	"	"	"	
Metals by EPA 6010B									
Antimony	ND	3.0	mg/kg	1	8040603	04/06/18	04/06/18	EPA 6010B	
Silver	ND	2.0	"	"	"	"	"	"	
Arsenic	ND	5.0	"	"	"	"	"	"	
Barium	52	1.0	"	"	"	"	"	"	
Beryllium	ND	1.0	"	"	"	"	"	"	
Cadmium	ND	2.0	"	"	"	"	"	"	
Chromium	6.0	2.0	"	"	"	"	"	"	
Cobalt	3.9	2.0	"	"	"	"	"	"	
Copper	5.7	1.0	"	"	"	"	"	"	
Lead	18	3.0	"	"	"	"	"	"	
Molybdenum	ND	5.0	"	"	"	"	"	"	
Nickel	5.0	2.0	"	"	"	"	"	"	
Selenium	ND	5.0	"	"	"	"	"	"	
Thallium	ND	2.0	"	"	"	"	"	"	
Vanadium	14	5.0	"	"	"	"	"	"	
Zinc	27	1.0	"	"	"	"	"	"	
Cold Vapor Extraction EPA 7470/7	7471								
Mercury	ND	0.10	mg/kg	1	8040605	04/06/18	04/06/18	EPA 7471A Soil	

SunStar Laboratories, Inc.

Mike Jaroudi, Project Manager

Brusca Associates Inc.Project:Lathrop 48 Acre PropertyPO Box 332Project Number:137-002Roseville CA, 95661Project Manager:Joe Brusca0									
		S T1811	SP1-15 53-15 (So	oil)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Polychlorinated Biphenyls by EPA M	lethod 8082								
PCB-1016	ND	10	ug/kg	1	8040520	04/05/18	04/06/18	EPA 8082	
PCB-1221	ND	10	"	"	"	"	"		
PCB-1232	ND	10	"	"	"	"	"		
PCB-1242	ND	10	"	"	"	"	"		
PCB-1248	ND	10	"	"	"	"	"		
PCB-1254	110	10	"	"	"	"	"	"	
PCB-1260	ND	10	"	"	"	"	"	"	
Surrogate: Tetrachloro-meta-xylene		119 %	35-	140	"	"	"	"	
Surrogate: Decachlorobiphenyl		133 %	35-	140	"	"	"	"	
	EDA M (L. 19370)								
Semivolatile Organic Compounds by	EPA Method 8270C	200	a		0040500	04/05/10	0.1/00/10		-
Carbazole	ND	300	ug/kg	1	8040523	04/05/18	04/09/18	EPA 8270C	
Phenol	ND	1000							
	ND	300							
2-Chlorophenol	ND	1000							
I,4-Dichlorobenzene	ND	300							
N-Nitrosodi-n-propylamine	ND	300							
1,2,4-1richlorobenzene	ND	300							
4-Chioro-3-methylphenol	ND	1000	"						
2 Mathylnaphthalana	ND	300	"						
	ND	300	"	"					
4 Nitronhanal	ND	1000	"	"					
2.4 Dinitratelyana	ND	200	"	"					
Pantaghlaranhanal	ND	1000	"	"					
Purane	ND	200	"	"					
A compatibility of the second se	ND	300	"	"					
Archaphthylene	ND	300	"	"					
Anunacene Panza (a) anthracana		200	"						
Denzo (a) anunacene		200	"				"		
Benzo (k) fluoranthera		200	"	"					
Denzo (k) nuoranunene		300	"						
Denzo (g,n,1) peryiene	ND	1000							

SunStar Laboratories, Inc.

Brusca Associates Inc.	Proj	ect: Lathr	op 48 Acre Pi	roperty				
PO Box 332	Project Num	Reported:						
Roseville CA, 95661	Project Manag	ger: Joe B	rusca				04/12/18 15	:44
	S	SP1-15						
	T181	153-15 (8	oil)					
Analyte Resu	Reporting llt Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	SunStar L	aborator	ies, Inc.					
Semivolatile Organic Compounds by EPA Method 82	270C							
Benzo (a) pyrene N	D 300	ug/kg	1	8040523	04/05/18	04/09/18	EPA 8270C	
Benzyl alcohol N	D 300	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	D 300	"	"	"	"	"	"	
Bis(2-chloroethyl)ether N	D 300	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether N	D 300	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	D 300	"	"	"	"	"	"	
4-Bromophenyl phenyl ether N	D 300	"	"	"	"	"	"	
Butyl benzyl phthalate N	D 300	"	"	"	"	"	"	
4-Chloroaniline N	D 300	"	"	"	"	"	"	
2-Chloronaphthalene N	D 300	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether N	D 300	"	"	"	"	"	"	
Chrysene N	D 300	"	"	"	"	"	"	
Dibenz (a,h) anthracene N	D 300	"	"	"	"	"	"	
Dibenzofuran N	D 300	"	"	"	"	"	"	
Di-n-butyl phthalate N	D 300	"	"	"	"	"	"	
1,2-Dichlorobenzene N	D 300	"	"	"	"	"	"	
1,3-Dichlorobenzene N	D 300	"	"	"	"	"	"	
2,4-Dichlorophenol N	D 1000	"	"	"	"	"	"	
Diethyl phthalate N	D 300	"	"	"	"	"	"	
2,4-Dimethylphenol N	D 1000	"	"	"	"	"	"	
Dimethyl phthalate N	D 300	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol N	D 1000	"	"	"	"	"	"	
2,4-Dinitrophenol N	D 1000	"	"	"	"	"	"	
2,6-Dinitrotoluene N	D 1000	"	"	"	"	"	"	
Di-n-octyl phthalate N	D 300	"	"	"	"	"	"	
Fluoranthene N	D 300	"	"	"	"	"	"	
Fluorene N	D 300	"	"	"	"	"	"	
Hexachlorobenzene N	D 1500	"	"	"	"	"	"	
Hexachlorobutadiene N	D 300	"	"	"	"	"	"	
Hexachlorocyclopentadiene N	D 1000	"	"	"	"	"	"	
Hexachloroethane	D 300	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene N	D 300	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Brusca Associates Inc. PO Box 332 Roseville CA, 95661		Reported: 04/12/18 15:44							
		S T1811	591-15 53-15 (So	oil)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	ies, Inc.					
Semivolatile Organic Compounds by EPA Met	hod 8270C								
Isophorone	ND	300	ug/kg	1	8040523	04/05/18	04/09/18	EPA 8270C	
2-Methylphenol	ND	1000	"	"	"	"	"	"	
4-Methylphenol	ND	1000	"	"	"	"	"	"	
Naphthalene	ND	300	"	"	"	"	"	"	
2-Nitroaniline	ND	300	"	"	"	"	"	"	
3-Nitroaniline	ND	300	"	"	"	"	"	"	
4-Nitroaniline	ND	300	"	"	"	"	"	"	
Nitrobenzene	ND	1000	"	"	"	"	"	"	
2-Nitrophenol	ND	1000	"	"	"	"	"	"	
N-Nitrosodimethylamine	ND	300	"	"	"	"	"	"	
N-Nitrosodiphenylamine	ND	300	"	"	"	"	"	"	
2,3,5,6-Tetrachlorophenol	ND	300	"	"	"	"	"	"	
2,3,4,6-Tetrachlorophenol	ND	300	"	"	"	"	"	"	
Phenanthrene	ND	300	"	"	"	"	"	"	
Azobenzene	ND	300	"	"	"	"	"	"	
Pyridine	ND	300	"	"	"	"	"	"	
2,4,5-Trichlorophenol	ND	1000	"	"	"	"	"	"	
2,4,6-Trichlorophenol	ND	1000	"	"	"	"	"	"	
Surrogate: 2-Fluorophenol		45.2 %	15-	121	"	"	"	"	
Surrogate: Phenol-d6		49.3 %	24-	113	"	"	"	"	
Surrogate: Nitrobenzene-d5		62.1 %	21.3	-119	"	"	"	"	
Surrogate: 2-Fluorobiphenyl		61.0 %	32.4	-102	"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		62.6 %	18.1	-105	"	"	"	"	
Surrogate: Terphenyl-dl4		107 %	29.1	-130	"	"	"	"	

SunStar Laboratories, Inc.

Brusca Associates Inc. PO Box 332 Roseville CA, 95661	Project: Lathrop 48 Acre Property Project Number: 137-002 Project Manager: Joe Brusca									
			SP1-16							
		T181	153-16 (So	oil)						
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes	
		SunStar L	aboratori	es, Inc.						
Extractable Petroleum Hydrocarb	ons by 8015B with Silica (Gel Cleanu	p							
C6-C12 (GRO)	ND	10	mg/kg	1	8040518	04/05/18	04/10/18	EPA 8015B		
C13-C28 (DRO)	85	10	"	"	"	"	"	"		
C29-C40 (MORO)	55	10	"	"	"	"	"	"		
Surrogate: p-Terphenyl		75.3 %	65-	135	"	"	"	"		
Metals by EPA 6010B										
Antimony	ND	3.0	mg/kg	1	8040603	04/06/18	04/06/18	EPA 6010B		
Silver	ND	2.0	"	"	"	"	"	"		
Arsenic	ND	5.0	"	"	"	"	"	"		
Barium	64	1.0	"	"	"	"	"	"		
Beryllium	ND	1.0	"	"	"	"	"	"		
Cadmium	ND	2.0	"	"	"	"	"	"		
Chromium	5.6	2.0	"	"	"	"	"	"		
Cobalt	5.1	2.0	"	"	"	"	"	"		
Copper	5.2	1.0	"	"	"	"	"	"		
Lead	ND	3.0	"	"	"	"	"	"		
Molybdenum	ND	5.0	"	"	"	"	"	"		
Nickel	6.5	2.0	"	"	"	"	"	"		
Selenium	ND	5.0	"	"	"	"	"	"		
Thallium	ND	2.0	"	"	"	"	"	"		
Vanadium	17	5.0	"	"	"	"	"	"		
Zinc	31	1.0	"	"	"		"	"		
Cold Vapor Extraction EPA 7470/7	7471									
Mercury	ND	0.10	mg/kg	1	8040605	04/06/18	04/06/18	EPA 7471A Soil		

SunStar Laboratories, Inc.

SP1-16 T181153-16 (Soil) Analyte Result Reporting Limit Units Dilution Batch Prepared Analyzed Method Notes SunStar Laboratories, Inc. POR-1016 ND 10 ug/kg 1 8040520 04405/18 04405/18 1048082 PCB-1016 ND 10 ug/kg 1 8040520 04405/18 04406/18 109 8082 PCB-1212 ND 10 " " - - - PCB-1242 ND 10 " " - - - - PCB-1248 ND 10 " " - - - PCB-1249 ND 10 " " - - - Surgatz: Decadebon-meta-sylene 109 % 35-140 " " - - Surgatz: Decadebolynehylend 119 % 35-140 " " - - Surgatz: Decadbo	Brusca Associates Inc.Project:Lathrop 48 Acre PropertyPO Box 332Project Number:137-002Roseville CA, 95661Project Manager:Joe Brusca04									
Analyse Reporting Limit Dilution Batch Prepared Analyzed Method Notes SunStar Laboratories, Inc. Pols-fulof ND 10 ug/kg 1 \$900520 040518 040618 EPA 8082 PCB-1016 ND 10 "			S T1811	SP1-16 53-16 (So	oil)					
Natary Nearly Link Units Dillion Datafi Prepare Natury 20 Method Notes SunStar Laboratorics, Inc. Polychlorinated Biphenyls by EPA Method 8828 PCB-1016 ND 10 "" "	Analysis	Dervik	Reporting	I.u.:ta	Dilution	Detab	Deserved	A	Mathad	Nister
Number of the second	Analyte	Kesuit	Liiiit	Units	Dilution	Batch	Flepaled	Allalyzeu	Method	INOLES
Potechirated Biphenvis by EPA Method 8082 PCB-1016 ND 10 ug/kg 1 8040520 0406/18 EPA 8082 PCB-1232 ND 10 " " " " " PCB-1232 ND 10 " " " " " PCB-1242 ND 10 " " " " " " PCB-1248 ND 10 " " " " " " " PCB-1248 ND 10 " " " " " " " PCB-1260 ND 100 " " " " " " " PCB-1260 ND 35.140 " " " " " " " Surrogate: Tarcoloro-meta-splene ND 300 ug/kg 1 8405/18 6409/18 FPA 270C Proto ND 300 "			SunStar L	aboratori	es, Inc.					
PCB-1016NDND10ug/kg1804052004106/18DEX 8082PCB-1221ND10""""""""PCB-1232ND10"""""""""PCB-1242ND10"""""""""""PCB-12542510"" <td>Polychlorinated Biphenyls by EPA M</td> <td>lethod 8082</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Polychlorinated Biphenyls by EPA M	lethod 8082								
PCB-1221 ND 10 "	PCB-1016	ND	10	ug/kg	1	8040520	04/05/18	04/06/18	EPA 8082	
PCB-1232 ND 10 " <th"< td=""><td>PCB-1221</td><td>ND</td><td>10</td><td>"</td><td>"</td><td>"</td><td>"</td><td>"</td><td>"</td><td></td></th"<>	PCB-1221	ND	10	"	"	"	"	"	"	
PCB-1242ND10""	PCB-1232	ND	10	"	"	"	"	"	"	
PCB-1248 ND 10 " <th"< td=""><td>PCB-1242</td><td>ND</td><td>10</td><td>"</td><td>"</td><td>"</td><td>"</td><td>"</td><td>"</td><td></td></th"<>	PCB-1242	ND	10	"	"	"	"	"	"	
PCB-12542510""	PCB-1248	ND	10	"	"	"	"	"	"	
PCB-1260 ND 10 " <th"< td=""><td>PCB-1254</td><td>25</td><td>10</td><td>"</td><td>"</td><td>"</td><td>"</td><td>"</td><td>"</td><td></td></th"<>	PCB-1254	25	10	"	"	"	"	"	"	
Surrogate: Tetrachloro-meta-xylene109%35-140"" <th< td=""><td>PCB-1260</td><td>ND</td><td>10</td><td>"</td><td>"</td><td>"</td><td>"</td><td>"</td><td>"</td><td></td></th<>	PCB-1260	ND	10	"	"	"	"	"	"	
Surrogate: DecadelorobiphenylIII %35-I0""" <td>Surrogate: Tetrachloro-meta-xylene</td> <td></td> <td>109 %</td> <td>35-</td> <td>140</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td></td>	Surrogate: Tetrachloro-meta-xylene		109 %	35-	140	"	"	"	"	
Semivolatile Organic Compounds by EPA Method 8270C Carbazole ND 300 ug/kg 1 8040523 04/05/18 04/09/18 EPA 8270C Phenol ND 1000 " " " " " " Aniline ND 300 " " " " " " " 2-Chlorophenol ND 300 " <	Surrogate: Decachlorobiphenyl		111 %	35-	140	"	"	"	"	
Schwinzbergene Components of Entrincing byte ND 300 ug/kg 1 8040523 04/05/18 04/09/18 EPA 8270C Phenol ND 1000 " <t< td=""><td>Semivolatile Organic Compounds by</td><td>EPA Method 8270C</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	Semivolatile Organic Compounds by	EPA Method 8270C								
No. N	Carbazole	ND	300	119/kg	1	8040523	04/05/18	04/09/18	EPA 8270C	
Aniline ND 300 "	Phenol	ND	1000	"	"	"	"	"	"	
ND 100 "	Aniline	ND	300	"	"	"	"		"	
1.4-Dichlorobenzene ND 300 " <td>2-Chlorophenol</td> <td>ND</td> <td>1000</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td></td> <td>"</td> <td></td>	2-Chlorophenol	ND	1000	"	"	"	"		"	
N-Nitrosodi-n-propylamine ND 300 " <td< td=""><td>1.4-Dichlorobenzene</td><td>ND</td><td>300</td><td>"</td><td>"</td><td>"</td><td>"</td><td></td><td>"</td><td></td></td<>	1.4-Dichlorobenzene	ND	300	"	"	"	"		"	
1,2,4-Trichlorobenzene ND 300 " " " " " " 4-Chloro-3-methylphenol ND 1000 " " " " " " 1-Methylnaphthalene ND 300 " " " " " " " 2-Methylnaphthalene ND 300 " " " " " " " Acenaphthene ND 300 " <	N-Nitrosodi-n-propylamine	ND	300	"	"	"	"	"	"	
4-Chloro-3-methylphenol ND 1000 "	1.2.4-Trichlorobenzene	ND	300	"	"	"	"	"	"	
1-Methylnaphthalene ND 300 " <td>4-Chloro-3-methylphenol</td> <td>ND</td> <td>1000</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td></td> <td></td>	4-Chloro-3-methylphenol	ND	1000	"	"	"	"	"		
2-Methylnaphthalene ND 300 " <td>1-Methylnaphthalene</td> <td>ND</td> <td>300</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td></td> <td></td> <td></td>	1-Methylnaphthalene	ND	300	"	"	"	"			
Acenaphthene ND 300 "	2-Methylnaphthalene	ND	300	"	"	"	"			
4-Nitrophenol ND 1000 "	Acenaphthene	ND	300	"	"	"	"	"	"	
2,4-Dinitrotoluene ND 300 "	4-Nitrophenol	ND	1000	"	"	"	"	"	"	
Pentachlorophenol ND 1000 "	2,4-Dinitrotoluene	ND	300	"	"	"	"	"	"	
Pyrene ND 300 "	Pentachlorophenol	ND	1000	"	"	"	"	"	"	
Acenaphthylene ND 300 "	Pyrene	ND	300	"	"	"	"	"	"	
Anthracene ND 300 " <	Acenaphthylene	ND	300	"	"	"	"	"	"	
Benzo (a) anthracene ND 300 " <td>Anthracene</td> <td>ND</td> <td>300</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td></td>	Anthracene	ND	300	"	"	"	"	"	"	
Benzo (b) fluoranthene ND 300 " " " " " " " Benzo (k) fluoranthene ND 300 "	Benzo (a) anthracene	ND	300	"	"	"	"	"		
Benzo (k) fluorantheneND300""""""Benzo (g,h,i) peryleneND1000""""""	Benzo (b) fluoranthene	ND	300	"	"	"	"	"		
Benzo (g,h,i) perylene ND 1000 " " " " " "	Benzo (k) fluoranthene	ND	300	"	"	"	"	"	"	
	Benzo (g,h,i) perylene	ND	1000	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Brusca Associates Inc.	Proje								
PO Box 332	Project Number: 137-002								
Roseville CA, 95661	Project Manag	er: Joe Br	rusca				04/12/18 15:44		
	S	SP1-16							
	T1811	53-16 (So	oil)						
Analyte Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes	
	SunStar L	aboratori	ies, Inc.						
Semivolatile Organic Compounds by EPA Method 8270C									
Benzo (a) pyrene ND	300	ug/kg	1	8040523	04/05/18	04/09/18	EPA 8270C		
Benzyl alcohol ND	300	"	"		"	"	"		
Bis(2-chloroethoxy)methane ND	300	"	"		"	"	"		
Bis(2-chloroethyl)ether ND	300	"	"		"	"	"		
Bis(2-chloroisopropyl)ether ND	300	"	"		"	"	"		
Bis(2-ethylhexyl)phthalate ND	300	"	"	"	"	"	"		
4-Bromophenyl phenyl ether ND	300	"	"	"	"	"	"		
Butyl benzyl phthalate ND	300	"	"	"	"	"	"		
4-Chloroaniline ND	300	"	"		"	"	"		
2-Chloronaphthalene ND	300	"	"		"	"	"		
4-Chlorophenyl phenyl ether ND	300	"	"	"	"	"	"		
Chrysene ND	300	"	"		"	"	"		
Dibenz (a,h) anthracene ND	300	"	"		"	"	"		
Dibenzofuran ND	300	"	"		"	"	"		
Di-n-butyl phthalate ND	300	"	"		"	"	"		
1,2-Dichlorobenzene ND	300	"	"	"	"	"	"		
1,3-Dichlorobenzene ND	300	"	"	"	"	"	"		
2,4-Dichlorophenol ND	1000	"	"	"	"	"	"		
Diethyl phthalate ND	300	"	"	"	"	"	"		
2,4-Dimethylphenol ND	1000	"	"	"	"	"	"		
Dimethyl phthalate ND	300	"	"	"	"	"	"		
4,6-Dinitro-2-methylphenol ND	1000	"	"	"	"	"	"		
2,4-Dinitrophenol ND	1000	"	"	"	"	"	"		
2,6-Dinitrotoluene ND	1000	"	"	"	"	"	"		
Di-n-octyl phthalate ND	300	"	"	"	"	"	"		
Fluoranthene ND	300	"	"	"	"	"	"		
Fluorene ND	300	"	"	"	"	"	"		
Hexachlorobenzene ND	1500	"	"	"	"	"	"		
Hexachlorobutadiene ND	300	"	"	"	"	"	"		
Hexachlorocyclopentadiene ND	1000	"	"	"	"	"	"		
Hexachloroethane ND	300	"	"	"	"	"	"		
Indeno (1,2,3-cd) pyrene ND	300	"	"	"		"	"		

SunStar Laboratories, Inc.

Brusca Associates Inc. PO Box 332 Roseville CA, 95661	Project: Lathrop 48 Acre Property Project Number: 137-002 Project Manager: Joe Brusca									
		S T1811	SP1-16 53-16 (Soi	l)						
Analyte F	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes	
		SunStar L	aboratorie	s, Inc.						
Semivolatile Organic Compounds by EPA Method	8270C									
Isophorone	ND	300	ug/kg	1	8040523	04/05/18	04/09/18	EPA 8270C		
2-Methylphenol	ND	1000	"		"	"	"	"		
4-Methylphenol	ND	1000	"		"	"	"	"		
Naphthalene	ND	300	"	"	"	"	"	"		
2-Nitroaniline	ND	300	"	"	"	"	"	"		
3-Nitroaniline	ND	300	"	"	"	"	"	"		
4-Nitroaniline	ND	300	"	"	"	"	"	"		
Nitrobenzene	ND	1000	"	"	"	"	"	"		
2-Nitrophenol	ND	1000	"	"	"	"	"	"		
N-Nitrosodimethylamine	ND	300	"	"	"	"	"	"		
N-Nitrosodiphenylamine	ND	300	"		"	"	"	"		
2,3,5,6-Tetrachlorophenol	ND	300	"		"	"	"	"		
2,3,4,6-Tetrachlorophenol	ND	300	"		"	"	"	"		
Phenanthrene	ND	300	"		"	"	"	"		
Azobenzene	ND	300	"	"	"	"	"	"		
2,4,5-Trichlorophenol	ND	1000	"	"	"	"	"	"		
Pyridine	ND	300	"	"	"	"	"	"		
2,4,6-Trichlorophenol	ND	1000	"	"	"	"	"	"		
Surrogate: 2-Fluorophenol		49.5 %	15-1.	21	"	"	"	"		
Surrogate: Phenol-d6		52.4 %	24-1	13	"	"	"	"		
Surrogate: Nitrobenzene-d5		67.4 %	21.3-1	119	"	"	"	"		
Surrogate: 2-Fluorobiphenyl		66.4 %	32.4-1	102	"	"	"	"		
Surrogate: 2,4,6-Tribromophenol		68.2 %	18.1-1	105	"	"	"	"		
Surrogate: Terphenyl-dl4		120 %	29.1-1	130	"	"	"	"		

SunStar Laboratories, Inc.

Brusca Associates Inc.	A Associates Inc. Project: Lathrop 48 Acre Property										
PO Box 332		Project Numb	ber: 137-00	2				Reported:	: 		
Roseville CA, 95661		Project Manag	ger: Joe Bri	usca				04/12/18 15:44			
		<u> </u>	SP1-17								
		T181	153-17 (So	il)							
		Reporting									
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes		
		SunStar L	aboratori	es, Inc.							
Extractable Petroleum Hydrocar	bons by 8015B with Silica	Gel Cleanu	p								
C6-C12 (GRO)	ND	10	mg/kg	1	8040518	04/05/18	04/10/18	EPA 8015B			
C13-C28 (DRO)	81	10	"	"	"	"	"	"			
C29-C40 (MORO)	40	10	"	"	"	"	"	"			
Surrogate: p-Terphenyl		88.5 %	65-1	135	"	"	"	"			
Metals by EPA 6010B											
Antimony	ND	3.0	mg/kg	1	8040603	04/06/18	04/06/18	EPA 6010B			
Silver	ND	2.0	"	"	"	"	"	"			
Arsenic	ND	5.0	"	"	"	"	"	"			
Barium	49	1.0	"	"	"	"	"	"			
Beryllium	ND	1.0	"	"	"	"	"	"			
Cadmium	ND	2.0	"	"	"	"	"	"			
Chromium	5.0	2.0	"	"	"	"	"	"			
Cobalt	3.6	2.0	"	"	"	"	"	"			
Copper	3.9	1.0	"	"	"	"	"	"			
Lead	9.4	3.0	"	"	"	"	"	"			
Molybdenum	ND	5.0	"	"	"	"	"	"			
Nickel	4.6	2.0	"	"	"	"	"	"			
Selenium	ND	5.0	"	"	"	"	"	"			
Thallium	ND	2.0	"	"	"	"	"	"			
Vanadium	13	5.0	"	"	"	"	"	"			
Zinc	23	1.0	"	"	"	"	"	"			
Cold Vapor Extraction EPA 7470	/7471										
Mercury	ND	0.10	mg/kg	1	8040605	04/06/18	04/06/18	EPA 7471A Soil			

SunStar Laboratories, Inc.

Brusca Associates Inc.Project:Lathrop 48 Acre PropertyPO Box 332Project Number:137-002Roseville CA, 95661Project Manager:Joe Brusca0									
		S T1811	SP1-17 53-17 (So	oil)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Polychlorinated Biphenyls by EPA M	lethod 8082								
PCB-1016	ND	10	ug/kg	1	8040520	04/05/18	04/06/18	EPA 8082	
PCB-1221	ND	10	"	"	"	"	"	"	
PCB-1232	ND	10	"	"	"	"		"	
PCB-1242	ND	10	"	"	"	"		"	
PCB-1248	ND	10	"	"	"	"	"	"	
PCB-1254	18	10	"	"	"	"	"	"	
PCB-1260	ND	10	"	"	"	"	"	"	
Surrogate: Tetrachloro-meta-xylene		125 %	35-	140	"	"	"	"	
Surrogate: Decachlorobiphenyl		131 %	35-	140	"	"	"	"	
Somivolatile Organia Compounds by	EDA Mothod 9270C								
Semivolatile Organic Compounds by	EFA Method 8270C	200	walka	1	8040522	04/05/19	04/00/19	EDA 8270C	
Dhamal	ND	1000	ug/kg "	1	8040323	04/03/18	04/09/18	EFA 8270C	
Aniline	ND	200	"			"			
2 Chlorophonol	ND	1000	"			"		"	
1.4 Dishlorohanzana	ND	200	"			"			
N Nitrosodi p propulamina	ND	300	"			"			
1.2.4 Trichlorobenzene	ND	300	"	"		"		"	
4-Chloro-3-methylphenol	ND	1000	"			"			
2-Methylpanhthalene	ND	300	"	"		"			
1-Methylnaphthalene	ND	300	"			"			
Acenanhthene	ND	300	"			"			
4-Nitrophenol	ND	1000	"			"			
2 4-Dinitrotoluene	ND	300	"			"			
Pentachlorophenol	ND	1000	"			"		"	
Pyrene	ND	300	"			"		"	
Acenaphthylene	ND	300	"	"	"	"		"	
Anthracene	ND	300	"	"	"	"		"	
Benzo (a) anthracene	ND	300	"			"			
Benzo (b) fluoranthene	ND	300	"			"			
Benzo (k) fluoranthene	ND	300	"						
Benzo (g h i) pervlene	ND	1000	"						
Series (5,ii,i) perficie		1000							

SunStar Laboratories, Inc.

Brusca Associates Inc. PO Box 332		Proje Project Numb	Reported						
Roseville CA, 95661		Project Manag	er: Joe Br	rusca				04/12/18 15:44	
		s	SP1-17						
		T1811	53-17 (So	oil)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	ies, Inc.					
Semivolatile Organic Compounds by	EPA Method 8270C								
Benzo (a) pyrene	ND	300	ug/kg	1	8040523	04/05/18	04/09/18	EPA 8270C	
Benzyl alcohol	ND	300	"	"	"	"		"	
Bis(2-chloroethoxy)methane	ND	300	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	300	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	300	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	300	"	"	"	"	"	"	
4-Bromophenyl phenyl ether	ND	300	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	300	"	"	"	"	"	"	
4-Chloroaniline	ND	300	"	"	"	"	"	"	
2-Chloronaphthalene	ND	300	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether	ND	300	"	"	"	"	"	"	
Chrysene	ND	300	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	300	"	"	"	"	"	"	
Dibenzofuran	ND	300	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	300	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	300	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	300	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	1000	"	"	"	"		"	
Diethyl phthalate	ND	300	"	"	"	"		"	
2,4-Dimethylphenol	ND	1000	"	"	"	"		"	
Dimethyl phthalate	ND	300	"	"	"	"		"	
4,6-Dinitro-2-methylphenol	ND	1000	"	"	"	"		"	
2,4-Dinitrophenol	ND	1000	"	"	"	"		"	
2,6-Dinitrotoluene	ND	1000	"	"	"	"	"	"	
Di-n-octyl phthalate	ND	300	"	"	"	"		"	
Fluoranthene	ND	300	"	"	"	"		"	
Fluorene	ND	300	"	"	"	"		"	
Hexachlorobenzene	ND	1500	"	"	"	"	"	"	
Hexachlorobutadiene	ND	300	"	"	"	"	"	"	
Hexachlorocyclopentadiene	ND	1000	"	"	"	"	"	"	
Hexachloroethane	ND	300	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene	ND	300	"	"		"	"	"	

SunStar Laboratories, Inc.

Brusca Associates Inc. PO Box 332 Roseville CA, 95661		Reported: 04/12/18 15:44							
		S T1811	SP1-17 53-17 (So	il)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Semivolatile Organic Compounds by E	CPA Method 8270C								
Isophorone	ND	300	ug/kg	1	8040523	04/05/18	04/09/18	EPA 8270C	
2-Methylphenol	ND	1000		"	"	"	"	"	
4-Methylphenol	ND	1000		"	"	"	"	"	
Naphthalene	ND	300		"	"	"	"	"	
2-Nitroaniline	ND	300	"	"	"	"	"	"	
3-Nitroaniline	ND	300		"	"	"	"	"	
4-Nitroaniline	ND	300		"	"	"	"	"	
Nitrobenzene	ND	1000		"	"	"	"	"	
2-Nitrophenol	ND	1000		"	"	"	"	"	
N-Nitrosodimethylamine	ND	300		"	"	"	"	"	
N-Nitrosodiphenylamine	ND	300		"	"	"	"	"	
2,3,5,6-Tetrachlorophenol	ND	300		"	"	"	"	"	
2,3,4,6-Tetrachlorophenol	ND	300		"	"	"	"	"	
Phenanthrene	ND	300		"	"	"	"	"	
Azobenzene	ND	300	"	"	"	"	"	"	
Pyridine	ND	300	"	"	"	"	"	"	
2,4,5-Trichlorophenol	ND	1000		"	"	"	"	"	
2,4,6-Trichlorophenol	ND	1000	"	"	"	"	"	"	
Surrogate: 2-Fluorophenol		56.8 %	15-	121	"	"	"	"	
Surrogate: Phenol-d6		57.0%	24-	113	"	"	"	"	
Surrogate: Nitrobenzene-d5		76.6 %	21.3	-119	"	"	"	"	
Surrogate: 2-Fluorobiphenyl		73.5 %	32.4-	-102	"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		70.7 %	18.1-	-105	"	"	"	"	
Surrogate: Terphenyl-dl4		111 %	29.1-	-130	"	"	"	"	

SunStar Laboratories, Inc.

Brusca Associates Inc. Project: Lathrop 48 Acre Property										
PO Box 332 Roseville CA, 95661	F	Project Manager: Joe Brusca								
			SD1 10							
		T181 1	57 1-18 153-18 (So	oil)						
		Reporting								
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes	
		SunStar L	aboratori	es, Inc.						
Extractable Petroleum Hydrocarb	ons by 8015B with Silica (Gel Cleanu	p							
C6-C12 (GRO)	ND	10	mg/kg	1	8040518	04/05/18	04/10/18	EPA 8015B		
C13-C28 (DRO)	26	10	"	"	"	"	"	"		
C29-C40 (MORO)	82	10	"	"	"	"	"	"		
Surrogate: p-Terphenyl		76.5 %	65-	135	"	"	"	"		
Metals by EPA 6010B										
Antimony	ND	3.0	mg/kg	1	8040603	04/06/18	04/06/18	EPA 6010B		
Silver	ND	2.0	"	"	"	"	"	"		
Arsenic	ND	5.0	"	"	"	"	"	"		
Barium	62	1.0	"	"	"	"	"	"		
Beryllium	ND	1.0	"	"	"	"	"	"		
Cadmium	ND	2.0	"	"	"	"	"	"		
Chromium	5.2	2.0	"	"	"	"	"	"		
Cobalt	3.9	2.0	"	"	"	"	"	"		
Copper	4.4	1.0	"	"	"	"	"	"		
Lead	13	3.0	"	"	"	"	"	"		
Molybdenum	ND	5.0	"	"	"	"	"	"		
Nickel	5.7	2.0	"	"	"	"	"	"		
Selenium	ND	5.0	"	"	"	"	"	"		
Thallium	ND	2.0	"	"	"	"	"	"		
Vanadium	15	5.0	"	"	"	"	"	"		
Zinc	27	1.0	"	"	"	"	"	"		
Cold Vapor Extraction EPA 7470/7	/471									
Mercury	ND	0.10	mg/kg	1	8040605	04/06/18	04/06/18	EPA 7471A Soil		

SunStar Laboratories, Inc.

Mike Jaroudi, Project Manager

Brusca Associates Inc.Project:Lathrop 48 Acre PropertyPO Box 332Project Number:137-002Roseville CA, 95661Project Manager:Joe Brusca									
		S T1811	SP1-18 53-18 (So	oil)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	ies, Inc.					
Polychlorinated Biphenyls by EPA M	Iethod 8082								
PCB-1016	ND	10	ug/kg	1	8040520	04/05/18	04/06/18	EPA 8082	
PCB-1221	ND	10	"	"	"	"	"	"	
PCB-1232	ND	10	"	"	"	"	"	"	
PCB-1242	ND	10	"	"	"	"	"	"	
PCB-1248	ND	10	"	"	"	"	"	"	
PCB-1254	42	10	"	"	"	"	"	"	
PCB-1260	ND	10	"	"	"	"	"	"	
Surrogate: Tetrachloro-meta-xylene		120 %	35-	140	"	"	"	"	
Surrogate: Decachlorobiphenyl		136 %	35-	140	"	"	"	"	
Samiyalatila Organia Compounda by	EDA Mothed 9270C								
Carbazele	ND	200	ug/kg	1	8040522	04/05/18	04/10/18	EDA 8270C	
Aniline	ND	300	ug/kg "	"	8040323 "	"	"	EFA 8270C	
Phenol	ND	1000		"		"			
2 Chlorophenol	ND	1000		"		"			
1 4-Dichlorobenzene	ND	300	"	"		"			
N-Nitrosodi-n-propylamine	ND	300		"		"			
1.2.4.Trichlorobenzene	ND	300		"		"			
4-Chloro-3-methylphenol	ND	1000		"		"			
1-Methylnanhthalene	ND	300		"		"	"		
2-Methylnaphthalene	ND	300		"		"		"	
Acenaphthene	ND	300	"	"		"		"	
4-Nitrophenol	ND	1000		"		"		"	
2 4-Dinitrotoluene	ND	300		"	"	"		"	
Pentachlorophenol	ND	1000		"	"	"		"	
Pyrene	ND	300		"		"		"	
Acenaphthylene	ND	300		"		"		"	
Anthracene	ND	300	"	"		"	"	"	
Benzo (a) anthracene	ND	300	"	"		"	"		
Benzo (b) fluoranthene	ND	300	"	"		"	"		
Benzo (k) fluoranthene	ND	300	"	"		"	"		
Benzo (g,h,i) pervlene	ND	1000	"	"		"	"		
(O)) / F · J · ·									

SunStar Laboratories, Inc.

Brusca Associates Inc.		Proje	ect: Lathro	p 48 Acre Pi	roperty				
PO Box 332		Project Numb		Reported:					
Roseville CA, 95661		Project Manag	er: Joe Br	usca				04/12/18 15	5:44
		S	SP1-18						
		T1811	53-18 (So	oil)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	ies, Inc.					
Semivolatile Organic Compounds by E	PA Method 8270C								
Benzo (a) pyrene	ND	300	ug/kg	1	8040523	04/05/18	04/10/18	EPA 8270C	
Benzyl alcohol	ND	300	"	"	"	"	"		
Bis(2-chloroethoxy)methane	ND	300	"	"	"	"	"		
Bis(2-chloroethyl)ether	ND	300	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	300	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	300	"	"	"	"	"	"	
4-Bromophenyl phenyl ether	ND	300	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	300	"	"	"	"	"	"	
4-Chloroaniline	ND	300	"	"	"	"	"	"	
2-Chloronaphthalene	ND	300	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether	ND	300	"	"	"	"	"	"	
Chrysene	ND	300	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	300	"	"	"	"	"	"	
Dibenzofuran	ND	300	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	300	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	300	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	300	"	"	"	"	"		
2,4-Dichlorophenol	ND	1000	"	"	"	"	"		
Diethyl phthalate	ND	300	"	"	"	"	"		
2,4-Dimethylphenol	ND	1000	"	"	"	"	"		
Dimethyl phthalate	ND	300	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol	ND	1000	"	"	"	"	"		
2,4-Dinitrophenol	ND	1000	"	"	"	"	"		
2,6-Dinitrotoluene	ND	1000	"	"	"	"	"		
Di-n-octyl phthalate	ND	300	"	"	"	"	"		
Fluoranthene	ND	300	"	"	"	"	"		
Fluorene	ND	300	"	"	"	"	"		
Hexachlorobenzene	ND	1500	"	"	"	"	"		
Hexachlorobutadiene	ND	300	"	"	"	"	"	"	
Hexachlorocyclopentadiene	ND	1000	"	"	"	"	"	"	
Hexachloroethane	ND	300	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene	ND	300	"	"		"	"	"	

SunStar Laboratories, Inc.

Brusca Associates Inc. PO Box 332 Roseville CA, 95661		Reported: 04/12/18 15:44							
		S T1811	SP1-18 53-18 (So	il)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Semivolatile Organic Compounds by E	CPA Method 8270C								
Isophorone	ND	300	ug/kg	1	8040523	04/05/18	04/10/18	EPA 8270C	
2-Methylphenol	ND	1000	"		"	"	"	"	
4-Methylphenol	ND	1000	"	"	"	"	"	"	
Naphthalene	ND	300	"	"	"	"	"	"	
2-Nitroaniline	ND	300	"	"	"	"	"	"	
3-Nitroaniline	ND	300	"	"	"	"	"	"	
4-Nitroaniline	ND	300	"	"	"	"	"	"	
Nitrobenzene	ND	1000	"		"	"	"	"	
2-Nitrophenol	ND	1000	"		"	"	"	"	
N-Nitrosodimethylamine	ND	300	"	"	"	"	"	"	
N-Nitrosodiphenylamine	ND	300	"	"	"	"	"	"	
2,3,5,6-Tetrachlorophenol	ND	300	"	"	"	"	"	"	
2,3,4,6-Tetrachlorophenol	ND	300	"	"	"	"	"	"	
Phenanthrene	ND	300	"	"	"	"	"	"	
Azobenzene	ND	300	"	"	"	"	"	"	
2,4,5-Trichlorophenol	ND	1000	"	"	"	"	"	"	
Pyridine	ND	300	"	"	"	"	"	"	
2,4,6-Trichlorophenol	ND	1000	"	"	"	"	"	"	
Surrogate: 2-Fluorophenol		61.6 %	15-1	21	"	"	"	"	
Surrogate: Phenol-d6		64.3 %	24-1	113	"	"	"	"	
Surrogate: Nitrobenzene-d5		80.0 %	21.3-	-119	"	"	"	"	
Surrogate: 2-Fluorobiphenyl		73.7%	32.4-	102	"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		72.8 %	18.1-	105	"	"	"	"	
Surrogate: Terphenyl-dl4		115 %	29.1-	130	"	"	"	"	

SunStar Laboratories, Inc.

Brusca Associates Inc. PO Box 332 Roseville CA, 95661	ca Associates Inc.Project:Lathrop 48 Acre PropertyBox 332Project Number:137-002eville CA, 95661Project Manager:Joe Brusca								
		5 T181 1	SP1-19 153-19 (So	oil)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Extractable Petroleum Hydrocarl	bons by 8015B with Silica	Gel Cleanu	p						
C6-C12 (GRO)	ND	10	mg/kg	1	8040518	04/05/18	04/10/18	EPA 8015B	
C13-C28 (DRO)	39	10	"	"	"	"	"	"	
C29-C40 (MORO)	51	10	"	"	"	"		"	
Surrogate: p-Terphenyl		73.6 %	65-	135	"	"	"	"	
Metals by EPA 6010B									
Antimony	ND	3.0	mg/kg	1	8040603	04/06/18	04/06/18	EPA 6010B	
Silver	ND	2.0	"	"	"	"		"	
Arsenic	ND	5.0	"	"	"	"		"	
Barium	58	1.0	"	"	"	"		"	
Beryllium	ND	1.0	"	"	"	"		"	
Cadmium	ND	2.0	"	"	"	"		"	
Chromium	5.4	2.0	"	"	"	"	"	"	
Cobalt	3.8	2.0	"	"	"	"	"	"	
Copper	4.6	1.0	"	"	"	"	"	"	
Lead	ND	3.0	"	"	"	"	"	"	
Molybdenum	ND	5.0	"	"	"	"	"	"	
Nickel	5.3	2.0	"	"	"	"		"	
Selenium	ND	5.0	"	"	"	"		"	
Thallium	ND	2.0	"	"	"	"	"	"	
Vanadium	14	5.0	"	"	"	"		"	
Zinc	28	1.0	"	"	"		"	"	
Cold Vapor Extraction EPA 7470/	7471								
Mercury	ND	0.10	mg/kg	1	8040605	04/06/18	04/06/18	EPA 7471A Soil	

SunStar Laboratories, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Mike Jaroudi, Project Manager

Brusca Associates Inc. Project: Lathrop 48 Acre Property										
PO Box 332		Project Number: 157-002								
Kosevine CA, 93001		Project Manag	gel. Jue Bl	usca				04/12/18 13	.44	
		5	SP1-19	•••						
		11811	53-19 (80	011) 						
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes	
		SunStar L	aboratori	ies, Inc.						
Polychlorinated Biphenyls by EPA N	1ethod 8082									
PCB-1016	ND	10	ug/kg	1	8040520	04/05/18	04/06/18	EPA 8082		
PCB-1221	ND	10	"	"	"	"	"	"		
PCB-1232	ND	10	"	"	"	"	"	"		
PCB-1242	ND	10	"	"	"	"	"	"		
PCB-1248	ND	10	"	"	"	"	"	"		
PCB-1254	21	10	"	"	"	"	"	"		
PCB-1260	ND	10	"	"	"	"	"	"		
Surrogate: Tetrachloro-meta-xylene		101 %	35-	140	"	"	"	"		
Surrogate: Decachlorobiphenyl		116 %	35-	140	"	"	"	"		
Semivolatile Organic Compounds by	FPA Method 8270C									
Carbazole	ND	300	ug/kg	1	8040523	04/05/18	04/10/18	FPA 8270C		
Phenol	ND	1000	"	"	"	"	"	"		
Aniline	ND	300	"	"				"		
2-Chlorophenol	ND	1000	"	"				"		
1 4-Dichlorobenzene	ND	300	"	"			"			
N-Nitrosodi-n-propylamine	ND	300	"	"			"			
1.2.4-Trichlorobenzene	ND	300	"	"			"			
4-Chloro-3-methylphenol	ND	1000	"	"				"		
1-Methylnanhthalene	ND	300	"	"				"		
2-Methylnaphthalene	ND	300	"	"				"		
Acenaphthene	ND	300	"	"				"		
4-Nitrophenol	ND	1000	"	"		"				
2 4-Dinitrotoluene	ND	300	"	"		"				
Pentachlorophenol	ND	1000	"	"			"	"		
Pyrene	ND	300	"	"			"	"		
Acenaphthylene	ND	300	"	"	"		"	"		
Anthracene	ND	300	"	"	"		"	"		
Benzo (a) anthracene	ND	300	"	"			"	"		
Benzo (b) fluoranthene	ND	300	"	"			"	"		
Benzo (k) fluoranthene	ND	300	"	"		"	"			
Benzo (g h i) pervlene	ND	1000	"	"		"	"			
(8,,) perficie	112	1000								

SunStar Laboratories, Inc.

Brusca Associates Inc.		Proje	ect: Lathro	p 48 Acre Pi	roperty				
PO Box 332		Project Numb	er: 137-00	02				Reported	:
Roseville CA, 95661		Project Manag	er: Joe Br	usca				04/12/18 15	:44
		S	SP1-19						
		T1811	53-19 (So	oil)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	ies, Inc.					
Semivolatile Organic Compounds by F	EPA Method 8270C								
Benzo (a) pyrene	ND	300	ug/kg	1	8040523	04/05/18	04/10/18	EPA 8270C	
Benzyl alcohol	ND	300	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	300	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	300	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	300	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	300	"	"	"	"	"	"	
4-Bromophenyl phenyl ether	ND	300	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	300	"	"	"	"	"	"	
4-Chloroaniline	ND	300	"	"	"	"	"	"	
2-Chloronaphthalene	ND	300	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether	ND	300	"	"	"	"	"	"	
Chrysene	ND	300	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	300	"	"	"	"	"	"	
Dibenzofuran	ND	300	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	300	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	300	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	300	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	1000	"	"	"	"	"	"	
Diethyl phthalate	ND	300	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	1000	"	"	"	"	"	"	
Dimethyl phthalate	ND	300	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol	ND	1000	"	"	"	"	"	"	
2,4-Dinitrophenol	ND	1000	"	"	"	"	"	"	
2,6-Dinitrotoluene	ND	1000	"	"	"	"	"	"	
Di-n-octyl phthalate	ND	300	"	"	"	"	"	"	
Fluoranthene	ND	300	"	"	"	"	"	"	
Fluorene	ND	300	"	"	"	"	"	"	
Hexachlorobenzene	ND	1500	"	"	"	"	"	"	
Hexachlorobutadiene	ND	300	"	"		"	"	"	
Hexachlorocyclopentadiene	ND	1000	"	"	"	"	"	"	
Hexachloroethane	ND	300	"	"		"	"	"	
Indeno (1,2,3-cd) pyrene	ND	300	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Brusca Associates Inc. PO Box 332 Roseville CA, 95661		Proje Project Numb Project Manag	ect: Lathro per: 137-00 ger: Joe Br	p 48 Acre P)2 usca	roperty			Reported 04/12/18 15	: :44
		S T1811	SP1-19 53-19 (So	oil)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	ies, Inc.					
Semivolatile Organic Compounds by EPA	Method 8270C								
Isophorone	ND	300	ug/kg	1	8040523	04/05/18	04/10/18	EPA 8270C	
2-Methylphenol	ND	1000	"	"	"	"	"	"	
4-Methylphenol	ND	1000	"	"	"	"	"	"	
Naphthalene	ND	300	"	"	"	"	"	"	
2-Nitroaniline	ND	300		"	"	"	"	"	
3-Nitroaniline	ND	300	"	"	"	"	"	"	
4-Nitroaniline	ND	300		"	"	"	"	"	
Nitrobenzene	ND	1000	"	"	"	"	"	"	
2-Nitrophenol	ND	1000	"	"	"	"	"	"	
N-Nitrosodimethylamine	ND	300	"	"	"	"	"	"	
N-Nitrosodiphenylamine	ND	300	"	"	"	"	"	"	
2,3,5,6-Tetrachlorophenol	ND	300	"	"	"	"	"	"	
2,3,4,6-Tetrachlorophenol	ND	300		"	"	"	"	"	
Phenanthrene	ND	300	"	"	"	"	"	"	
Azobenzene	ND	300	"	"	"	"	"	"	
Pyridine	ND	300	"	"	"	"	"	"	
2,4,5-Trichlorophenol	ND	1000	"	"	"	"	"	"	
2,4,6-Trichlorophenol	ND	1000	"	"	"	"	"	"	
Surrogate: 2-Fluorophenol		54.3 %	15-	121	"	"	"	"	
Surrogate: Phenol-d6		57.3 %	24-	113	"	"	"	"	
Surrogate: Nitrobenzene-d5		72.8 %	21.3	-119	"	"	"	"	
Surrogate: 2-Fluorobiphenyl		69.4 %	32.4	-102	"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		72.8 %	18.1	-105	"	"	"	"	
Surrogate: Terphenyl-dl4		120 %	29.1	-130	"	"	"	"	

SunStar Laboratories, Inc.

Brusca Associates Inc.		Proj	ect: Lathro	p 48 Acre P	roperty				
PO Box 332 Roseville CA, 95661	I	Project Numi Project Manag	ger: 137-00 ger: Joe Br	usca				Reported: 04/12/18 15	:44
			SD1 20						
		T181 1	57 1-20 153-20 (So	oil)					
		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Extractable Petroleum Hydrocarb	ons by 8015B with Silica	Gel Cleanu	p						
C6-C12 (GRO)	ND	10	mg/kg	1	8040518	04/05/18	04/10/18	EPA 8015B	
C13-C28 (DRO)	76	10	"	"	"	"	"	"	
C29-C40 (MORO)	150	10	"	"	"	"	"	"	
Surrogate: p-Terphenyl		81.0 %	65-	135	"	"	"	"	
Metals by EPA 6010B									
Antimony	ND	3.0	mg/kg	1	8040603	04/06/18	04/06/18	EPA 6010B	
Silver	ND	2.0	"	"	"	"	"	"	
Arsenic	ND	5.0	"	"	"	"	"	"	
Barium	57	1.0	"	"	"	"	"	"	
Beryllium	ND	1.0	"	"	"	"	"	"	
Cadmium	ND	2.0	"	"	"	"	"	"	
Chromium	5.9	2.0	"	"	"	"	"	"	
Cobalt	3.9	2.0	"	"	"	"	"	"	
Copper	4.6	1.0	"	"	"	"	"	"	
Lead	10	3.0	"	"	"	"	"	"	
Molybdenum	ND	5.0	"	"	"	"	"	"	
Nickel	5.3	2.0	"	"	"	"	"	"	
Selenium	ND	5.0	"	"	"	"	"	"	
Thallium	ND	2.0	"	"	"	"	"	"	
Vanadium	16	5.0	"	"	"	"	"	"	
Zinc	30	1.0	"	"	"	"	"	"	
Cold Vapor Extraction EPA 7470/7	7471								
Mercury	ND	0.10	mg/kg	1	8040605	04/06/18	04/06/18	EPA 7471A Soil	

SunStar Laboratories, Inc.

Mike Jaroudi, Project Manager

Brusca Associates Inc.		Proje	ect: Lathro	p 48 Acre P	roperty				
PO Box 332		Project Numb	er: 137-00)2				Reported	:
Roseville CA, 95661		Project Manag	ger: Joe Br	usca				04/12/18 15	:44
		S	SP1-20						
		T1811	53-20 (So	oil)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	ies, Inc.					
Polychlorinated Biphenyls by EPA N	Iethod 8082								
PCB-1016	ND	10	ug/kg	1	8040520	04/05/18	04/07/18	EPA 8082	
PCB-1221	ND	10	"	"	"	"	"	"	
PCB-1232	ND	10	"	"	"	"	"	"	
PCB-1242	ND	10	"	"	"	"	"	"	
PCB-1248	ND	10	"	"	"	"	"	"	
PCB-1254	50	10	"	"	"	"	"	"	
PCB-1260	ND	10	"	"	"	"	"	"	
Surrogate: Tetrachloro-meta-xylene		134 %	35-	140	"	"	"	"	
Surrogate: Decachlorobiphenyl		131 %	35-	140	"	"	"	"	
Semivolatile Organic Compounds by	FPA Method 8270C								
Carbazole	ND	300	ug/kg	1	8040523	04/05/18	04/10/18	EPA 8270C	
Phenol	ND	1000	"	"	"	"	"	"	
Aniline	ND	300	"	"				"	
2-Chlorophenol	ND	1000	"	"				"	
1 4-Dichlorobenzene	ND	300	"	"	"				
N-Nitrosodi-n-propylamine	ND	300	"	"				"	
1.2.4-Trichlorobenzene	ND	300	"	"	"	"			
4-Chloro-3-methylphenol	ND	1000	"	"				"	
1-Methylnaphthalene	ND	300	"	"	"	"			
2-Methylnaphthalene	ND	300	"	"	"	"			
Acenaphthene	ND	300	"	"	"	"		"	
4-Nitrophenol	ND	1000	"	"	"	"		"	
2 4-Dinitrotoluene	ND	300	"	"	"	"		"	
Pentachlorophenol	ND	1000	"	"	"	"		"	
Pvrene	420	300	"	"	"	"	"	"	
Acenaphthylene	ND	300	"	"	"	"		"	
Anthracene	ND	300	"	"	"	"	"	"	
Benzo (a) anthracene	ND	300	"	"	"	"	"		
Benzo (b) fluoranthene	ND	300	"	"	"	"	"		
Benzo (k) fluoranthene	ND	300	"	"	"	"	"		
Benzo (g,h,i) perylene	ND	1000	"	"	"	"	"		
(C, // 1)									

SunStar Laboratories, Inc.

Brusca Associates Inc.		Proje	ect: Lathro	p 48 Acre Pi	roperty				
PO Box 332		Project Numb	er: 137-00	02				Reported	
Roseville CA, 95661		Project Manag	ger: Joe Br	usca				04/12/18 15	:44
		S	SP1-20						
		T1811	53-20 (Se	oil)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	ies, Inc.					
Semivolatile Organic Compounds by l	EPA Method 8270C								
Benzo (a) pyrene	ND	300	ug/kg	1	8040523	04/05/18	04/10/18	EPA 8270C	
Benzyl alcohol	ND	300	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	300	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	300	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	300	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	300	"	"	"	"	"	"	
4-Bromophenyl phenyl ether	ND	300	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	300	"	"	"	"	"	"	
4-Chloroaniline	ND	300	"	"	"	"	"	"	
2-Chloronaphthalene	ND	300	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether	ND	300	"	"	"	"	"	"	
Chrysene	ND	300	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	300	"	"	"	"	"	"	
Dibenzofuran	ND	300	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	300	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	300	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	300	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	1000	"	"	"	"	"	"	
Diethyl phthalate	ND	300	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	1000	"	"	"	"	"	"	
Dimethyl phthalate	ND	300	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol	ND	1000	"	"	"	"	"	"	
2,4-Dinitrophenol	ND	1000	"	"	"	"	"	"	
2,6-Dinitrotoluene	ND	1000	"	"	"	"	"	"	
Di-n-octyl phthalate	ND	300	"	"	"	"	"	"	
Fluoranthene	340	300	"	"	"	"	"	"	
Fluorene	ND	300	"	"	"	"	"	"	
Hexachlorobenzene	ND	1500	"	"	"	"	"	"	
Hexachlorobutadiene	ND	300	"	"	"	"	"	"	
Hexachlorocyclopentadiene	ND	1000	"	"	"	"	"	"	
Hexachloroethane	ND	300	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene	ND	300	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Brusca Associates Inc. PO Box 332 Roseville CA, 95661		Proje Project Numb Project Manag	ect: Lathro per: 137-00 ger: Joe Bro	p 48 Acre Pi 02 usca	roperty			Reported 04/12/18 15	: :44
		S T1811	SP1-20 53-20 (So	il)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Semivolatile Organic Compounds by EPA	Method 8270C								
Isophorone	ND	300	ug/kg	1	8040523	04/05/18	04/10/18	EPA 8270C	
2-Methylphenol	ND	1000	"	"	"	"	"	"	
4-Methylphenol	ND	1000		"	"	"	"	"	
Naphthalene	ND	300		"	"	"	"	"	
2-Nitroaniline	ND	300		"	"	"	"	"	
3-Nitroaniline	ND	300		"	"	"	"	"	
4-Nitroaniline	ND	300		"	"	"	"	"	
Nitrobenzene	ND	1000			"	"	"	"	
2-Nitrophenol	ND	1000			"	"	"	"	
N-Nitrosodimethylamine	ND	300			"	"	"	"	
N-Nitrosodiphenylamine	ND	300		"	"	"	"	"	
2,3,5,6-Tetrachlorophenol	ND	300		"	"	"	"	"	
2,3,4,6-Tetrachlorophenol	ND	300		"	"	"	"	"	
Phenanthrene	ND	300		"	"	"	"	"	
Azobenzene	ND	300	"	"	"	"	"	"	
2,4,5-Trichlorophenol	ND	1000	"	"	"	"	"	"	
Pyridine	ND	300	"	"	"	"	"	"	
2,4,6-Trichlorophenol	ND	1000	"	"	"	"	"	"	
Surrogate: 2-Fluorophenol		52.3 %	15-	121	"	"	"	"	
Surrogate: Phenol-d6		57.0 %	24-	113	"	"	"	"	
Surrogate: Nitrobenzene-d5		72.1 %	21.3	-119	"	"	"	"	
Surrogate: 2-Fluorobiphenyl		69.4 %	32.4-	-102	"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		73.2 %	18.1-	-105	"	"	"	"	
Surrogate: Terphenyl-dl4		117 %	29.1-	-130	"	"	"	"	

SunStar Laboratories, Inc.

Brusca Associates Inc.	Project: Lathrop 48 Acre Property	
PO Box 332	Project Number: 137-002	Reported:
Roseville CA, 95661	Project Manager: Joe Brusca	04/12/18 15:44

Extractable Petroleum Hydrocarbons by 8015B with Silica Gel Cleanup - Quality Control

SunStar Laboratories, Inc.

		р. <i>(</i> ;		G 1	0		0/DEC		DDD	
		Reporting		Spike	Source		%REC		KPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 8040518 - EPA 3550B GC										
Blank (8040518-BLK1)				Prepared: (04/05/18 A	nalyzed: 04	/09/18			
C6-C12 (GRO)	ND	10	mg/kg							
C13-C28 (DRO)	ND	10	"							
C29-C40 (MORO)	ND	10	"							
Surrogate: p-Terphenyl	77.1		"	100		77.1	65-135			
LCS (8040518-BS1)				Prepared: (04/05/18 A	nalyzed: 04	/09/18			
C13-C28 (DRO)	500	10	mg/kg	500		101	75-125			
Surrogate: p-Terphenyl	81.2		"	100		81.2	65-135			
Matrix Spike (8040518-MS1)	Sou	rce: T181153-	01	Prepared: (04/05/18 A	nalyzed: 04	/09/18			
C13-C28 (DRO)	580	10	mg/kg	500	47	107	75-125			
Surrogate: p-Terphenyl	84.4		"	100		84.4	65-135			
Matrix Spike Dup (8040518-MSD1)	Sou	rce: T181153-	01	Prepared: (04/05/18 A	nalyzed: 04	/09/18			
C13-C28 (DRO)	520	10	mg/kg	495	47	95.8	75-125	10.8	20	
Surrogate: p-Terphenyl	74.9		"	99.0		75.6	65-135			

SunStar Laboratories, Inc.

Mike Jaroudi, Project Manager

SunStar Laboratories, Inc. Providing Quality Analytical Services Nationwide

25712 Commercentre Drive Lake Forest, California 92630 949.297.5020 Phone 949.297.5027 Fax

Brusca Associates Inc.	Project: Lathrop 48 Acre Property	
PO Box 332	Project Number: 137-002	Reported:
Roseville CA, 95661	Project Manager: Joe Brusca	04/12/18 15:44

Metals by EPA 6010B - Quality Control

SunStar Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch 8040603 - EPA 3050B

Blank (8040603-BI K1)				Prenared &	Analyzed	04/06/18		
	ND	3.0	ma/ka	T Tepareu a	e Anaryzeu.	04/00/10		
Silver	ND	2.0	mg/kg					
Arsonia	ND	2.0						
Dorium	ND	1.0						
Banum	ND	1.0						
Beryllium	ND	1.0						
Cadmium	ND	2.0						
Chromium	ND	2.0						
Cobalt	ND	2.0	"					
Copper	ND	1.0	"					
Lead	ND	3.0	"					
Molybdenum	ND	5.0	"					
Nickel	ND	2.0	"					
Selenium	ND	5.0	"					
Thallium	ND	2.0	"					
Vanadium	ND	5.0	"					
Zinc	1.60	1.0	"					QB-01
LCS (8040603-BS1)				Prepared &	Analyzed:	04/06/18		
Arsenic	105	5.0	mg/kg	100		105	75-125	
Barium	105	1.0	"	100		105	75-125	
Cadmium	104	2.0	"	100		104	75-125	
Chromium	105	2.0	"	100		105	75-125	
Lead	109	3.0	"	100		109	75-125	
Matrix Spike (8040603-MS1)	Source	: T181153-	01	Prepared &	Analyzed:	04/06/18		
Arsenic	96.5	5.0	mg/kg	100	2.35	94.2	75-125	
Barium	155	1.0	"	100	53.7	101	75-125	
Cadmium	95.9	2.0	"	100	0.220	95.7	75-125	
Chromium	103	2.0	"	100	5.36	97.6	75-125	
Lead	117	3.0	"	100	21.6	95.8	75-125	
		2.0						

SunStar Laboratories, Inc.

SunStar Laboratories, Inc. Providing Quality Analytical Services Nationwide

25712 Commercentre Drive Lake Forest, California 92630 949.297.5020 Phone 949.297.5027 Fax

Brusca Associates Inc.	Project: Lathrop 48 Acre Property	
PO Box 332	Project Number: 137-002	Reported:
Roseville CA, 95661	Project Manager: Joe Brusca	04/12/18 15:44

Metals by EPA 6010B - Quality Control

SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 8040603 - EPA 3050B										
Matrix Spike Dup (8040603-MSD1)	Source	Source: T181153-01			Analyzed:	04/06/18				
Arsenic	96.2	5.0	mg/kg	100	2.35	93.9	75-125	0.314	20	
Barium	158	1.0	"	100	53.7	104	75-125	1.77	20	
Cadmium	92.7	2.0	"	100	0.220	92.5	75-125	3.42	20	

...

100

100

5.36

21.6

94.6

96.2

75-125

75-125

3.02

0.371

20

20

2.0

3.0

99.9

118

SunStar Laboratories, Inc.

Chromium

Lead

Brusca Associates Inc.	Project: Lathrop 48 Acre Property	
PO Box 332	Project Number: 137-002	Reported:
Roseville CA, 95661	Project Manager: Joe Brusca	04/12/18 15:44

Cold Vapor Extraction EPA 7470/7471 - Quality Control

SunStar Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 8040605 - EPA 7471A Soil										
Blank (8040605-BLK1)				Prepared &	Analyzed:	04/06/18				
Mercury	ND	0.10	mg/kg							
LCS (8040605-BS1)				Prepared &	Analyzed:	04/06/18				
Mercury	0.433	0.10	mg/kg	0.417		104	80-120			
Matrix Spike (8040605-MS1)	Source: T181153-01			Prepared & Analyzed: 04/06/18						
Mercury	0.446	0.10	mg/kg	0.417	ND	107	75-125			
Matrix Spike Dup (8040605-MSD1)	Source: T181153-01			Prepared & Analyzed: 04/06/18						
Mercury	0.447	0.10	mg/kg	0.417	ND	107	75-125	0.150	20	

SunStar Laboratories, Inc.

Brusca Associates Inc.	Project: Lathrop 48 Acre Property	
PO Box 332	Project Number: 137-002	Reported:
Roseville CA, 95661	Project Manager: Joe Brusca	04/12/18 15:44

Polychlorinated Biphenyls by EPA Method 8082 - Quality Control

SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 8040520 - EPA 3550 ECD/GCMS										
Blank (8040520-BLK1)				Prepared:	04/05/18 A	nalyzed: 04	/06/18			
PCB-1016	ND	10	ug/kg	-		-				
PCB-1221	ND	10	"							
PCB-1232	ND	10	"							
PCB-1242	ND	10	"							
PCB-1248	ND	10	"							
PCB-1254	ND	10	"							
PCB-1260	ND	10	"							
Surrogate: Tetrachloro-meta-xylene	13.4		"	10.0		134	35-140			
Surrogate: Decachlorobiphenyl	14.4		"	10.0		144	35-140			S-GC
LCS (8040520-BS1)				Prepared:	04/05/18 A	nalyzed: 04	/06/18			
PCB-1016	63.2	10	ug/kg	100		63.2	40-130			
PCB-1260	63.7	10	"	100		63.7	40-130			
Surrogate: Tetrachloro-meta-xylene	13.0		"	10.0		130	35-140			
Surrogate: Decachlorobiphenyl	14.6		"	10.0		146	35-140			S-GC
Matrix Spike (8040520-MS1)	Sou	ırce: T181153-	01	Prepared:	04/05/18 A	nalyzed: 04	/06/18			
PCB-1016	62.7	10	ug/kg	98.0	ND	64.0	40-130			
PCB-1260	56.1	10	"	98.0	ND	57.2	40-130			
Surrogate: Tetrachloro-meta-xylene	11.7		"	9.80		120	35-140			
Surrogate: Decachlorobiphenyl	12.9		"	9.80		132	35-140			
Matrix Spike Dup (8040520-MSD1)	Sou	ırce: T181153-	01	Prepared:	04/05/18 A	nalyzed: 04	/06/18			
PCB-1016	62.6	10	ug/kg	98.0	ND	63.9	40-130	0.156	30	
PCB-1260	52.3	10	"	98.0	ND	53.3	40-130	7.06	30	
Surrogate: Tetrachloro-meta-xylene	10.4		"	9.80		106	35-140			
Surrogate: Decachlorobiphenvl	11.7		"	9.80		120	35-140			

SunStar Laboratories, Inc.

Brusca Associates Inc.	Project: Lathrop 48 Acre Property	
PO Box 332	Project Number: 137-002	Reported:
Roseville CA, 95661	Project Manager: Joe Brusca	04/12/18 15:44

Semivolatile Organic Compounds by EPA Method 8270C - Quality Control

SunStar Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch 8040523 - EPA 3550 ECD/GCMS

Blank (8040523-BLK1)				Prepared: 04/05/18 Analyzed: 04/09/18
Carbazole	ND	300	ug/kg	
Phenol	ND	1000	"	
Aniline	ND	300	"	
2-Chlorophenol	ND	1000	"	
1,4-Dichlorobenzene	ND	300	"	
N-Nitrosodi-n-propylamine	ND	300	"	
1,2,4-Trichlorobenzene	ND	300	"	
4-Chloro-3-methylphenol	ND	1000	"	
1-Methylnaphthalene	ND	300	"	
2-Methylnaphthalene	ND	300	"	
Acenaphthene	ND	300	"	
4-Nitrophenol	ND	1000	"	
2,4-Dinitrotoluene	ND	300	"	
Pentachlorophenol	ND	1000	"	
Pyrene	ND	300	"	
Acenaphthylene	ND	300	"	
Anthracene	ND	300	"	
Benzo (a) anthracene	ND	300	"	
Benzo (b) fluoranthene	ND	300	"	
Benzo (k) fluoranthene	ND	300	"	
Benzo (g,h,i) perylene	ND	1000	"	
Benzo (a) pyrene	ND	300	"	
Benzyl alcohol	ND	300	"	
Bis(2-chloroethoxy)methane	ND	300	"	
Bis(2-chloroethyl)ether	ND	300	"	
Bis(2-chloroisopropyl)ether	ND	300	"	
Bis(2-ethylhexyl)phthalate	ND	300	"	
4-Bromophenyl phenyl ether	ND	300	"	
Butyl benzyl phthalate	ND	300	"	
4-Chloroaniline	ND	300	"	
2-Chloronaphthalene	ND	300	"	
4-Chlorophenyl phenyl ether	ND	300	"	
Chrysene	ND	300	"	
Dibenz (a,h) anthracene	ND	300	"	
Dibenzofuran	ND	300	"	
Di-n-butyl phthalate	ND	300	"	

SunStar Laboratories, Inc.

Brusca Associates Inc.	Project: Lathrop 48 Acre Property	
PO Box 332	Project Number: 137-002	Reported:
Roseville CA, 95661	Project Manager: Joe Brusca	04/12/18 15:44

Semivolatile Organic Compounds by EPA Method 8270C - Quality Control

SunStar Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch 8040523 - EPA 3550 ECD/GCMS

Blank (8040523-BLK1)				Prepared: 04/05/18 Analyzed: 04/09/18
1,2-Dichlorobenzene	ND	300	ug/kg	
1,3-Dichlorobenzene	ND	300		
2,4-Dichlorophenol	ND	1000		
Diethyl phthalate	ND	300		
2,4-Dimethylphenol	ND	1000		
Dimethyl phthalate	ND	300		
4,6-Dinitro-2-methylphenol	ND	1000		
2,4-Dinitrophenol	ND	1000		
2,6-Dinitrotoluene	ND	1000		
Di-n-octyl phthalate	ND	300		
Fluoranthene	ND	300	"	
Fluorene	ND	300	"	
Hexachlorobenzene	ND	1500	"	
Hexachlorobutadiene	ND	300	"	
Hexachlorocyclopentadiene	ND	1000		
Hexachloroethane	ND	300		
Indeno (1,2,3-cd) pyrene	ND	300		
Isophorone	ND	300	"	
2-Methylphenol	ND	1000	"	
4-Methylphenol	ND	1000	"	
Naphthalene	ND	300	"	
2-Nitroaniline	ND	300		
3-Nitroaniline	ND	300		
4-Nitroaniline	ND	300		
Nitrobenzene	ND	1000	"	
2-Nitrophenol	ND	1000	"	
N-Nitrosodimethylamine	ND	300		
N-Nitrosodiphenylamine	ND	300		
2,3,5,6-Tetrachlorophenol	ND	300	"	
2,3,4,6-Tetrachlorophenol	ND	300		
Phenanthrene	ND	300		
Azobenzene	ND	300		
Pyridine	ND	300	"	
2,4,5-Trichlorophenol	ND	1000	"	
2,4,6-Trichlorophenol	ND	1000	"	

SunStar Laboratories, Inc.

Brusca Associates Inc.	Project: Lathrop 48 Acre Property	
PO Box 332	Project Number: 137-002	Reported:
Roseville CA, 95661	Project Manager: Joe Brusca	04/12/18 15:44

Semivolatile Organic Compounds by EPA Method 8270C - Quality Control

SunStar Laboratories, Inc.

	D k	Reporting	T T '	Spike	Source	N/DEC	%REC	DDD	RPD	NT (
Апаную	Kesult	Limit	Units	Level	Kesult	%REC	Limits	крр	Limit	Notes
Batch 8040523 - EPA 3550 ECD/GCMS										
Blank (8040523-BLK1)				Prepared: (04/05/18 A	nalyzed: 04	/09/18			
Surrogate: 2-Fluorophenol	1800		ug/kg	3320		54.2	15-121			
Surrogate: Phenol-d6	1820		"	3320		54.8	24-113			
Surrogate: Nitrobenzene-d5	2540		"	3320		76.3	21.3-119			
Surrogate: 2-Fluorobiphenyl	2260		"	3320		67.9	32.4-102			
Surrogate: 2,4,6-Tribromophenol	2120		"	3320		63.7	18.1-105			
Surrogate: Terphenyl-dl4	4060		"	3320		122	29.1-130			
LCS (8040523-BS1)				Prepared: (04/05/18 A	nalyzed: 04	/09/18			
Phenol	1960	1000	ug/kg	3320		59.0	34-114			
2-Chlorophenol	1990	1000	"	3320		59.8	34-114			
1,4-Dichlorobenzene	2100	300	"	3320		63.1	34-114			
N-Nitrosodi-n-propylamine	2580	300	"	3320		77.6	30-110			
1,2,4-Trichlorobenzene	2300	300	"	3320		69.2	39-119			
4-Chloro-3-methylphenol	2780	1000	"	3320		83.7	50-130			
Acenaphthene	2510	300	"	3320		75.7	34-114			
Pentachlorophenol	1730	1000	"	3320		52.1	50-130			
Pyrene	2550	300		3320		76.8	30-110			
Surrogate: 2-Fluorophenol	1760		"	3320		53.1	15-121			
Surrogate: Phenol-d6	1780		"	3320		53.7	24-113			
Surrogate: Nitrobenzene-d5	2520		"	3320		75.9	21.3-119			
Surrogate: 2-Fluorobiphenyl	2250		"	3320		67.7	32.4-102			
Surrogate: 2,4,6-Tribromophenol	2360		"	3320		71.2	18.1-105			
Surrogate: Terphenyl-dl4	4160		"	3320		125	29.1-130			
Matrix Spike (8040523-MS1)	Sou	rce: T181153-(01	Prepared: (04/05/18 A	nalyzed: 04	/09/18			
Phenol	2040	1000	ug/kg	3300	ND	61.8	34-114			
2-Chlorophenol	1920	1000		3300	ND	58.2	34-114			
1,4-Dichlorobenzene	1940	300		3300	ND	58.8	34-114			
N-Nitrosodi-n-propylamine	2240	300	"	3300	ND	68.0	30-110			
1,2,4-Trichlorobenzene	2310	300	"	3300	ND	70.1	39-119			
4-Chloro-3-methylphenol	2920	1000	"	3300	ND	88.5	50-130			
Acenaphthene	2580	300	"	3300	98.0	75.1	34-114			
Pentachlorophenol	1860	1000	"	3300	ND	56.5	50-130			
Pyrene	5710	300	"	3300	2380	101	30-110			
Surrogate: 2-Fluorophenol	1670		"	3300		50.7	15-121			
Surrogate: Phenol-d6	1910		"	3300		58.0	24-113			

SunStar Laboratories, Inc.

Brusca Associates Inc.	Project: Lathrop 48 Acre Property	
PO Box 332	Project Number: 137-002	Reported:
Roseville CA, 95661	Project Manager: Joe Brusca	04/12/18 15:44

Semivolatile Organic Compounds by EPA Method 8270C - Quality Control

SunStar Laboratories, Inc.

Applyto	Pogult	Reporting	Unite	Spike	Source	% DEC	%REC	רום	RPD Limit	Notos
Anaryte	Kesuit	Liiiit	Units	Level	Kesuit	70KEU	Linits	KPD	Liiiit	notes
Batch 8040523 - EPA 3550 ECD/GCMS										
Matrix Spike (8040523-MS1)	Sou	rce: T181153-	01	Prepared: (04/05/18 A	nalyzed: 04	4/09/18			
Surrogate: Nitrobenzene-d5	2430		ug/kg	3300		73.6	21.3-119			
Surrogate: 2-Fluorobiphenyl	2210		"	3300		66.9	32.4-102			
Surrogate: 2,4,6-Tribromophenol	2470		"	3300		74.9	18.1-105			
Surrogate: Terphenyl-dl4	3700		"	3300		112	29.1-130			
Matrix Spike Dup (8040523-MSD1)	Sou	rce: T181153-	01	Prepared: (04/05/18 A	nalyzed: 04	4/09/18			
Phenol	1920	1000	ug/kg	3290	ND	58.3	34-114	6.11	42	
2-Chlorophenol	1790	1000	"	3290	ND	54.5	34-114	6.95	40	
1,4-Dichlorobenzene	1850	300	"	3290	ND	56.1	34-114	4.99	28	
N-Nitrosodi-n-propylamine	2130	300	"	3290	ND	64.8	30-110	5.10	38	
1,2,4-Trichlorobenzene	2150	300	"	3290	ND	65.5	39-119	7.17	28	
4-Chloro-3-methylphenol	3050	1000	"	3290	ND	92.8	50-130	4.37	42	
Acenaphthene	2450	300	"	3290	98.0	71.5	34-114	4.93	31	
Pentachlorophenol	1820	1000	"	3290	ND	55.3	50-130	2.53	50	
Pyrene	4600	300	"	3290	2380	67.6	30-110	21.5	31	
Surrogate: 2-Fluorophenol	1600		"	3290		48.7	15-121			
Surrogate: Phenol-d6	1680		"	3290		51.1	24-113			
Surrogate: Nitrobenzene-d5	2250		"	3290		68.4	21.3-119			
Surrogate: 2-Fluorobiphenyl	2070		"	3290		62.9	32.4-102			
Surrogate: 2,4,6-Tribromophenol	2380		"	3290		72.3	18.1-105			
Surrogate: Terphenyl-dl4	3650		"	3290		111	29.1-130			

SunStar Laboratories, Inc.

Brusca Associates Inc.	Project: Lathrop 48 Acre Property	
PO Box 332	Project Number: 137-002	Reported:
Roseville CA, 95661	Project Manager: Joe Brusca	04/12/18 15:44

Notes and Definitions

- S-GC Surrogate recovery outside of established control limits. The data was accepted based on valid recovery of the remaining surrogate(s).
- QB-01 The method blank contains analyte at a concentration above the MRL; however, concentration is less than 10% of the sample result, which is negligible according to method criteria.
- DET Analyte DETECTED
- ND Analyte NOT DETECTED at or above the reporting limit
- NR Not Reported
- dry Sample results reported on a dry weight basis
- RPD Relative Percent Difference

SunStar Laboratories, Inc.

Mike Jaroudi, Project Manager

Sample ID Onle Time Solution Sample ID Sample Time Solution Solution Sample ID Sample Time Solution Solution Sample ID Sample Time Sample Solution Sample ID Sample Time Sample Solution Sample ID Sample Time Sample ID Solution Sample ID Sample ID Sample ID Sample ID Sample ID Sample ID Sample ID Sample ID Sample ID Sample ID Sample ID Sample ID Sample ID Sample ID Sample ID Sample ID Sample ID Sample ID Sample ID Sample ID Sample ID Sample ID Sample ID Sample ID Sample ID Sample ID Sample ID Sample ID Sample ID Sample ID Sample ID Sample ID Sample ID Sample ID Sample ID Sample ID Sample ID Sample ID Sample ID Samp	2 Commercentre Drive, Lake Forest, CA 92630 297-5020 2000 200	ex ourun kunnere interentite Drive, Lake Forest, CA 9850 287-5020 288-5010 287-5020		Time Turn around tin	Date /	y: (signature)	Received b	Date / Time	red by: (signature)
Sample ID Sounde Time Sounde Time Sample ID Sample ID Sounde Time Sounde Sounde The Sample ID Sample ID Sounde Time Sounde Sounde The Sample ID Sample ID Sounde Time Sounde Sounde Sounde The Sample ID Sounde Time Sounde Sounde Sounde Sounde Sounde The Sample ID Sounde Time Sounde Sou	Trie Commercial Drive, Lake Forest, CA 92630 BRUS A Asse current of the Lake Forest, CA 92630 BRUS A Asse current of the Lake Forest, CA 92630 BRUS A Asse current of the Lake Forest, CA 92630 BRUS A Asse current of the Lake Forest, CA 92630 BRUS A Asse current of the Lake Forest, CA 92630 BRUS A Asse current of the Lake Forest, CA 92630 BRUS A Asse current of the Lake Forest, CA 92630 BRUS A Asse current of the Lake Forest, CA 92630 BRUS A Asse current of the Lake Forest, CA 92630 BRUS A Asse current of the Lake Forest, CA 92630 BRUS A Asse current of the Lake Forest, CA 92630 BRUS A Asse current of the Lake Forest, CA 92630 BRUS A Asse current of the Lake Forest, CA 92630 BRUS A Asse current of the Lake Forest, CA 92630 BRUS A Asse current of the Lake Forest, CA 92630 BRUS A Asse current of the Lake Forest, CA 92630 BRUS A Asse current of the Lake Forest, CA 92630 BRUS A Asse current of the Lake Forest, CA 92630 BRUS A Asse current of the Lake Forest, CA 92630 BRUS A Part Asse current of the Lake Forest, CA 92630 BRUS A Part Asse current of the Lake Forest	BRUE Commercentle Drive, Lake Forest, CA 92630 Date: 14/1/8 Page: 01 BRUE A Ass: Carpet Try Fac: Child BTT - 14/1/8 Page: 01 BRUE A Ass: Carpet Try Fac: Child BTT - 14/1/8 Page: 01 Browne Brue Try Fac: Child BTT - 14/1/8 Fac: Child BTT - 14/1/8 Page: 01 Browne Brue Try Fac: Fac: Child BTT - 14/1/8 Fac: Child BTT - 14/1/8 Page: 01 Browne Brue Try Fac: Fac: Fac: Sample II Fac: Fa	condition/cold 4-1	955 Received good	4-5-18		λ	955	650 4-5-1
Sample ID Date Time Sample Container Sample ID Sample ID Sample Container Sample Container Sample ID Sample ID Sample ID Sample Container Sample ID Sample ID Sample ID Sample Container Sample ID Sample ID Sample Container Sample Container The ID ID ID Sample ID Sample Container Sample ID ID ID ID Sample ID Sample ID ID ID ID Sample ID Sample ID ID ID ID Sample ID Sample ID ID ID ID ID Sample ID Sample ID ID ID ID ID Sample ID Sample ID Sample ID ID ID ID ID Sample ID Sample ID Sample ID ID ID ID Sample ID Sample ID Sample ID Sample ID ID ID ID ID <td< th=""><th>BRUS A Association Nuovemental Prive Commental Preservative (g-297-5020) Truc Page: 1 (1) Call Page: 1 (2) Call BRUS A Association Nuovemental (g-297-5020) Truc First Commental Preservative (g-1) True Call Call</th><th>answe Quarry Avernal Survey Sarry Commercisitie Drive, Lake Forest, CA 92630 BRUS A Ass or contrast True True answe Quarry Avernal Survey Fax: Club 677 - 147 D answe Quarry Avernal Survey Fax: Club 677 - 147 D answe Quarry Avernal Survey Fax: Club 677 - 147 D answe Quarry Avernal Survey Fax: Club 677 - 147 D answe Quarry Avernal Survey Fax: Club 677 - 147 D answe Quarry Avernal Survey Fax: Club 677 - 147 D answe Quarry Avernal Survey Fax: Club 677 - 147 D answe Quarry Avernal Survey Fax: Club 677 - 147 D answe Quarry Avernal Survey Fax: Club 677 - 147 D answe Quarry Avernal Survey Fax: Club 677 - 147 D answe Quarry Avernal Survey Fax: Club 677 - 147 D answe Quarry Avernal Survey Fax: Club 677 - 147 D answe Quarry Avernal Survey Fax: Club 77 - 147 D answe Quarry Avernal Survey Fax: Club 77 - 177 D answe Quarry Avernal Survey Fax: Club 77 - 177 D answe Quarry Avernal Survey Fax: Club 77 - 177 D answe Quarry Avernal Survey Fax: Club 77 - 177 D answe Quarry Avernal Survey Fax: Club 77 - 177 D answe Quarry Avernal Survey Fax: Club 77 - 177 D answe Quarry Avernal Survey Fax: Club 77 - 177 D answe Quarry Avernal Surv</th><th>INTACT? UNINA OFI METALS</th><th>Time Seals</th><th>Date /</th><th>Y: (signature)</th><th>Received b</th><th>Date / Time</th><th>uished by: (signature)</th></td<>	BRUS A Association Nuovemental Prive Commental Preservative (g-297-5020) Truc Page: 1 (1) Call Page: 1 (2) Call BRUS A Association Nuovemental (g-297-5020) Truc First Commental Preservative (g-1) True Call	answe Quarry Avernal Survey Sarry Commercisitie Drive, Lake Forest, CA 92630 BRUS A Ass or contrast True True answe Quarry Avernal Survey Fax: Club 677 - 147 D answe Quarry Avernal Survey Fax: Club 677 - 147 D answe Quarry Avernal Survey Fax: Club 677 - 147 D answe Quarry Avernal Survey Fax: Club 677 - 147 D answe Quarry Avernal Survey Fax: Club 677 - 147 D answe Quarry Avernal Survey Fax: Club 677 - 147 D answe Quarry Avernal Survey Fax: Club 677 - 147 D answe Quarry Avernal Survey Fax: Club 677 - 147 D answe Quarry Avernal Survey Fax: Club 677 - 147 D answe Quarry Avernal Survey Fax: Club 677 - 147 D answe Quarry Avernal Survey Fax: Club 677 - 147 D answe Quarry Avernal Survey Fax: Club 677 - 147 D answe Quarry Avernal Survey Fax: Club 77 - 147 D answe Quarry Avernal Survey Fax: Club 77 - 177 D answe Quarry Avernal Survey Fax: Club 77 - 177 D answe Quarry Avernal Survey Fax: Club 77 - 177 D answe Quarry Avernal Survey Fax: Club 77 - 177 D answe Quarry Avernal Survey Fax: Club 77 - 177 D answe Quarry Avernal Survey Fax: Club 77 - 177 D answe Quarry Avernal Survey Fax: Club 77 - 177 D answe Quarry Avernal Surv	INTACT? UNINA OFI METALS	Time Seals	Date /	Y: (signature)	Received b	Date / Time	uished by: (signature)
Image: Sample ID Sample ID Image: Sample ID Sample	GRUS A Marriel knower Brits Origin Austriel Stress Capter Trive Date: 4 4/18 Page: 1 C BRUS A ASS - CANTS TAL Fax. (1/4) 677 - (471) Date: 4 4/18 Page: 1 C e(1/6) 677 - (474) Fax. (1/4) 677 - (471) Date: 4 4/18 Page: 1 C e(1/6) 677 - (474) Fax. (1/4) 677 - (471) Date: 4 4/18 Page: 1 C e(1/6) 677 - (474) Sample ID Date: 5 (1/2) 7 Date: 5 (1/2) 7 Date: 5 (1/2) 7 e(1/6) 677 - (471) Batch # T18/1/53 EDF # Clinith Project # athmager: 1/6 - 1/6 - 1/2 /	annual of the sector Numerical Service Comments Protect, CA 92630 Date A (4/13) Page 1 2 Sp12 Commercentite Drive, Lake Forest, CA 92630 Bale A (4/13) Page 0 2 Sp12 Commercentite Drive, Lake Forest, CA 92630 Bale A (4/13) Page 0 2 Sp12 Commercentite Drive, Lake Forest, CA 92630 Fax. (4/14) Page 0 2 alg(16) Lot 1 Fax. (4/14) Page Container Container Container Container Container Container Container EDF # TIS/US EDF # EDF # TIS/US EDF # EDF # TIS/US EDF #	# of containers Notes	Time Total 17:37 Chain of Custod	4/4/19	y: (signatore)	Received	bate / Time 4/19:14:38	wished by: (signature)
Image: Sample ID Sample ID Image: Sample ID Sample	Sample ID Sampl	animole Quarn Averrei, Sannole ID	1 12	I XXI		X	1	12:47	51-12
$\frac{1}{1+1} = \frac{1}{1+1} = \frac{1}$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c} entree Quark Numeric Server Numeric Serve$	Ĩ	XX	X		1	12:45	1-14
Image: Stample Sample Image: Stample Image: Stample Image: Stample Image: Stample <td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td> <td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td> <td>13</td> <td>XX</td> <td></td> <td>1 2</td> <td></td> <td>12:42</td> <td>1-13</td>	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	13	XX		1 2		12:42	1-13
Image: Strategy of the strategy	Barriel D Sample D Fax: (III) BT - (AT) Date A + 4 / 1/3 Page: 1 2 Sample D Fax: (III) BT - (AT) Fax: (III) BT - (AT) Date A + 4 / 1/3 Page: 1 2 Sample D Fax: (III) BT - (AT) Fax: (III) BT - (AT) Date A + 4 / 1/3 Page: 1 Cilient Project Name: LATHR of A - A - Page: 1 2 edita A - T Fax: (III) BT - (AT) Sample D Sample D Sample D Date A + 4 / 1/3 Page: 1 Cilient Project #: 13T - 002 I - 1 Sample D	$ \begin{array}{c} \text{Bernee Quarr Avanue Surveys} \\ \text{Berneed Drive, Lake Forest, CA 92630} \\ \text{Beg. 72. Commercentre Drive, Lake Forest, CA 92630} \\ \text{Beg. 73. Commercentre Drive, Lake Forest, CA 92630} \\ \text{Beg. 73. Carrier Trive Fax: (III.b 171 - IAT) Collector: \begin{bmatrix} \text{Server} - 1 & \text{Server} - 1$	12	XX	X X			12:37	1-12 -
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Nonvene Numment Summer Commercentife Drive, Lake Forest, CA 92630 Date: 1/1/1 Date: 1/1/1 Date: 1/1/1 Date: 1/1/1/1 Date: 1/1/1/1/1 Date: 1/1/1/1/1 Date: 1/1/1/1/1 Date: 1/1/1/1/1 Date: 1/1/1/1/1/1 Date: 1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/	11	XX				12:35	-11 -
Sample Sample Sample Sample <td< td=""><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>The served quark Australe Servers Neurones Serverse Quark Australe Servers Neurones Serverse Quark Australe Forest, CA 92630 Serverse Cartes Thr. e. $(1) (271 - 1470)$ Fax: $(1) (277 - 1471)$ e. $(1) (277 - 1470)$ Fax: $(1) (277 - 1471)$ e. $(1) (277 - 1470)$ Fax: $(1) (277 - 1471)$ e. $(1) (277 - 1470)$ Fax: $(1) (277 - 1471)$ e. $(1) (277 - 1470)$ Fax: $(1) (277 - 1471)$ e. $(1) (277 - 1470)$ Fax: $(1) (277 - 1471)$ e. $(1) (277 - 1470)$ Fax: $(1) (277 - 1471)$ e. $(1) (277 - 1471)$ Fax: $(1) (277 - 1471)$ e. $(1) (277 - 1471)$ Fax: $(1) (277 - 1471)$ e. $(1) (277 - 1471)$ Fax: $(1) (277 - 1471)$ e. $(1) (277 - 1471)$ Fax: $(1) (277 - 1471)$ E. $(1) (277 -$</td><td>2</td><td>XXIII</td><td></td><td></td><td></td><td>12:31</td><td>-10 -</td></td<>	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	The served quark Australe Servers Neurones Serverse Quark Australe Servers Neurones Serverse Quark Australe Forest, CA 92630 Serverse Cartes Thr. e. $(1) (271 - 1470)$ Fax: $(1) (277 - 1471)$ e. $(1) (277 - 1470)$ Fax: $(1) (277 - 1471)$ e. $(1) (277 - 1470)$ Fax: $(1) (277 - 1471)$ e. $(1) (277 - 1470)$ Fax: $(1) (277 - 1471)$ e. $(1) (277 - 1470)$ Fax: $(1) (277 - 1471)$ e. $(1) (277 - 1470)$ Fax: $(1) (277 - 1471)$ e. $(1) (277 - 1470)$ Fax: $(1) (277 - 1471)$ e. $(1) (277 - 1471)$ Fax: $(1) (277 - 1471)$ e. $(1) (277 - 1471)$ Fax: $(1) (277 - 1471)$ e. $(1) (277 - 1471)$ Fax: $(1) (277 - 1471)$ e. $(1) (277 - 1471)$ Fax: $(1) (277 - 1471)$ E. $(1) (277 - $	2	XXIII				12:31	-10 -
Image: Second	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c} \text{semple ID} \\ \text{Sample ID} $	02	(XX				12:25	1-9 -
Sample ID Sample ID	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c} \text{verture Quarr Awarres Nummers Expression} \\ \text{Seg172 Commercentre Drive, Lake Forest, CA 92630} \\ \text{Seg17 Commercentre Drive, Lake Forest, CA 92630} \\ \text{Seg11 Commercentre Drive, Lake Forest, CA 92630} \\ Seg11 Commercentr$	82	XXIIX	X			17:22	1-8 .
Sample Date Samp	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	The server of the prive the server is the server of the prive that the prive the server of the prive that the prive the server of the server	fo	XX	X	X	-	t1:11	
Sample D Sample Container Solution Solutio	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	The service of our non-transformer on the private forest, CA 92630 $\begin{array}{c} 39,297-5020\\ 30,107-502\\ 30,107-$	06	XX		>		12:13	01-6 .
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Province Quarr Avarradisence Nurveus 39-297-5020 19-29	10	XX		X		10:12	11-5 ,
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Permeno Quur Avannes Sample Drive, Lake Forest, CA 92630 349-297-5020 349-297-5020 at Brus A Ass o Carnes Tric ess: PO Bay 332 Ross and the Forest, CA 92630 at Manager: Jer Skus CA e. (116) 677 - (471) e. (116) 677 - (471) at Manager: Jer Skus CA e. (116) 677 - (471) e. (116) 677 - (471) at Manager: Jer Skus CA e. (116) 677 - (471) e. (116) 677 - (471) at Manager: Jer Skus CA e. (116) 677 - (471) e. (116) 677 - (471) at Manager: Jer Skus CA e. (116) 770 - (116) 778	40	XX		1 1		(2:05	·PI-4 .
P I Sample I ID ID ID </td <td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td> <td>Perumero Quarri ANAVITICAL Standard CA 92630 25712 Commercentre Drive, Lake Forest, CA 92630 249-297-5020 249-297-5002 249-297-5020 249-2</td> <td>03</td> <td>XX</td> <td></td> <td>X</td> <td></td> <td>12:03</td> <td>P1-3 -</td>	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Perumero Quarri ANAVITICAL Standard CA 92630 25712 Commercentre Drive, Lake Forest, CA 92630 249-297-5020 249-297-5002 249-297-5020 249-2	03	XX		X		12:03	P1-3 -
PI- Sample II- Sampled Time Sample Type Sample Type Container Type Oontainer V Sample Sample Oontainer Sample Sample Sample <t< td=""><td>Provinces Quarry Assurates Nanowelle Provinces Quarry Assurates Nanowelle Provinces Quarry Assurates Nanowelle Provinces Quarry Assurates Nanowelle Provinces Assoration Case of the Second State Forest, CA 92630 949-297-5020 Part SRUS (A Assoration Case of the Second State Forest, CA 92630 949-297-5020 Part SRUS (A Assoration Case of the Second State Forest, CA 92630 949-297-5020 Part SRUS (A Assoration Case of the Second State Forest, CA 92630 Part Manager: $\int_{\mathcal{O}}}}}}}}}}$</td><td>Percensive Quarries Nationeries Percensive Quarries Surveys Nationality Products Natis Nationality Products Nationality Products Nati</td><td>02</td><td>XX</td><td></td><td></td><td>Solid</td><td>12:01</td><td>P1-2 -</td></t<>	Provinces Quarry Assurates Nanowelle Provinces Quarry Assurates Nanowelle Provinces Quarry Assurates Nanowelle Provinces Quarry Assurates Nanowelle Provinces Assoration Case of the Second State Forest, CA 92630 949-297-5020 Part SRUS (A Assoration Case of the Second State Forest, CA 92630 949-297-5020 Part SRUS (A Assoration Case of the Second State Forest, CA 92630 949-297-5020 Part SRUS (A Assoration Case of the Second State Forest, CA 92630 Part Manager: $\int_{\mathcal{O}}}}}}}}}}$	Percensive Quarries Nationeries Percensive Quarries Surveys Nationality Products Natis Nationality Products Nationality Products Nati	02	XX			Solid	12:01	P1-2 -
Sample Date Type Date Type Container Type Container Sample Con	Provinision Quury Auverteux Savores Norwares Pervision Quury Auverteux Savores Norwares 25712 Commercentre Drive, Lake Forest, CA 92630 949-297-5020 949-297-5020 949-297-5020 949-297-5020 949-297-5020 949-297-5020 949-297-5020 949-297-5020 949-297-5020 Project Name: Project Name: Project Name: Project Name: ArtHR-op Pare: Pare: <td< td=""><td>Sample ID Sampled Time Sample Sample Time Sample Sample</td><td>2</td><td>XX</td><td></td><td>JAR</td><td>T</td><td>4418 11:59</td><td>- 1-14</td></td<>	Sample ID Sampled Time Sample Sample Time Sample	2	XX		JAR	T	4418 11:59	- 1-14
	PROVIDING QUALITY ANALYTICAL SERVICES NATIONWIDE 25712 Commercentre Drive, Lake Forest, CA 92630 949-297-5020 nt: BRUS (A ASS & CTATS, TAC. ess: PO B & 332, Rosevac, CA 9561 ress: PO B & 332, Rosevac, CA 9561 rest: PO B & 332, Rosevac, CA 95661 rest: PO B & 332,	PROVIDEND QUALITY AMALYTICAL SERVICES NATIONWEDE 25712 Commercentre Drive, Lake Forest, CA 92630 25712 Commercentre Drive, Lake Forest, CA 92630 249-297-5020 at: BRUSCA Association Content Project, CA 92630 249-297-5020 at: BRUSCA Association Content Project All All Batch #: TISINS EDF #: act Manager: Jec. BRUSCA Fax: GLB 677 - 1471 at Manager: Jec. BRUSCA Fax: GLB 777 - 1471 at Manager: Jec. BRUSCA Fax: GLB 777 -	Laboratory ID #	8021 BTEX 8015M (gasoline) 8015M (diesel) 8015M Ext./Carbon Chain 6010/7000 Title 22 Metals 6020 ICP-MS Metals	8260 + OXY 8260 BTEX, OXY only	Container Type	Solid Sample	Date Sampled Time	Sample ID
	PROVIDING QUALITY ANALYTICAL SERVICES NATIONWIDE 25712 Commercentre Drive, Lake Forest, CA 92630 249-297-5020 t: BRUSCA Association Tryc. t: BRUSCA Association Tryc. t: BRUSCA Association Tryc. ess: PO Box 332, Rosevacue, CA 95661 project Name: LATHRUP 48-Ac PROPERTY	PROVIDING QUALITY ANALYTICAL SERVICES NATIONWIDE 25712 Commercentre Drive, Lake Forest, CA 92630 249-297-5020 t: BRUSCA Association, Thic of 2 t: BRUSCA Association, CA 92630 pate: 4 4/18 Page: 1 of 2 project Name: LATHRUP 48-Ac Property -	Client Project #: 157-002	ollector: BRUSCA	0.0	(47)	- + + 9 (9	10 Fax. (9)	e (916) 677-14
e: (9/6) 677-1470 Fax: (9/6) 677-1471 Collector: BRUSCA Client Project #: 157-002	** BRUSCA Assocrates Two Date: 4/4/18 Page: 1 of 2	** BRUSCA Assocrates Two Date: 4/4/18 Page: 1 or 2	of 48-AC PROPERTY	roject Name: LATHR.	P	199	CA 950	ROSEVALUE	ess: PO Box 332
es; PO Box 332, ROSEVALLE, CA 95661 Project Name: LATHROP 48-AC PROPERTY e: (916) 677-1470 Fax: (916) 677-1471 Collector: BRUSCA Client Project #: 137-002	Rovibing Quality Analytical Services Nationwide 25712 Commercentre Drive, Lake Forest, CA 92630 949-297-5020	REVIDING QUALITY ANALYTICAL SERVICES NATIONWIDE 25712 Commercentre Drive, Lake Forest, CA 92630 949-297-5020	Page: 1 of 2	ate: 4 4/18	0			GATS TWO	+ BRUSCA Asso
t: BRUSCA ASSOCTATES TIVE. OF 2 ess: PO Box 332, ROSEVELUE, CA 95661 Project Name: LATHROP 48-AC PROPERTY e: (916) 677-1470 Fax: (916) 677-1471 Collector: BRUSCA Client Project #: 137-002							A 92630	ive, Lake Forest, C	PROVIDING QUALITY ANALYTICAL SERV 25712 Commercentre D 949-297-5020

Relinquished by: (signature) Relinquished by: (signature) C S a Relinquished by: (signature)	Sample ID SP1-16 SP1-17 SP1-19 SP1-20 SP1-20	5	PROVIDING QUALITY ANALYTICAL 25712 Commercentre 949-297-5020 Client: BRUSCA ASS Address: Po Box 33 Phone: (1/6) 677-14 Project Manager: JDE
$\frac{4}{4}\frac{1}{15} = 14$ Date / Tir U-5-19 Date / Tir	Sampled	Date	SERVICES NATIONWIDE Drive, Lake F Drive, Lake F 2, Poseva 170 BRUSCA
me * 38 * 955 me	13:05 13:05	t	orest, CA
Received b	Sola	Sample	92630 - 4566
y: (signature) y: (signature) y: (signature)	- TAR	Container	47)
u-3		260 SVOCS 9270	
Date / Time Date / Time -18 $95Date / Time$	8. XXXX 8	260 BTEX, OXY only 270 PCBs 8082 3021 BTEX	Date: Project I Collecto Batch #
S Chain c	8 8 8 8	3015M (gasoline) 3015M (diesel) 3015M Ext./Carbon Chain	4/4/ Name: LAT BRUS
Total # c Seals int ved good co	6 AXXXX6	6010/7000 Title 22 Metals	TI8115
eals VININA act? VININA andition/cold			48-A
4	200	_aboratory ID #	Client
* 3 DAY TAT AL METALS		Comments/Preservative	2 of 2 20F3/27 10F3/27 t Project #: 137-002
		Total # of containers	

PROVIDING QUALITY ANALYTICAL SERVICES NATIONWIDE

18 April 2018

Joe Brusca Brusca Associates Inc. PO Box 332 Roseville, CA 95661 RE: Lathrop 48-Ac Property

Enclosed are the results of analyses for samples received by the laboratory on 04/06/18 10:00. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Mike Jaroudi Project Manager

Brusca Associates Inc.	Project: Lathrop 48-Ac Property	
PO Box 332	Project Number: 137-002	Reported:
Roseville CA, 95661	Project Manager: Joe Brusca	04/18/18 09:13

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
SP2-1	T181179-01	Soil	04/05/18 08:54	04/06/18 10:00

SunStar Laboratories, Inc.

Brusca Associates Inc.	Project: Lathrop 48-Ac Property	
PO Box 332	Project Number: 137-002	Reported:
Roseville CA, 95661	Project Manager: Joe Brusca	04/18/18 09:13

DETECTIONS SUMMARY

Sample ID: SP2-1	Laborat	tory ID:	T181179-01							
	Reporting									
Analyte	Result	Limit	Units	Method	Notes					
Arsenic	17	1.0	ug/l	6020 ICP-MS	AO-1					
Barium	450	1.0	ug/l	6020 ICP-MS	AO-1					
Beryllium	1.3	1.0	ug/l	6020 ICP-MS	AO-1					
Chromium	65	1.0	ug/l	6020 ICP-MS	AO-1					
Cobalt	49	1.0	ug/l	6020 ICP-MS	AO-1					
Copper	96	1.0	ug/l	6020 ICP-MS	AO-1					
Lead	170	2.0	ug/l	6020 ICP-MS	AO-1					
Mercury	0.33	0.10	ug/l	6020 ICP-MS	AO-1					
Molybdenum	9.1	1.0	ug/l	6020 ICP-MS	AO-1					
Nickel	61	1.0	ug/l	6020 ICP-MS	AO-1					
Silver	5.0	1.0	ug/l	6020 ICP-MS	AO-1					
Vanadium	220	1.0	ug/l	6020 ICP-MS	AO-1					
Zinc	340	1.0	ug/l	6020 ICP-MS	AO-1					

SunStar Laboratories, Inc.

Brusca Associates Inc. PO Box 332 Roseville CA, 95661	1	Proje Project Numb Project Manag	ect: Lathro er: 137-00 er: Joe Br	op 48-Ac Pro 02 rusca	perty			Reported: 04/18/18 09:	13					
SP2-1 T181179-01 (Soil)														
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes					
		SunStar La	aboratori	ies, Inc.										
Metals by EPA 6020 Method														
Antimony	ND	1.0	ug/l	1	8041135	04/12/18	04/17/18	6020 ICP-MS	AO-1					
Arsenic	17	1.0	"	"	"	"	"	"	AO-1					
Barium	450	1.0	"	"	"	"	"	"	AO-1					
Beryllium	1.3	1.0	"	"	"	"	"	"	AO-1					
Cadmium	ND	1.0	"	"	"	"	"	"	AO-1					
Chromium	65	1.0	"	"	"	"	"	"	AO-1					
Cobalt	49	1.0	"	"	"	"	"	"	AO-1					
Copper	96	1.0	"	"	"	"	"	"	AO-1					
Lead	170	2.0	"	"	"	"	"	"	AO-1					
Mercury	0.33	0.10	"	"	"	"	"	"	AO-1					
Molybdenum	9.1	1.0	"	"	"	"	"	"	AO-1					
Nickel	61	1.0	"	"	"	"	"	"	AO-1					
Selenium	ND	5.0	"	"	"	"	"	"	AO-1					
Silver	5.0	1.0	"	"	"	"	"	"	AO-1					
Thallium	ND	1.0	"	"	"	"	"	"	AO-1					
Vanadium	220	1.0	"	"	"	"	"	"	AO-1					
Zinc	340	1.0	"	"	"	"	"	"	AO-1					

SunStar Laboratories, Inc.

Mike Jaroudi, Project Manager

SunStar Laboratories, Inc. Providing Quality Analytical Services Nationwide

25712 Commercentre Drive Lake Forest, California 92630 949.297.5020 Phone 949.297.5027 Fax

Brusca Associates Inc.	Project: Lathrop 48-Ac Property	
PO Box 332	Project Number: 137-002	Reported:
Roseville CA, 95661	Project Manager: Joe Brusca	04/18/18 09:13

Metals by EPA 6020 Method - Quality Control

SunStar Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch 8041135 - EPA 3010A

Blank (8041135-BLK1)				Prepared: (04/11/18 Analyzed: 04	4/17/18			
Antimony	ND	1.0	ug/l						AO-1
Arsenic	ND	1.0	"						AO-1
Barium	16.1	1.0	"						AO-1, QB-01
Beryllium	ND	1.0	"						AO-1
Cadmium	ND	1.0	"						AO-1
Chromium	1.93	1.0	"						AO-1, QB-01
Cobalt	ND	1.0	"						AO-1
Copper	1.50	1.0	"						AO-1, QB-01
Lead	ND	2.0	"						AO-1
Mercury	ND	0.10	"						AO-1
Molybdenum	ND	1.0	"						AO-1
Nickel	ND	1.0	"						AO-1
Selenium	ND	5.0	"						AO-1
Silver	ND	1.0	"						AO-1
Thallium	ND	1.0	"						AO-1
Vanadium	3.01	1.0	"						AO-1, QB-01
Zinc	11.1	1.0	"						AO-1, QB-01
LCS (8041135-BS1)				Prepared: (04/11/18 Analyzed: 04	4/17/18			
Arsenic	48.2	1.0	ug/l	50.0	96.4	80-120			AO-1
Barium	48.8	1.0	"	50.0	97.5	80-120			AO-1
Cadmium	47.7	1.0	"	50.0	95.4	80-120			AO-1
Chromium	52.4	1.0	"	50.0	105	80-120			AO-1
Lead	51.3	2.0	"	50.0	103	80-120			AO-1
Duplicate (8041135-DUP1)	S	Source: T181153	-05	Prepared: (04/11/18 Analyzed: 04	4/17/18			
Barium	432	5.0	ug/l		341		23.6	200	AO-1
Lead	445	10	"		361		20.8	200	AO-1

SunStar Laboratories, Inc.

SunStar Laboratories, Inc. Providing Quality Analytical Services Nationwide

25712 Commercentre Drive Lake Forest, California 92630 949.297.5020 Phone 949.297.5027 Fax

Brusca Associates Inc.	Project: Lathrop 48-Ac Property	
PO Box 332	Project Number: 137-002	Reported:
Roseville CA, 95661	Project Manager: Joe Brusca	04/18/18 09:13

Metals by EPA 6020 Method - Quality Control

SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 8041135 - EPA 3010A										
Matrix Spike (8041135-MS1)	Sou	rce: T181153-()5	Prepared: (04/11/18 Ai	nalyzed: 04	/17/18			
Arsenic	62.4	1.0	ug/l	50.0	19.8	85.2	75-125			AO-1
Barium	363	1.0	"	50.0	341	44.9	75-125			AO-1, QM-05
Cadmium	45.9	1.0		50.0	1.59	88.7	75-125			AO-1
Chromium	107	1.0		50.0	59.6	94.3	75-125			AO-1
Lead	368	2.0	"	50.0	361	12.3	75-125			AO-1, QM-05
Matrix Spike Dup (8041135-MSD1)	Sou	rce: T181153-0)5	Prepared: (04/11/18 Ai	nalyzed: 04				
Arsenic	61.3	1.0	ug/l	50.0	19.8	82.9	75-125	1.81	20	AO-1
Barium	372	1.0		50.0	341	62.8	75-125	2.43	20	AO-1, QM-05
Cadmium	45.7	1.0		50.0	1.59	88.2	75-125	0.541	20	AO-1
Chromium	107	1.0		50.0	59.6	94.9	75-125	0.296	20	AO-1
Lead	389	2.0	"	50.0	361	55.4	75-125	5.69	20	AO-1, QM-05
				~ •						

Post Spike (8041135-PS1)	Source: T1	81153-05	Prepared: (04/11/18 Ai	nalyzed: 04	4/17/18	
Barium	188	ug/l	2.50	0.341	NR	80-120	AO-1,
							QM-05
Lead	199	"	2.50	0.361	NR	80-120	AO-1,
							OM-05

SunStar Laboratories, Inc.

Mike Jaroudi, Project Manager

Brusca Asso PO Box 332 Roseville C	ociates Inc. 2 A, 95661	Project: Project Number: Project Manager:	ct: Lathrop 48-Ac Property ct: 137-002 Reported: ct: Joe Brusca 04/18/18 09:13					
		Notes and De	finitions					
QM-05	The spike recovery was outside acceptance limits for the MS and/or MSD due to possible matrix interference. The LCS was within acceptance criteria. The data is acceptable as no negative impact on data is expected.							
QB-01	The method blank contains analyte at a concentration which is negligible according to method criteria.	above the MRL; h	nowever, concentration is less than 10% of the sample result,					
AO-1	STLC Leach Ran 6020 Water							
DET	Analyte DETECTED							
ND	Analyte NOT DETECTED at or above the reporting limit							
NR	Not Reported							

- dry Sample results reported on a dry weight basis
- RPD Relative Percent Difference

SunStar Laboratories, Inc.

لا جون Relinquished by: (sig	Reinfluished by (sign	-	592-12	592-10	292-9	£-235	3-2-6	512-4	5-235	SP2-2	292-1	Project Manager:	PROVIDING QUALITY AN 25712 Comme 949-297-5020 Client: DRUSC Address: PO Sc Phone: U(6)
4 <u>16 18</u> / 0 200 nature) Date / Time	nature) Date / Time 4/5/13 - 13 nature) Date / Time			9:	216	156	9:0	0:0	5:8	5:9 1,	415/18 3:5	Date Tin	ALYTICAL SERVICES NATIONWIDE roentre Drive, Lake Forest, A ASS OLTATES 332, Roseval 677-1470 Fax:
Received by: (signati	Received by (signation of the second										4 Salis JAR	Sample Contain Type Type	CA 92630 INC - INC - SCA 95661 (1) 677 - 1471
<i>#∳₁≋ /₁⅓₀</i> Ire) Date / Time	re) Date / Time 4/5/8 (3: he) Date / Time		X		X		X			X	XX	9 8200- SVOCS 8270 8260 + OXY 8260 BTEX, OXY only 8270- PCBS 8082 8021 BTEX	Date: Project N Collector Batch #:
Turn around time:	Total # of c Chain of Custody sea Seals intac		×	××	XX		XX				XX	8015M (gasoline) 8015M (diesel) 8015M Ext./Carbon Chain Galacter 6010/7000 Title 22 Metals 6020 ICP-MS Metals	4/5/18 Jame: LARHPOP REVSCA
URMAL			- F	10	60	07	90	50	202	82	0	Laboratory ID #	Page: 46-AC fueron Client Project EDF #:
	Notes DAT TAT ON			in the second		花莲						mments/Preservative	of 1
										-	` -	Total # of containers	

April 26, 2018

FAL Project ID: 11426

Mr. Joe Brusca Brusca Associates 7633 Stonewood Court Granite Bay, CA 95746

Dear Mr. Brusca,

The following results are associated with Frontier Analytical Laboratory project **11426**. This corresponds to your **Lathrop 48-Ac Property** project under project number **137-002**. Twelve solid samples were received on 4/5/2018 in good condition. These samples were extracted and analyzed by EPA Method 1613 for tetra through octa chlorinated dibenzo dioxins and furans. The Toxic Equivalency (TEQ) for your samples has been calculated using the 2005 World Health Organization's (WHO's) toxic equivalency factors (TEFs). The total TEQ is reported on the upper right hand corner of each sample data sheet. Brusca Associates requested a turnaround time of ten business days for project **11426**.

The following report consists of an Analytical Data section and a Sample Receipt section. The Analytical Data section contains our sample tracking log and the analytical results. The Sample Receipt section contains your chain of custody, our sample login form and the sample photos. The attached results are specifically for the samples referenced in this report only. These results meet all NELAC requirements and shall not be reproduced except in full. Frontier Analytical Laboratory's State of Oregon NELAP certificate number is **4041**. Our State of California ELAP certificate number is **2934**. This report has been emailed to you as a portable document format (PDF) file. A hardcopy will not be sent to you unless specifically requested.

If you have any questions regarding project **11426**, please contact me at (916) 934-0900. Thank you for choosing Frontier Analytical Laboratory for your analytical testing needs.

Sincerely,

onas C. Cralitree

Thomas C. Crabtree Director

Frontier Analytical Laboratory

Sample Tracking Log

FAL Project ID: 11426

Received on: 04/05/2018

Project Due: 04/20/2018 Sto

Storage: <u>R-4</u>

FAL Sample ID	Dup	Client Project ID	Client Sample ID	Requested Method	Matrix	Sampling Date	Sampling Time	Hold Time Due Date
11426-001-SA	0	137-002	SP2-1	EPA 1613 D/F	Solid	04/05/2018	08:54 am	04/05/2019
11426-002-SA	0	137-002	SP2-2	EPA 1613 D/F	Solid	04/05/2018	08:57 am	04/05/2019
11426-003-SA	0	137-002	SP2-3	EPA 1613 D/F	Solid	04/05/2018	08:59 am	04/05/2019
11426-004-SA	0	137-002	SP2-4	EPA 1613 D/F	Solid	04/05/2018	09:02 am	04/05/2019
11426-005-SA	0	137-002	SP2-5	EPA 1613 D/F	Solid	04/05/2018	09:04 am	04/05/2019
11426-006-SA	0	137-002	SP2-6	EPA 1613 D/F	Solid	04/05/2018	09:08 am	04/05/2019
11426-007-SA	0	137-002	SP2-7	EPA 1613 D/F	Solid	04/05/2018	09:14 am	04/05/2019
11426-008-SA	0	137-002	SP2-8	EPA 1613 D/F	Solid	04/05/2018	09:18 am	04/05/2019
11426-009-SA	0	137-002	SP2-9	EPA 1613 D/F	Solid	04/05/2018	09:21 am	04/05/2019
11426-010-SA	0	137-002	SP2-10	EPA 1613 D/F	Solid	04/05/2018	09:24 am	04/05/2019
11426-011-SA	0	137-002	SP2-11	EPA 1613 D/F	Solid	04/05/2018	09:26 am	04/05/2019
11426-012-SA	0	137-002	SP2-12	EPA 1613 D/F	Solid	04/05/2018	09:29 am	04/05/2019

FAL ID: 11426-001-MB Client ID: Method Blank Matrix: Solid Batch No: X4479	Date Extracted: 04-19-2018ICaDate Received: NAGCAmount: 5.00 gUn			ICal: PCDI GC Colum Units: pg/g	'CDDFAL3-12-22-17Acquired: 04-20olumn: DB5MS2005 WHO TECpg/gBasis: Dry Weig			20-2018 EQ: 0.0 eight	
Compound	Conc	DL (Qual	2005 WHO Tox	MDL	Compound	Conc	DL	Qual
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD 0CDD	ND ND ND ND ND	0.123 0.223 0.289 0.294 0.282 0.426 0.812			0.0315 0.0468 0.0503 0.0490 0.0488 0.0541 0.0888	Total TCDD Total PeCDD Total HxCDD Total HpCDD	ND ND ND ND	0.123 0.223 0.294 0.426	
2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF 1,2,3,4,7,8,9-HpCDF 0CDF	ND ND ND ND ND ND ND ND	0.109 0.179 0.192 0.144 0.146 0.160 0.202 0.207 0.270 0.418			0.0243 0.0285 0.0298 0.0255 0.0253 0.0279 0.0367 0.0321 0.0396 0.0843	Total TCDF Total PeCDF Total HxCDF Total HpCDF	ND ND ND ND	0.109 0.192 0.202 0.270	
Internal Standards 13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-2,2,3,7,8-PeCDF 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-2,2,4,7,8,9-HxCDF 13C-2,2,4,7,8,9-HxCDF 13C-2,2,4,7,8,9-HxCDF 13C-2,2,4,7,8,9-HxCDF 13C-2,2,4,7,8,9-HxCDF 13C-2,2,4,7,8,9-HxCDF 13C-2,2,4,7,8,9-HxCDF 13C-2,2,4,7,8,9-HxCDF 13C-2,2,4,7,8,9-HxCDF 13C-2,2,4,7,8,9-HxCDF 13C-2,2,4,7,8,9-HxCDF 13C-2,2,4,7,8,9-HxCDF 13C-2,2,3,4,6,7,8-HxCDF 13C-2,2,3,4,6,7,8-HxCDF 13C-2,2,3,4,6,7,8-HxCDF 13C-2,2,3,4,6,7,8-HxCDF 13C-2,2,3,4,6,7,8-HxCDF 13C-2,2,3,4,6,7,8-HxCDF 13C-2,2,4,6,7,8-HxCDF 13C-2,2,4,6,7,8-HxCDF 13C-2,2,4,6,7,8-HxCDF 13C-2,2,4,6,7,8-HxCDF 13C-2,2,4,6,7,8-HxCDF 13C-2,2,4,6,7,8-HxCDF 13C-2,2,3,4,6,7,8-HxCDF 13C-2,2,3,4,6,7,8-HxCDF 13C-2,2,3,4,6,7,8-HxCDF 13C-2,2,3,4,6,7,8-HxCDF 13C-2,2,3,4,6,7,8-HxCDF 13C-2,2,3,4,6,7,8-HxCDF 13C-2,2,3,4,6,7,8-HxCDF 13C-2,2,3,4,6,7,8-HxCDF 13C-2,2,3,4,7,8,9-HxCDF 13C-2,2,3,4,7,8,9-HxCDF 13C-2,2,3,4,7,8,9-HxCDF 13C-2,2,3,4,7,8,9-HxCDF 13C-2,3,4,7,8,9-	% Rec 98.2 86.5 85.9 98.2 82.1 70.4 98.2 80.6 79.5 90.7 98.0 92.2 96.8 83.3 94.6 75.1	QC Limits (25.0 - 164) 25.0 - 181 32.0 - 181 32.0 - 141 28.0 - 130 23.0 - 140 17.0 - 157 24.0 - 169 24.0 - 169 24.0 - 185 21.0 - 178 26.0 - 152 26.0 - 152 28.0 - 136 29.0 - 147 28.0 - 138 17.0 - 157	Qual		A Iso sig B An. C Ch DNQ An. F An. J An. M Ma ND An. NP No P Pre S Sa X Ma * Re	topic Labeled Stanal to noise ratio alyte is present in emical Interferent esence of Dipher alyte concentrationalyte concentrationalyte concentrationalyte concentrationalyte concentrationalyte concentrationalyte Not Detected to Provided e-filtered through mple acceptances sult taken from d	andard outsid is >10:1 n Method Bla ce yl Ethers on is below c con is above c n on seconda on is below c concentration ed at Detection a Whatman e criteria not r is ilution or rein	de QC range ink alibration ra ary column alibration ra n on Limit Lev 0.7um GF/F met	e but inge inge el : filter
37CI-2,3,7,8-TCDD	92.9	35.0 - 197			<u>.</u>				

Analyst: 4/25/2018 Date:

0 Reviewed By: Date: 4/26/2018

FAL ID: 11426-001-OPR Client ID: OPR Matrix: Solid Batch No: X4479	Date Extracted: 04-19-2018 Date Received: NA Amount: 5.00 g	ICal: PCDDFAL3 GC Column: DB5 Units: ng/ml	-12-22-17 Acquired: 04-20-2018 MS 2005 WHO TEQ: NA
Compound	Conc QC Limits	Qual	
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD 1,2,3,4,6,7,8-HpCDD OCDD	$\begin{array}{rrrr} 11.7 & 6.70 - 15.8 \\ 53.0 & 35.0 - 71.0 \\ 53.3 & 35.0 - 82.0 \\ 54.1 & 38.0 - 67.0 \\ 56.4 & 32.0 - 81.0 \\ 55.6 & 35.0 - 70.0 \\ 110 & 78.0 - 144 \end{array}$		
2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF 0CDF	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
Internal Standards	% Rec QC Limits	Qual	
13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-0CDD 13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	A E C D D F S N N S S	 Isotopic Labeled Standard outside QC range but signal to noise ratio is >10:1 Analyte is present in Method Blank Chemical Interference Presence of Diphenyl Ethers IQ Analyte concentration is below calibration range Analyte concentration on secondary column Analyte concentration is below calibration range Maximum possible concentration D Analyte Not Detected at Detection Limit Level P Not Provided Pre-filtered through a Whatman 0.7um GF/F filter Sample acceptance criteria not met
Cleanup Surrogate	90.8 31.0 - 191	>	Matrix interferences Result taken from dilution or reinjection
37 CI-2, 3, 7, 6-1 CDD	30.0 31.0 - 131		

Analyst: 4/25/2018 Date:

0 Reviewed By: Date: 4/26/2018

FAL ID: 11426-001-SA Client ID: SP2-1 Matrix: Solid Batch No: X4479	Date Extracted: 04-19-2018 Date Received: 04-05-2018 Amount: 5.06 g % Solids: 93.19			ICal: PCE GC Colun Units: pg/	ICal: PCDDFAL3-12-22-17 Acc GC Column: DB5MS 200 Units: pg/g Ba				ucquired: 04-21-2018 005 WHO TEQ: 1.77 Basis: Dry Weight		
Compound	Cond	c DL	Qual	2005 WHO Tox	MDL	Compound	Conc	DL	Qual		
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD 0CDD	NE 0.545 1.66 1.0 ⁷ 40.7 334	0 0.153 0 0.326 5 - 6 - 1 - 4 -	J J J	0.0545 0.166 0.101 0.401 0.100	0.0315 0.0468 0.0503 0.0490 0.0488 0.0541 0.0888	Total TCDD Total PeCDD Total HxCDD Total HpCDD	0.439 1.26 14.4 80.5	- - -	J J,M		
2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF 0,00000000000000000000000000000000000	1.55 0.43(0.855 1.18 1.56 0.822 0.47' 9.74 1.55 20.3	9 - 9 - 9 - 3 - 1 - 4 - 3 -	յ յ յ յ	0.159 0.0129 0.258 0.118 0.150 0.0823 0.0471 0.0974 0.0154 0.00609	0.0243 0.0285 0.0298 0.0255 0.0253 0.0279 0.0367 0.0321 0.0396 0.0843	Total TCDF Total PeCDF Total HxCDF Total HpCDF	10.4 7.53 10.8 21.5				
Internal Standards 13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDF 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,7,8-PHCDF 13C-1,2,3,4,7,8-PHCDF 13C-1,2,3,4,7,8-PHCDF 13C-1,2,3,4,7,8-PHCDF 13C-1,2,3,4,7,8-PHCDF 13C-1,2,3,4,7,8-PHCDF 13C-0CDF	% Rec 93.0 81.5 83.5 84.6 61.8 45.5 88.9 75.3 73.6 83.2 88.2 78.7 80.1 70.0 75.2 48.6	QC Limits 25.0 - 164 25.0 - 181 32.0 - 141 28.0 - 130 23.0 - 140 17.0 - 157 24.0 - 169 24.0 - 185 21.0 - 178 26.0 - 152 26.0 - 123 28.0 - 136 29.0 - 147 28.0 - 138 17.0 - 157	Qual		A lsc sig B An C Ch D Pro DNQ An E An F An J An M Ma ND An NP No P Pro S Sa X Ma X Re	otopic Labeled St mal to noise ratio alyte is present in memical Interferent esence of Diphent alyte concentration alyte conce	andard outsi i is >10:1 n Method Bla nce nyl Ethers on is below o on is above o n on seconda on is below o concentratio ed at Detection a Whatman e criteria not i s silution or rein	de QC range ank calibration ra calibration ra ary column calibration ra n on Limit Lev 0.7um GF/F met njection	e but ange ange el F filter		
37CI-2,3,7,8-TCDD	88.0	35.0 - 197									

Analyst: 4/25/2018 Date:

0 Reviewed By: Date: 4/26/2018

FAL ID: 11426-002-SA Client ID: SP2-2 Matrix: Solid Batch No: X4479	Date Extracted: 04-19-2018 Date Received: 04-05-2018 Amount: 5.00 g % Solids: 95.91			26-002-SA Date Extracted: 04-19-2018 ICal: PCDDFAL3-12-22-17 P2-2 Date Received: 04-05-2018 GC Column: DB5MS I Amount: 5.00 g Units: pg/g 4479 % Solids: 95.91 Ital: PCDDFAL3-12-22-17			2-17 / 2 1	Acquired: 04-21-2018 2005 WHO TEQ: 4.65 Basis: Dry Weight				
Compound	Conc	c DL	Qual	2005 WHO Tox	MDL	Compound	Conc	DL	Qual			
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD 0CDD	NE 0.494 1.03 4.52 2.42 123 1110	0.176 	Մ Մ Մ	0.494 0.103 0.452 0.242 1.23 0.333	0.0315 0.0468 0.0503 0.0490 0.0488 0.0541 0.0888	Total TCDD Total PeCDD Total HxCDD Total HpCDD	0.836 5.77 35.3 236	- - -	J M			
2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF 0CDF	2.17 0.818 1.38 2.55 3.14 1.76 1.01 24.3 4.09 51.3	7 - 3 - 5 - 4 - 5 - 4 - 5 - 4 - 5 - 9 - 3 - 9 - 9 - 9 - 9 - 9 - 9 - 9 - 9	F J J J J J	0.217 0.0245 0.414 0.255 0.314 0.176 0.101 0.243 0.0409 0.0154	0.0243 0.0285 0.0298 0.0255 0.0253 0.0279 0.0367 0.0321 0.0396 0.0843	Total TCDF Total PeCDF Total HxCDF Total HpCDF	17.3 12.6 22.7 54.6					
Internal Standards 13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,4,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HxCDD 13C-2,3,4,7,8-PeCDF 13C-1,2,3,7,8-PeCDF 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-PACDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,7,8,9-HxCDF	% Rec 102 86.0 95.4 81.5 73.0 60.3 102 83.0 81.9 82.1 83.4 83.4 83.6 72.3 82.3 60.6	QC Limits 25.0 - 164 25.0 - 181 32.0 - 141 28.0 - 130 23.0 - 140 17.0 - 157 24.0 - 169 24.0 - 169 24.0 - 169 24.0 - 152 26.0 - 152 26.0 - 123 28.0 - 136 29.0 - 147 28.0 - 138 17.0 - 157	Qual		A Iso sig B An: C Ch D Pre DNQ An: E An: F An: J An: M Ma ND An: NP No P Pre S Sa: X Ma * Re	topic Labeled St nal to noise ratio alyte is present in emical Interferen esence of Dipher alyte concentratio alyte concentratio alyte concentratio alyte concentratio alyte concentration alyte concentration	andard outsid is >10:1 n Method Bla ice nyl Ethers on is below c on is above c n on seconda on is below c concentration ed at Detection a Whatman e criteria not r s	de QC range nk alibration ra alibration ra ary column alibration ra n bn Limit Lev 0.7um GF/F net jection	e but ange ange ange rel - filter			
37CI-2,3,7,8-TCDD	94.4	35.0 - 197										

Analyst: 4/25/2018 Date:

0 Reviewed By: Date: 4/26/2018

FAL ID: 11426-003-SA Client ID: SP2-3 Matrix: Solid Batch No: X4479	Date Extracted: 04-19-2018 Date Received: 04-05-2018 Amount: 5.03 g % Solids: 91.60			ICal: PCE GC Colur Units: pg/	DFAL3-12-22 nn: DB5MS g	2-17	Acquired: 04 2005 WHO 1 Basis: Dry W	-21-2018 ΓEQ: 2.73 /eight	
Compound	Con	c DL	Qual	2005 WHO Tox	MDL	Compound	Conc	DL	Qual
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD 0CDD	NI 0.568 0.85 1.99 1.5 41.2 30	D 0.154 8 - 7 - 8 - 1 - 2 - 1 - 1 -	1 1 1	0.568 0.0857 0.198 0.151 0.412 0.0903	0.0315 0.0468 0.0503 0.0490 0.0488 0.0541 0.0888	Total TCDD Total PeCDD Total HxCDD Total HpCDD	0.652 3.75 18.4 79.8	- - -	J J,M
2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF 0CDF	2.7; 0.51! 1.5; 1.4; 0.82; 0.93; 0.47; 9.1! 0.62! 18.8	2 - 5 - 7 - 2 - 8 - 8 - 8 - 9 - 9 - 9 - 8 - 8 -	F J J J J J	0.272 0.0155 0.471 0.142 0.0828 0.0938 0.0478 0.0919 0.00629 0.00564	0.0243 0.0285 0.0298 0.0255 0.0253 0.0279 0.0367 0.0321 0.0396 0.0843	Total TCDF Total PeCDF Total HxCDF Total HpCDF	15.1 12.8 16.2 24.5		М
Internal Standards 13C-2,3,7,8-TCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,7,8-HxCDD 13C-2,3,7,8-PCCDF 13C-2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-PACDF 13C-1,2,3,4,6,7,8-HxCDF 13C-2,3,4,6,7,8-HxCDF 13C-2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-2,3,4,6,7,8-HxCDF 13C-2,3,4,6,7,8-HxCDF 13C-2,3,4,6,7,8-HxCDF 13C-2,3,4,6,7,8-HxCDF 13C-2,3,4,6,7,8-HxCDF 13C-2,3,4,6,7,8-HxCDF 13C-2,3,4,6,7,8-HxCDF 13C-2,3,4,6,7,8-HxCDF 13C-2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-0,2,4,7,8,7,8,9-HpCDF 13C-0,2,4,7,8,	% Rec 101 87.4 89.4 94.2 80.5 71.2 98.9 78.4 77.8 98.2 100 94.1 98.7 83.8 94.7 73.2	QC Limits 25.0 - 164 25.0 - 181 32.0 - 141 28.0 - 130 23.0 - 140 17.0 - 157 24.0 - 169 24.0 - 169 24.0 - 152 26.0 - 152 26.0 - 152 26.0 - 123 28.0 - 136 29.0 - 147 28.0 - 138 17.0 - 157	Qual		A Isc B An C Ch D Pro DNQ An E An F An J An M Ma ND An NP No P Pro S Sa X Ma * Re	otopic Labeled St nal to noise ratio alyte is present i nemical Interferer esence of Dipher alyte concentrationalyte concentrationalyte concentrationalyte concentrationalyte concentrationalyte concentrationalyte Not Detected the provided e-filtered through mple acceptance atrix interferences esult taken from content of the provided	andard outs is >10:1 n Method Bl nce nyl Ethers on is below on is above n on second on is below concentratic ed at Detecti a Whatman e criteria not s lilution or rei	ide QC range ank calibration ra calibration ra ary column calibration ra in 0.7um GF/F met njection	e but nge nge el filter
37CI-2,3,7,8-TCDD	93.4	35.0 - 197							

Analyst: 4/25/2018 Date:

0 Reviewed By: Date: 4/26/2018

FAL ID: 11426-004-SA Client ID: SP2-4 Matrix: Solid Batch No: X4479	Date Extracted: 04-19-2018 Date Received: 04-05-2018 Amount: 5.04 g % Solids: 92.56			ID: 11426-004-SA Date Extracted: 04-19-2018 ICal: PCDDFAL3-1: tt ID: SP2-4 Date Received: 04-05-2018 GC Column: DB5M ix: Solid Amount: 5.04 g Units: pg/g h No: X4479 % Solids: 92.56 PC			DDFAL3-12-2 ımn: DB5MS J/g	L3-12-22-17 Acquired: 04-21-2018 B5MS 2005 WHO TEQ: 2.96 Basis: Dry Weight				
Compound	Conc	c DL	Qual	2005 WHO Tox	MDL	Compound	Conc	DL	Qual			
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD 0CDD	ND 0.588 0.810 2.24 1.42 56.2 495	0.191 	1 1 1	0.588 0.0810 0.224 0.142 0.562 0.149	0.0315 0.0468 0.0503 0.0490 0.0488 0.0541 0.0888	Total TCDD Total PeCDD Total HxCDD Total HxCDD Total HpCDD	0.388 3.70 18.2 105		J J,M			
2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,4,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF 1,2,3,4,7,8,9-HpCDF 0CDF	1.93 0.497 1.33 1.65 1.20 0.978 0.563 13.6 1.58 40.7		1 1 1 1 1	$\begin{array}{c} 0.193\\ 0.0149\\ 0.399\\ 0.165\\ 0.120\\ 0.0978\\ 0.0563\\ 0.136\\ 0.0158\\ 0.0122\\ \end{array}$	0.0243 0.0285 0.0298 0.0255 0.0253 0.0279 0.0367 0.0321 0.0396 0.0843	Total TCDF Total PeCDF Total HxCDF Total HpCDF	12.4 10.8 16.5 38.4		М			
Internal Standards 13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HxCDD 13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,	% Rec 101 96.8 91.3 92.4 79.7 67.8 101 89.6 87.4 95.0 98.5 93.7 94.1 80.8 87.1 69.5	QC Limits 25.0 - 164 25.0 - 181 32.0 - 141 28.0 - 130 23.0 - 140 17.0 - 157 24.0 - 169 24.0 - 185 21.0 - 178 26.0 - 152 26.0 - 123 28.0 - 136 29.0 - 147 28.0 - 143 26.0 - 138 17.0 - 157	Qual		A Is B A C C D P DNQ A E A J A M M ND A NP N S S X M * R	sotopic Labeled Si ignal to noise ratio nalyte is present i hemical Interferer nalyte concentrationalyte concentrationalyte concentrationalyte concentrationalyte concentrationalyte concentrationalyte Not Detect laximum possible nalyte Not Detect lot Provided re-filtered through ample acceptance latrix interference lesult taken from o	tandard outs o is >10:1 n Method B nce nyl Ethers ion is below ion is below concentrati ed at Detec n a Whatma e criteria no s dilution or re	side QC range lank calibration ra calibration ra dary column calibration ra on tion Limit Lev n 0.7um GF/F t met	e but ange ange rel = filter			
Cleanup Surrogate 37Cl-2,3,7,8-TCDD	94.1	35.0 - 197			* R	esult taken from o	dilution or re	injection				

Analyst: 4/25/2018 Date:

0 Reviewed By: Date: 4/26/2018

FAL ID: 11426-005-SA Client ID: SP2-5 Matrix: Solid Batch No: X4479	Date Extracted: 04-19-2018 Date Received: 04-05-2018 Amount: 5.04 g % Solids: 94.36			ID: 11426-005-SA Date Extracted: 04-19-2018 ICal: PCDDFAL3-12-2 nt ID: SP2-5 Date Received: 04-05-2018 GC Column: DB5MS ix: Solid Amount: 5.04 g Units: pg/g h No: X4479 % Solids: 94.36 Hereiter				DDFAL3-12-2 mn: DB5MS /g	2-17 Acquired: 04-21-2018 2005 WHO TEQ: 1.64 Basis: Dry Weight				
Compound	Cond	c DL	Qual	2005 WHO Tox	MDL	Compound	Conc	DL	Qual				
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD 0CDD	NE 0.34 0.445 1.30 0.94 33.3 280	0 0.172 1 - 5 - 0 - 1 - 3 - 0 - 1 - 3 - 0 -	Մ Մ Մ	0.341 0.0445 0.130 0.0941 0.333 0.0840	0.0315 0.0468 0.0503 0.0490 0.0488 0.0541 0.0888	Total TCDD Total PeCDD Total HxCDD Total HxCDD Total HpCDD	0.322 2.50 12.5 64.2	- - -	J J,M				
2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF 1,2,3,4,7,8,9-HpCDF	1.38 0.322 0.716 0.572 0.462 0.530 0.287 5.46 0.530 12.0	3 - 2 - 6 - 2 - 2 - 7 - 6 - 0 - 0 - 0 -	Մ Մ Մ Մ	0.138 0.00966 0.215 0.0572 0.0462 0.0530 0.0287 0.0546 0.00530 0.00360	0.0243 0.0285 0.0298 0.0255 0.0253 0.0279 0.0367 0.0321 0.0396 0.0843	Total TCDF Total PeCDF Total HxCDF Total HpCDF	8.35 6.62 8.96 14.6		М				
Internal Standards 13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PcCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-0,2,3,4,7,8-PeCDF 13C-1,2,3,7,8-PeCDF 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-PaCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF	% Rec 99.8 98.5 85.4 91.1 74.9 65.3 97.7 90.2 84.3 91.3 97.0 89.8 91.8 81.2 85.7 65.7	QC Limits 25.0 - 164 25.0 - 181 32.0 - 141 28.0 - 130 23.0 - 140 17.0 - 157 24.0 - 169 24.0 - 169 24.0 - 185 21.0 - 178 26.0 - 123 28.0 - 123 28.0 - 136 29.0 - 147 28.0 - 143 26.0 - 138 17.0 - 157	Qual		A Iss B Ar C CI D Pr DNQ Ar E Ar F Ar J Ar M M ND Ar NP NC F Pr S Sa X M * Re	otopic Labeled Si gnal to noise ratio nalyte is present i hemical Interferer resence of Dipher nalyte concentrationalyte concentrationalyte concentrationalyte concentrationalyte concentrationalyte Not Detect to the provided of the provided of the provided ample acceptance atrix interferences esult taken from the provided of the prov	andard outsi b is >10:1 n Method Bla nce hyl Ethers ion is below of on is below of concentratio ed at Detecti a a Whatman e criteria not s dilution or reij	de QC range ank calibration ra calibration ra ary column calibration ra n on Limit Lev 0.7um GF/F met	e but ange ange el F filter				
37CI-2,3,7,8-TCDD	95.7	35.0 - 197											

Analyst: 4/25/2018 Date:

0 Reviewed By: Date: 4/26/2018

FAL ID: 11426-006-SA Client ID: SP2-6 Matrix: Solid Batch No: X4479	Date Extracted: 04-19-2018 Date Received: 04-05-2018 Amount: 5.01 g % Solids: 92.42			ICal: PCE GC Colun Units: pg/	ICal: PCDDFAL3-12-22-17 GC Column: DB5MS Units: pg/g			Acquired: 04-21-2018 2005 WHO TEQ: 2.71 Basis: Dry Weight		
Compound	Cond	c DL	Qual	2005 WHO Tox	MDL	Compound	Conc	DL	Qual	
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD 0CDD	NE 0.599 0.43 1.62 1.08 32.3 25	D 0.116 6 - 1 - 2 - 8 - 3 - 7 -	J J J J	0.596 0.0431 0.162 0.108 0.323 0.0771	0.0315 0.0468 0.0503 0.0490 0.0488 0.0541 0.0888	Total TCDD Total PeCDD Total HxCDD Total HpCDD	2.23 3.86 14.8 63.0	- - -	J,M	
2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF 0,00000000000000000000000000000000000	1.9(0.53) 1.2(2.11) 1.2(1.2(0.78) 1.2(0.78) 1.3(2.5(2.0(5 - 2 - 9 - 3 - 9 - 3 - 0 - 5 - 9 - 3 - 3 -	ן ר ר ר ר	$\begin{array}{c} 0.195\\ 0.0160\\ 0.387\\ 0.213\\ 0.219\\ 0.123\\ 0.0780\\ 0.135\\ 0.0259\\ 0.00609\\ \end{array}$	0.0243 0.0285 0.0298 0.0255 0.0253 0.0279 0.0367 0.0321 0.0396 0.0843	Total TCDF Total PeCDF Total HxCDF Total HpCDF	12.7 10.5 14.2 25.4			
Internal Standards 13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HxCDD 13C-2,3,7,8-TCDF 13C-2,3,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,7,8,9-HyCDF 13C-1,2,3,4,7,8,9-HyCDF 13C-0,2DF	% Rec 100 85.4 93.0 81.8 68.3 56.9 106 81.9 80.3 84.6 86.4 86.1 83.6 71.2 78.7 57.1	QC Limits 25.0 - 164 25.0 - 181 32.0 - 141 28.0 - 130 23.0 - 140 17.0 - 157 24.0 - 169 24.0 - 185 21.0 - 178 26.0 - 152 26.0 - 123 28.0 - 136 29.0 - 147 28.0 - 138 17.0 - 157	Qual		A lsc sig B An C Ch D Pre DNQ An E An F An J An M Ma ND An NP Nc S Sa X Ma X Re	atopic Labeled St inal to noise ratio alyte is present in emical Interferent esence of Dipher alyte concentrationalyte concentrationalyte alyte concentrationalyte concentrationalyte concentrationalyte concentrationalyte concentrationalyte Not Detected alyte Not Detected the Provided e-filtered through mple acceptances atrix interferences usult taken from content of the second content of the second second second second second second associated at the second sec	andard outsid is >10:1 n Method Bla nce nyl Ethers on is below c on is above c n on seconda on is below c concentration ed at Detection a Whatman e criteria not r s	de QC range ink alibration ra ary column alibration ra on Limit Lev 0.7um GF/F met ajection	e but ange ange el filter	
37CI-2,3,7,8-TCDD	97.5	35.0 - 197								

Analyst: 4/25/2018 Date:

0 Reviewed By: Date: 4/26/2018

FAL ID: 11426-007-SA Client ID: SP2-7 Matrix: Solid Batch No: X4479	Date Extracted: 04-19-2018 Date Received: 04-05-2018 Amount: 5.04 g % Solids: 94.30			d: 04-19-2018 ICal: PCDDFAL3-12-22-17 d: 04-05-2018 GC Column: DB5MS g Units: pg/g 10			Acquired: 04-21-2018 2005 WHO TEQ: 2.45 Basis: Dry Weight			
Compound	Cond	c DL	Qual	2005 WHO Tox	MDL	Compound	Conc	DL	Qual	
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD 0CDD	NE 0.35 ⁻ 0.685 0.618 15.4 126	0 0.186 0 0.233 1 - 5 - 8 - 4 - 5 - 5 - 4 - 5 -	J J J	0.0351 0.0685 0.0618 0.154 0.0378	0.0315 0.0468 0.0503 0.0490 0.0488 0.0541 0.0888	Total TCDD Total PeCDD Total HxCDD Total HxCDD	0.371 0.969 6.62 30.5		J J,M	
2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF 0,00000000000000000000000000000000000	1.66 0.618 2.7(5.26 1.55 1.55 1.56 5.68 1.48 11.6	6 - 3 - 6 - 3 - 5 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 -	Մ Մ Մ Մ	0.166 0.0185 0.810 0.526 0.183 0.155 0.155 0.156 0.0568 0.0145 0.00348	0.0243 0.0285 0.0298 0.0255 0.0253 0.0279 0.0367 0.0321 0.0396 0.0843	Total TCDF Total PeCDF Total HxCDF Total HpCDF	12.8 15.3 19.6 15.2	- - -		
Internal Standards 13C-2,3,7,8-PCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HxCDF 13C-2,3,7,8-PCDF 13C-1,2,3,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,7,8,9-HyCDF 13C-1,2,3,4,7,8-HyCDF 13C-1,2,3,4,7,8,9-HyCDF 13C-1,2,3,4,7,8-HyCDF 13C-1,2,3,4,7,8-HyCDF 13C-1,2,3,4,7,8-HyCDF 13C-1,2,3,4,7,8-HyCDF 13C-1,2,3,4,7,8-HyCDF 13C-1,2,3,4,7,8-HyCDF 13C-1,2,3,4,7,8-HyCD	% Rec 99.8 86.1 91.2 96.6 80.9 69.5 103 85.2 82.8 96.1 104 97.4 99.3 85.3 93.8 71.5	QC Limits 25.0 - 164 25.0 - 181 32.0 - 141 28.0 - 130 23.0 - 140 17.0 - 157 24.0 - 169 24.0 - 185 21.0 - 185 21.0 - 178 26.0 - 152 26.0 - 123 28.0 - 136 29.0 - 147 28.0 - 143 26.0 - 138 17.0 - 157	Qual		A Isi B Ar C CI D Pr DNQ Ar E Ar J Ar M M ND Ar NP No P Pr S Sa X M X Ro	btopic Labeled St gnal to noise rationalyte is present in nemical Interferent reserve of Diphent nalyte concentrationalyte concentrationalyte concentrationalyte concentrationalyte concentrationalyte concentrationalyte Not Detects that yet a concentrationalyte Not Detects of Provided re-filtered through ample acceptance atrix interferences esult taken from content of the concentrational taken from content of taken fro	andard outs o is >10:1 n Method Bl nce nyl Ethers ion is below ion is above n on second on is below concentratio ed at Detect a a Whatmar e criteria not s lilution or rei	ide QC rang ank calibration ra calibration ra lary column calibration ra on ion Limit Lev n 0.7um GF/f met njection	e but ange ange ange rel = filter	
37CI-2,3,7,8-TCDD	88.9	35.0 - 197								

Analyst: 4/25/2018 Date:

0 Reviewed By: Date: 4/26/2018

FAL ID: 11426-008-SA Client ID: SP2-8 Matrix: Solid Batch No: X4479	Date Extracted: 04-19-2018 Date Received: 04-05-2018 Amount: 5.01 g % Solids: 96.02			ICal: PCD GC Colun Units: pg/	ICal: PCDDFAL3-12-22-17 GC Column: DB5MS Units: pg/g			Acquired: 04-21-2018 2005 WHO TEQ: 2.57 Basis: Dry Weight		
Compound	Conc	c DL	Qual	2005 WHO Tox	MDL	Compound	Conc	DL	Qual	
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD 0CDD	ND 0.487 0.602 1.78 1.22 41.4 358	0.212	J J J	0.487 0.0602 0.178 0.122 0.414 0.107	0.0315 0.0468 0.0503 0.0490 0.0488 0.0541 0.0888	Total TCDD Total PeCDD Total HxCDD Total HpCDD	0.491 3.77 15.4 79.8	- - -	J J,M	
2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF 0,00000000000000000000000000000000000	2.47 0.486 1.40 1.67 1.17 0.815 0.489 8.92 1.21 24.3		F J J J J J	0.247 0.0146 0.420 0.167 0.117 0.0815 0.0489 0.0892 0.0121 0.00729	0.0243 0.0285 0.0298 0.0255 0.0253 0.0279 0.0367 0.0321 0.0396 0.0843	Total TCDF Total PeCDF Total HxCDF Total HpCDF	13.9 10.6 13.3 24.3	- - -		
Internal Standards 13C-2,3,7,8-PCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HxCDD 13C-2,3,7,8-PCDF 13C-1,2,3,7,8-PCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HyCDF 13C-1,2,3,4,7,8-HyCDF 13C-1,2,3,4,7,8-HyCDF 13C-1,2,3,4,7,8-HyCDF 13C-1,2,3,4,7,8-HyCDF 13C-1,2,3,4,7,8-HyCDF 13C-1,2,3,4,7,8-HyCDF 13C-1,2,3,4,7,8-HyCDF 13C-1,2,3,4,7,8-HyCDF 13C-1,2,3,4,7,8-HyCDF 13C-1,2,3,4,7,8-HyCDF 13C-1,2,3,4,7,8-HyCDF 13	% Rec 94.2 79.9 85.6 87.6 71.6 64.6 99.0 76.0 72.3 89.4 94.9 91.4 88.6 79.0 87.5 64.8	QC Limits 25.0 - 164 25.0 - 181 32.0 - 141 28.0 - 130 23.0 - 140 17.0 - 157 24.0 - 169 24.0 - 185 21.0 - 185 21.0 - 178 26.0 - 152 26.0 - 123 28.0 - 136 29.0 - 147 28.0 - 138 17.0 - 157	Qual		AIso sigBAn:CCDNQAn:EAn:FAn:JAn:MMaNDAn:NPNoPPresSSaXMa*Re	topic Labeled Sta nal to noise ratio alyte is present ir emical Interferen esence of Diphen alyte concentratio alyte concentratio alyte concentratio alyte concentratio alyte concentratio alyte concentratio alyte Not Detected t Provided e-filtered through mple acceptances sult taken from d	andard outsid is >10:1 n Method Bla ce yl Ethers on is below c on is above c n on seconda on is below c concentration ed at Detection a Whatman criteria not r	de QC range nk alibration ra alibration ra ary column alibration ra n Di Limit Lev 0.7um GF/F net jection	e but ange ange el filter	
37CI-2,3,7,8-TCDD	86.6	35.0 - 197								

Analyst: 4/25/2018 Date:

0 Reviewed By: Date: 4/26/2018

FAL ID: 11426-009-SA Client ID: SP2-9 Matrix: Solid Batch No: X4479	Date Extracted: 04-19-2018 Date Received: 04-05-2018 Amount: 5.00 g % Solids: 93.81			ICal: PCD GC Colun Units: pg/	DFAL3-12-22 nn: DB5MS g	2-17	Acquired: 04- 2005 WHO T Basis: Dry W	21-2018 EQ: 3.43 eight	
Compound	Con	c DL	Qual	2005 WHO Tox	MDL	Compound	Conc	DL	Qual
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD 0CDD	NI 0.80 0.71 2.0 1.6 46. 30	D 0.165 9 - 6 - 7 - 6 - 9 -	1 1 1	0.809 0.0719 0.206 0.167 0.466 0.0927	0.0315 0.0468 0.0503 0.0490 0.0488 0.0541 0.0888	Total TCDD Total PeCDD Total HxCDD Total HxCDD	0.523 4.41 21.4 90.0	- - -	J J,M
2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF 1,2,3,4,7,8,9-HpCDF	4.3 0.69 1.9 1.9 1.1 1.0 0.50 9.0 0.82 14.0	2 - 9 - 5 - 5 - 5 - 7 - 8 - 0 -	F J J J J J	0.432 0.0210 0.597 0.196 0.115 0.104 0.0505 0.0907 0.00828 0.00420	0.0243 0.0285 0.0298 0.0255 0.0253 0.0279 0.0367 0.0321 0.0396 0.0843	Total TCDF Total PeCDF Total HxCDF Total HpCDF	21.8 15.5 15.3 20.5		М
Internal Standards 13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,7,8-PeCDF 13C-2,3,7,8-PeCDF 13C-2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF	% Rec 93.1 84.6 81.2 90.3 74.0 62.8 95.3 77.4 76.2 91.7 98.8 91.5 92.0 80.0 86.6 67.6	QC Limits 25.0 - 164 25.0 - 181 32.0 - 141 28.0 - 130 23.0 - 140 17.0 - 157 24.0 - 169 24.0 - 185 21.0 - 178 26.0 - 123 28.0 - 123 28.0 - 136 29.0 - 147 28.0 - 138 17.0 - 157	Qual		A Isc sig B An C Cr D Pr DNQ An E An F An J An M Ma ND An NP No S Sa X Ma * Re	otopic Labeled St gnal to noise ratic nalyte is present i nemical Interferer esence of Dipher nalyte concentrati nalyte concentrationalyte concentrationalyte concentrationalyte concentrationalyte concentrationalyte nalyte concentrationalyte concentrationalyte concentrationalyte nalyte concentrationalyte concentratio	andard outsion is >10:1 n Method Bla nce nyl Ethers ion is below co ion is below co ion is below co concentration ed at Detection a Whatman e criteria not n s dilution or rein	de QC range ink calibration ra calibration ra alibration ra n on Limit Lev 0.7um GF/F met njection	e but inge ange el filter
37CI-2,3,7,8-TCDD	85.7	35.0 - 197							

Analyst: 4/25/2018 Date:

0 Reviewed By: Date: 4/26/2018

FAL ID: 11426-010-SA Client ID: SP2-10 Matrix: Solid Batch No: X4479	Date Extracted: 04-19-2018ICal: PCDDate Received: 04-05-2018GC ColumAmount: 5.01 gUnits: pg/g% Solids: 92.69%			DFAL3-12-2 nn: DB5MS g	2-17 / 2 E	Acquired: 04-21-2018 2005 WHO TEQ: 1.08 Basis: Dry Weight			
Compound	Cor	nc DL	Qual	2005 WHO Tox	MDL	Compound	Conc	DL	Qual
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD 0CDD	N N 0.77 0.51 15 13	ID 0.170 ID 0.244 ID 0.267 72 - 15 - .3 - 32 -	IJ	0.0772 0.0515 0.153 0.0396	0.0315 0.0468 0.0503 0.0490 0.0488 0.0541 0.0888	Total TCDD Total PeCDD Total HxCDD Total HpCDD	ND 0.350 5.24 28.9	0.170 - - -	J
2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF 0,2DF	1.3 0.31 0.75 1.1 0.93 0.61 0.45 6.4 0.75 8.5	34 - 13 - 58 - 14 - 33 - 53 - 53 - 66 - 97 - 97 -	ן ר ר ר ר	0.134 0.00939 0.227 0.114 0.0933 0.0617 0.0453 0.0646 0.00797 0.00269	0.0243 0.0285 0.0298 0.0255 0.0253 0.0279 0.0367 0.0321 0.0396 0.0843	Total TCDF Total PeCDF Total HxCDF Total HpCDF	7.51 5.33 7.31 12.2		
Internal Standards 13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-2,3,7,8-PeCDF 13C-1,2,3,7,8-PeCDF 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-2,3,4,6,7,8-HxCDF 13C-2,3,4,6,7,8-HxCDF 13C-2,3,4,6,7,8-HxCDF 13C-2,3,4,6,7,8-HxCDF 13C-2,3,4,6,7,8-HxCDF 13C-2,3,4,6,7,8-HxCDF 13C-2,3,4,6,7,8-HxCDF 13C-2,3,4,6,7,8-HxCDF 13C-2,3,4,6,7,8-HxCDF 13C-2,3,4,6,7,8-HxCDF 13C-2,3,4,6,7,8-HxCDF 13C-2,3,4,6,7,8-HxCDF 13C-2,3,4,6,7,8-HxCDF 13C-2,2,3,4,6,7,8-HxCDF 13C-1,2,3,7,8,9-HyCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,7,8,9-HyCDF 13C-1,2,3,4,7,8,9-HyCDF 13C-1,2,3,4,7,8,9-HyCDF 13C-1,2,3,4,7,8,9-HyCDF 13C-1,2,3,4,7,8,9-HyCDF 13C-1,2,3,4,7,8,9-HyCDF 13C-1,2,3,4,7,8,9-HyCDF 13C-1,2,3,4,7,8,9-HyCDF 13C-0,2,4,4,7,8,9-HyCDF 13C-0,2,	% Rec 98.4 86.1 92.4 90.7 73.5 60.7 101 82.0 82.7 94.1 96.8 95.2 95.3 80.1 89.7 66.1	QC Limits 25.0 - 164 25.0 - 181 32.0 - 141 28.0 - 130 23.0 - 140 17.0 - 157 24.0 - 169 24.0 - 169 24.0 - 185 21.0 - 178 26.0 - 152 26.0 - 123 28.0 - 136 29.0 - 147 28.0 - 138 17.0 - 157	Qual		A Isc sig B Ar C Cr D Pr DNQ Ar E Ar F Ar J Ar ND Ar NP No P Pr S Sa X Ma * Re	btopic Labeled Sta gnal to noise ratio halyte is present in hemical Interferen esence of Dipher halyte concentration halyte concentrati	andard outsi is >10:1 n Method Bla nce nyl Ethers on is below o on is below o concentratio ed at Detection a Whatman e criteria not s	de QC range ank calibration ra calibration ra ary column calibration ra n on Limit Lev 0.7um GF/F met njection	e but ange ange el ⁻ filter
37CI-2,3,7,8-TCDD	97.8	35.0 - 197							

Analyst: 4/25/2018 Date:

0 Reviewed By: Date: 4/26/2018

Client ID: SP2-11 Matrix: Solid Batch No: X4479	Date E Date R Amour % Solio	ixtracted: 04-1 Received: 04-0 ht: 5.01 g ds: 91.92	19-2018 05-2018	ICal: PCDI GC Colum Units: pg/g	DFAL3-12-22 in: DB5MS 3	2-17 A 2 B	cquired: 04- 005 WHO T asis: Dry W	21-2018 EQ: 1.75 eight	
Compound	Conc	DL	Qual	2005 WHO Tox	MDL	Compound	Conc	DL	Qual
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD 0CDD	ND 0.401 0.496 1.42 0.911 31.0 262	0.189 - - - - - -	1 1 1	0.401 0.0496 0.142 0.0911 0.310 0.0786	0.0315 0.0468 0.0503 0.0490 0.0488 0.0541 0.0888	Total TCDD Total PeCDD Total HxCDD Total HpCDD	ND 3.26 13.6 61.4	0.189 - - -	J,M
2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,4,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF 1,2,3,4,7,8,9-HpCDF OCDF	1.66 0.294 0.785 0.711 0.617 0.612 ND 6.04 0.628 14.0	0.347	Մ Մ Մ Մ	0.166 0.00882 0.236 0.0711 0.0617 0.0617 0.0612 - 0.0604 0.00628 0.00420	0.0243 0.0285 0.0298 0.0255 0.0253 0.0279 0.0367 0.0321 0.0396 0.0843	Total TCDF Total PeCDF Total HxCDF Total HpCDF	9.31 7.08 8.60 15.9		
Internal Standards 13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-2,3,7,8-PeCDF 13C-1,2,3,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,7,8,9-HyCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,7,8,9-HyCDF 13C-1,2,3,4,7	% Rec 99.4 102 91.3 97.4 81.3 72.6 105 94.5 90.1 101 101 103 93.2 101 77.8	QC Limits 25.0 - 164 25.0 - 181 32.0 - 141 28.0 - 130 23.0 - 140 17.0 - 157 24.0 - 169 24.0 - 185 21.0 - 178 26.0 - 152 26.0 - 123 28.0 - 138 29.0 - 147 28.0 - 143 26.0 - 138 17.0 - 157	Qual		A Isc sig B An C Ch D Pro DNQ An E An F An J An M Ma ND An ND An NP No P Pro S Sa X Ma * Re	atopic Labeled Sta nal to noise ratio alyte is present in emical Interference esence of Diphen- alyte concentration alyte concentration alyte concentration alyte concentration alyte concentration alyte Not Detected the Provided e-filtered through ample acceptance atrix interferences esult taken from di	Indard outsid is >10:1 Method Bla ce yl Ethers in is below co in is above co on seconda in is below co concentration d at Detection a Whatman criteria not r lution or rein	de QC range ink alibration ra ary column alibration ra on Limit Lev 0.7um GF/F met ijection	e but ange ange el filter

Analyst: 4/25/2018 Date:

0 Reviewed By: Date: 4/26/2018

FAL ID: 11426-012-SA Client ID: SP2-12 Matrix: Solid Batch No: X4479	Date Date Amou % Sol	Extracted: 04- Received: 04-0 Int: 5.01 g Iids: 93.26	19-2018)5-2018	ICal: PCI GC Colur Units: pg/	DDFAL3-12-2: nn: DB5MS /g	2-17	Acquired: 04 2005 WHO T Basis: Dry W	-21-2018 EQ: 2.21 /eight	
Compound	Cond	c DL	Qual	2005 WHO Tox	MDL	Compound	Conc	DL	Qual
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD 0CDD	NE 0.444 1.3 0.957 25.9 225	0 0.199 0 0.308 4 - 1 - 7 - 9 - 5 -	J J J	0.0444 0.131 0.0957 0.259 0.0675	0.0315 0.0468 0.0503 0.0490 0.0488 0.0541 0.0888	Total TCDD Total PeCDD Total HxCDD Total HpCDD	0.457 1.40 11.1 50.4		J J,M
2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF 0CDF	4.13 0.542 2.04 2.32 0.924 0.986 0.638 7.25 0.813 15.4	3 - 2 - 4 - 2 - 4 - 3 - 3 - 3 - 4 - 3 - 4 -	F J J J J J	0.413 0.0163 0.612 0.032 0.0924 0.0986 0.0638 0.0725 0.00813 0.00462	0.0243 0.0285 0.0298 0.0255 0.0253 0.0279 0.0367 0.0321 0.0396 0.0843	Total TCDF Total PeCDF Total HxCDF Total HpCDF	19.5 12.5 14.0 18.2		
Internal Standards 13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-2,3,7,8-PeCDF 13C-1,2,3,7,8-PeCDF 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,7,8,9-HyCDF 13C-1	% Rec 87.1 83.7 81.8 86.3 69.5 53.7 89.5 73.1 71.2 89.9 98.8 89.0 90.0 78.7 81.5 59.1	QC Limits 25.0 - 164 25.0 - 181 32.0 - 141 28.0 - 130 23.0 - 140 17.0 - 157 24.0 - 169 24.0 - 169 24.0 - 169 24.0 - 169 24.0 - 178 26.0 - 152 26.0 - 123 28.0 - 132 28.0 - 143 26.0 - 138 17.0 - 157	Qual		A lsc sig B Ar C Cr D Pr DNQ Ar E Ar F Ar J Ar ND Ar NP Nc P Pr S Sa X Ma * Re	btopic Labeled St gnal to noise ratio halyte is present i hemical Interferer esence of Dipher halyte concentratio halyte concentratio halyte concentratio halyte concentratio halyte concentratio halyte concentratio halyte concentration halyte concentration halyt	andard outsi b is >10:1 n Method Bla nce nyl Ethers on is below of on is above on on second on is below of concentratio ed at Detecti a a Whatman e criteria not s lilution or rein	de QC range ank calibration ra calibration ra ary column calibration ra n on Limit Lev 0.7um GF/F met njection	e but ange ange el - filter
37CI-2,3,7,8-TCDD	85.3	35.0 - 197							I

Analyst: 4/25/2018 Date:

0 Reviewed By: Date: 4/26/2018

ANALYTICAL LABORATORY	Frontier Analytic 5172 Hillsdale C El Dorado Hills, Tel: 916-934-09 Fax: 916-934-09	cal Laborato Circle CA 95762 00 99	ry	<i>FAL</i> Labo Tem	<i>USE</i> orator perati	E <i>ON</i> y Pro ure: _	ILY Dject	No.: }	^ °(<u>\4</u>	<u>9</u> 1	Ľ			Ch www Pleas	ai front se Pr	n of Custody tieranalytical.com int in Pen Page of
CLIENT INFORMATI Company Name: Brusca Contact Name: Joe Brusca Address: PO Box 332, Ro Phone: 916-677-1470 Email: jbrusca@bruscaas	ON Associates, Inc. a useville, CA 95661 Fax: sociates.com		IN Co Co Ad Pho Em	WOIC mpany ntact N ldress: one: nail:	E INF Name ame:	F ORN e: <u>Sar</u>	MAT ne	ION Fax	(if diff	erent fi	rom cli	ent inf	o) I I I I I I I I I I I I I I I I I I I	PROJ FAL C P.O. # Projec Projec ΓΑΤ (* FAL	ECT 2uote : t #: t Nan busine , mus ²	INF #: 3: 137 ne: _1 ss day: t agre	ORMATION 310 2 - 002 4 - 002 3 -
REPORT INFORMAT Report Level: I/II EDD: FAL Othe	ION III IV Basic Geot r: Custo	racker om: Contact	FAL	REPOI Hard CD (Ema	RT DI lcopy (.pdf i il (.pd	ISTR nclud lf incl	IBU ling E luding	TION DDs g EDI	N (em if rec Ds if	ail on jueste reque	ly is p ed) sted)	orefer	rred)			AD	DITIONAL INSTRUCTIONS
System #: Sampler:	Source #: Employer:	Date	L Time	Mat	trix	of containers	PA 1613**	PA 8290**	LM 02.0	PA 8280**	ppendix IX	A TO-9/9A	PA 23/23A	PA 1668	AL 15	ther	**CONGENERS **TEQ 2,3,7,8-TCDD only 1998 WHO 2,3,7,8-TCDD/F only ✓ 2005 WHO ✓ PCDD/F (Cl₄-Cl ₈) Other
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Collec 4-/5/19	ted 8:54 8:57 9:02 9:04 9:08 9:08 9:08 9:14 9:18 9:21 9:24 9:26 9:29												E		Remarks
Relinquished by: (Sign	Samples ature and Printed N	will be dispos ame)	ed of 90 da	1ys after s	ample Date 5/19		Tim 3:4	e 6	Rece	eived	s have by: (been m Signa	ture a	nd agree and Pr	ed upor inted	n in wi Nam	riting. e) Date Time $H \leq I \leq I \leq 1$

Client understands that all terms described in the proposals, quotations, and/or the general terms provided in the current FAL price schedules Will/be^ffollowed.^U FAL reserves the rights to terminate its service or withhold delivery of reports, if in FAL's sole discretion the terms of the project have been broken.

White Copy – Report Yellow Copy – Laboratory

Frontier Analytical Laboratory

Sample Login Form

FAL Project ID: 11426

Client:	Brusca Associates, Inc.
Client Project ID:	137-002
Date Received:	04/05/2018
Time Received:	01:46 pm
Received By:	KZ
Logged In By:	KZ
# of Samples Received:	12
Duplicates:	0
Storage Location:	R-4

Method of Delivery:	Courier
Tracking Number:	NA
Shipping Container Received Intact	Yes
Custody seals(s) present?	No
Custody seals(s) intact?	No
Sample Arrival Temperature (C)	0
Cooling Method	lce
Chain Of Custody Present?	Yes
Return Shipping Container To Client	Yes
Test aqueous sample for residual Chlorine	N/A
Sodium Thiosulfate Added	No
Adequate Sample Volume	Yes
Appropriate Sample Container	Yes
pH Range of Aqueous Sample	N/A
Anomalies or additional comments:	

PROVIDING QUALITY ANALYTICAL SERVICES NATIONWIDE

13 April 2018

Joe Brusca Brusca Associates Inc. PO Box 332 Roseville, CA 95661 RE: Lathrop 48-Ac Property

Enclosed are the results of analyses for samples received by the laboratory on 04/06/18 10:00. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Mike Jaroudi Project Manager

Brusca Associates Inc.	Project: Lathrop 48-Ac Property	
PO Box 332	Project Number: 137-002	Reported:
Roseville CA, 95661	Project Manager: Joe Brusca	04/13/18 15:53

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
SP2-1	T181179-01	Soil	04/05/18 08:54	04/06/18 10:00
SP2-2	T181179-02	Soil	04/05/18 08:57	04/06/18 10:00
SP2-3	T181179-03	Soil	04/05/18 08:59	04/06/18 10:00
SP2-4	T181179-04	Soil	04/05/18 09:02	04/06/18 10:00
SP2-5	T181179-05	Soil	04/05/18 09:04	04/06/18 10:00
SP2-6	T181179-06	Soil	04/05/18 09:08	04/06/18 10:00
SP2-7	T181179-07	Soil	04/05/18 09:14	04/06/18 10:00
SP2-8	T181179-08	Soil	04/05/18 09:18	04/06/18 10:00
SP2-9	T181179-09	Soil	04/05/18 09:21	04/06/18 10:00
SP2-10	T181179-10	Soil	04/05/18 09:24	04/06/18 10:00
SP2-11	T181179-11	Soil	04/05/18 09:26	04/06/18 10:00
SP2-12	T181179-12	Soil	04/05/18 09:29	04/06/18 10:00

SunStar Laboratories, Inc.

Brusca Associates Inc.	Project: Lathrop 48-Ac Property	
PO Box 332	Project Number: 137-002	Reported:
Roseville CA, 95661	Project Manager: Joe Brusca	04/13/18 15:53

DETECTIONS SUMMARY

Sample ID: SP2-1	Laboratory ID:		T181179-01					
Reporting								
Analyte	Result	Limit	Units	Method	Notes			
C13-C28 (DRO)	62	10	mg/kg	EPA 8015B				
C29-C40 (MORO)	59	10	mg/kg	EPA 8015B				
Barium	58	1.0	mg/kg	EPA 6010B				
Chromium	6.2	2.0	mg/kg	EPA 6010B				
Cobalt	4.9	2.0	mg/kg	EPA 6010B				
Copper	5.2	1.0	mg/kg	EPA 6010B				
Lead	13	3.0	mg/kg	EPA 6010B				
Nickel	5.9	2.0	mg/kg	EPA 6010B				
Vanadium	20	5.0	mg/kg	EPA 6010B				
Zinc	33	1.0	mg/kg	EPA 6010B				
Mercury	0.52	0.10	mg/kg	EPA 7471A Soil				
PCB-1260	29	10	ug/kg	EPA 8082				

Sample ID: SP2-2	Laborat	Laboratory ID:			
		Reporting			
Analyte	Result	Limit	Units	Method	Notes
C13-C28 (DRO)	24	10	mg/kg	EPA 8015B	
C29-C40 (MORO)	42	10	mg/kg	EPA 8015B	
Barium	55	1.0	mg/kg	EPA 6010B	
Chromium	5.5	2.0	mg/kg	EPA 6010B	
Cobalt	4.7	2.0	mg/kg	EPA 6010B	
Copper	3.5	1.0	mg/kg	EPA 6010B	
Lead	11	3.0	mg/kg	EPA 6010B	
Nickel	5.3	2.0	mg/kg	EPA 6010B	
Vanadium	20	5.0	mg/kg	EPA 6010B	
Zinc	29	1.0	mg/kg	EPA 6010B	
PCB-1016	66	10	ug/kg	EPA 8082	
PCB-1260	72	10	ug/kg	EPA 8082	

SunStar Laboratories, Inc.

SunStar Laboratories, Inc. Providing Quality Analytical Services Nationwide

25712 Commercentre Drive Lake Forest, California 92630 949.297.5020 Phone 949.297.5027 Fax

Brusca Associates Inc.	Project: Lathrop 48-Ac Property	
PO Box 332	Project Number: 137-002	Reported:
Roseville CA, 95661	Project Manager: Joe Brusca	04/13/18 15:53

Sample ID: SP2-3	Laborate	T181179-03			
		Reporting			
Analyte	Result	Limit	Units	Method	Notes
C13-C28 (DRO)	18	10	mg/kg	EPA 8015B	
C29-C40 (MORO)	55	10	mg/kg	EPA 8015B	
Barium	63	1.0	mg/kg	EPA 6010B	
Chromium	6.7	2.0	mg/kg	EPA 6010B	
Cobalt	4.2	2.0	mg/kg	EPA 6010B	
Copper	5.5	1.0	mg/kg	EPA 6010B	
Nickel	6.2	2.0	mg/kg	EPA 6010B	
Vanadium	22	5.0	mg/kg	EPA 6010B	
Zinc	33	1.0	mg/kg	EPA 6010B	
PCB-1254	36	10	ug/kg	EPA 8082	

Sample ID: SP2-4	Laboratory ID:		T181179-04		
		Reporting			
Analyte	Result	Limit	Units	Method	Notes
C13-C28 (DRO)	94	10	mg/kg	EPA 8015B	
C29-C40 (MORO)	69	10	mg/kg	EPA 8015B	
Barium	62	1.0	mg/kg	EPA 6010B	
Chromium	6.5	2.0	mg/kg	EPA 6010B	
Cobalt	4.9	2.0	mg/kg	EPA 6010B	
Copper	5.5	1.0	mg/kg	EPA 6010B	
Lead	9.8	3.0	mg/kg	EPA 6010B	
Nickel	6.6	2.0	mg/kg	EPA 6010B	
Vanadium	22	5.0	mg/kg	EPA 6010B	
Zinc	30	1.0	mg/kg	EPA 6010B	
PCB-1260	77	10	ug/kg	EPA 8082	

Sai	mple ID: SP2-5	Laboratory ID:		T181179-05				
Reporting								
	Analyte	Result	Limit	Units	Method	Notes		
	C13-C28 (DRO)	51	10	mg/kg	EPA 8015B			
	C29-C40 (MORO)	46	10	mg/kg	EPA 8015B			
	Barium	59	1.0	mg/kg	EPA 6010B			
	Chromium	6.2	2.0	mg/kg	EPA 6010B			
	Cobalt	4.4	2.0	mg/kg	EPA 6010B			
	Copper	5.6	1.0	mg/kg	EPA 6010B			

SunStar Laboratories, Inc.

Brusca Associates Inc.	Project: Lathrop 48-Ac Property	
PO Box 332	Project Number: 137-002	Reported:
Roseville CA, 95661	Project Manager: Joe Brusca	04/13/18 15:53

Sample ID: SP2-5	Laborate	Laboratory ID:			
		Reporting			
Analyte	Result	Limit	Units	Method	Notes
Lead	17	3.0	mg/kg	EPA 6010B	
Nickel	5.9	2.0	mg/kg	EPA 6010B	
Vanadium	18	5.0	mg/kg	EPA 6010B	
Zinc	31	1.0	mg/kg	EPA 6010B	
PCB-1260	32	10	ug/kg	EPA 8082	
Pyrene	950	300	ug/kg	EPA 8270C	
Benzo (a) anthracene	340	300	ug/kg	EPA 8270C	
Chrysene	440	300	ug/kg	EPA 8270C	
Fluoranthene	880	300	ug/kg	EPA 8270C	
Phenanthrene	530	300	ug/kg	EPA 8270C	

ple ID: SP2-6	Labora	Laboratory ID: T			
		Reporting			
Analyte	Result	Limit	Units	Method	Notes
C13-C28 (DRO)	90	10	mg/kg	EPA 8015B	
C29-C40 (MORO)	49	10	mg/kg	EPA 8015B	
Barium	68	1.0	mg/kg	EPA 6010B	
Chromium	7.1	2.0	mg/kg	EPA 6010B	
Cobalt	5.0	2.0	mg/kg	EPA 6010B	
Copper	5.7	1.0	mg/kg	EPA 6010B	
Lead	13	3.0	mg/kg	EPA 6010B	
Nickel	7.5	2.0	mg/kg	EPA 6010B	
Vanadium	24	5.0	mg/kg	EPA 6010B	
Zinc	33	1.0	mg/kg	EPA 6010B	
PCB-1260	58	10	ug/kg	EPA 8082	
Pyrene	1200	300	ug/kg	EPA 8270C	
Benzo (a) anthracene	490	300	ug/kg	EPA 8270C	
Benzo (b) fluoranthene	410	300	ug/kg	EPA 8270C	
Chrysene	570	300	ug/kg	EPA 8270C	
Fluoranthene	1100	300	ug/kg	EPA 8270C	
Phenanthrene	750	300	ug/kg	EPA 8270C	

Sample ID:	SP2-7	Laborat	Laboratory ID:			
			Reporting			
Analyte		Result	Limit	Units	Method	Notes

SunStar Laboratories, Inc.

SunStar Laboratories, Inc. Providing Quality Analytical Services Nationwide

GD2 7

6.....I. ID.

25712 Commercentre Drive Lake Forest, California 92630 949.297.5020 Phone 949.297.5027 Fax

Brusca Associates Inc.	Project: Lathrop 48-Ac Property	
PO Box 332	Project Number: 137-002	Reported:
Roseville CA, 95661	Project Manager: Joe Brusca	04/13/18 15:53

т 1

ID

T101170.07

Sample ID: SP2-7	Laborate	ory ID:	11811/9-0/		
		Reporting			
Analyte	Result	Limit	Units	Method	Notes
C13-C28 (DRO)	60	10	mg/kg	EPA 8015B	
C29-C40 (MORO)	57	10	mg/kg	EPA 8015B	
Barium	58	1.0	mg/kg	EPA 6010B	
Chromium	6.0	2.0	mg/kg	EPA 6010B	
Cobalt	4.6	2.0	mg/kg	EPA 6010B	
Copper	4.1	1.0	mg/kg	EPA 6010B	
Nickel	6.4	2.0	mg/kg	EPA 6010B	
Vanadium	22	5.0	mg/kg	EPA 6010B	
Zinc	24	1.0	mg/kg	EPA 6010B	
PCB-1260	86	10	ug/kg	EPA 8082	

Sample ID: SP2-8	Laborate	Laboratory ID: T181179-08			
		Reporting			
Analyte	Result	Limit	Units	Method	Notes
C13-C28 (DRO)	170	10	mg/kg	EPA 8015B	
C29-C40 (MORO)	120	10	mg/kg	EPA 8015B	
Barium	61	1.0	mg/kg	EPA 6010B	
Chromium	5.5	2.0	mg/kg	EPA 6010B	
Cobalt	4.4	2.0	mg/kg	EPA 6010B	
Copper	6.5	1.0	mg/kg	EPA 6010B	
Lead	11	3.0	mg/kg	EPA 6010B	
Nickel	5.1	2.0	mg/kg	EPA 6010B	
Vanadium	16	5.0	mg/kg	EPA 6010B	
Zinc	27	1.0	mg/kg	EPA 6010B	
PCB-1260	58	10	ug/kg	EPA 8082	

Sa	mple ID: SP2-9	Laboratory ID:		T181179-09			
	Reporting						
	Analyte	Result	Limit	Units	Method	Notes	
	C13-C28 (DRO)	370	10	mg/kg	EPA 8015B		
	C29-C40 (MORO)	380	10	mg/kg	EPA 8015B		
	Barium	52	1.0	mg/kg	EPA 6010B		
	Chromium	5.5	2.0	mg/kg	EPA 6010B		
	Cobalt	5.6	2.0	mg/kg	EPA 6010B		
	Copper	8.5	1.0	mg/kg	EPA 6010B		

SunStar Laboratories, Inc.

SunStar Laboratories, Inc. PROVIDING QUALITY ANALYTICAL SERVICES NATIONWIDE

25712 Commercentre Drive Lake Forest, California 92630 949.297.5020 Phone 949.297.5027 Fax

Brusca Associates Inc.		Project:				
PO Box 332		Project Number:	Reported:			
Roseville CA, 95661		Project Manager:	Joe Brusca			04/13/18 15:53
Sample ID: S	SP2-9	Lab	ooratory ID:	T181179-09		
			Reporting			
Analyte		Result	Limit	Units	Method	Notes
Lead		32	3.0	mg/kg	EPA 6010B	
Nickel		9.5	2.0	mg/kg	EPA 6010B	
Vanadium		17	5.0	mg/kg	EPA 6010B	
Zinc		28	1.0	mg/kg	EPA 6010B	
PCB-1260		58	10	ug/kg	EPA 8082	
Sample ID: S	SP2-10	Lab	ooratory ID:	T181179-10		
			Reporting			
Analyte		Result	Limit	Units	Method	Notes
C13-C28 (DRO)	150	10	mg/kg	EPA 8015B	
C29-C40 (MOR	(O)	76	10	mg/kg	EPA 8015B	
Barium		61	1.0	mg/kg	EPA 6010B	
Chromium		6.1	2.0	mg/kg	EPA 6010B	
Cobalt		4.6	2.0	mg/kg	EPA 6010B	
Copper		4.1	1.0	mg/kg	EPA 6010B	
Nickel		6.2	2.0	mg/kg	EPA 6010B	
Vanadium		21	5.0	mg/kg	EPA 6010B	
Zinc		26	1.0	mg/kg	EPA 6010B	
PCB-1016		72	10	ug/kg	EPA 8082	
PCB-1260		45	10	ug/kg	EPA 8082	
Sample ID: S	SP2-11	Lab	ooratory ID:	T181179-11		
			Reporting			
Analyte		Result	Limit	Units	Method	Notes
C13-C28 (DRO)	110	10	mg/kg	EPA 8015B	
C29-C40 (MOR	.O)	68	10	mg/kg	EPA 8015B	
Barium		58	1.0	mg/kg	EPA 6010B	
Chromium		6.7	2.0	mg/kg	EPA 6010B	
Cobalt		4.4	2.0	mg/kg	EPA 6010B	
Copper		6.5	1.0	mg/kg	EPA 6010B	
Lead		17	3.0	mg/kg	EPA 6010B	
Nickel		6.4	2.0	mg/kg	EPA 6010B	
Vanadium		20	5.0	mg/kg	EPA 6010B	
Zinc		31	1.0	mg/kg	EPA 6010B	
PCB-1260		26	10	ug/kg	EPA 8082	

SunStar Laboratories, Inc.

Brusca Associates Inc.	Project: Lathrop 48-Ac Property	
PO Box 332	Project Number: 137-002	Reported:
Roseville CA, 95661	Project Manager: Joe Brusca	04/13/18 15:53

Sample ID: SP2-12	Laborat	ory ID:	T181179-12		
		Reporting			
Analyte	Result	Limit	Units	Method	Notes
C13-C28 (DRO)	140	10	mg/kg	EPA 8015B	
C29-C40 (MORO)	150	10	mg/kg	EPA 8015B	
Barium	58	1.0	mg/kg	EPA 6010B	
Chromium	5.8	2.0	mg/kg	EPA 6010B	
Cobalt	4.5	2.0	mg/kg	EPA 6010B	
Copper	5.8	1.0	mg/kg	EPA 6010B	
Lead	11	3.0	mg/kg	EPA 6010B	
Nickel	5.4	2.0	mg/kg	EPA 6010B	
Vanadium	17	5.0	mg/kg	EPA 6010B	
Zinc	29	1.0	mg/kg	EPA 6010B	
PCB-1260	61	10	ug/kg	EPA 8082	

SunStar Laboratories, Inc.

Mike Jaroudi, Project Manager

Brusca Associates Inc. PO Box 332 Roseville CA, 95661	Project: Lathrop 48-Ac Property Project Number: 137-002 Project Manager: Joe Brusca						Reported: 04/13/18 15:53		
		T181 1	SP2-1 179-01 (So	vil)					
		Poporting)					
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Extractable Petroleum Hydrocarb	oons by 8015B with Silica (Gel Cleanu	p						
C6-C12 (GRO)	ND	10	mg/kg	1	8040617	04/06/18	04/06/18	EPA 8015B	
C13-C28 (DRO)	62	10	"	"	"	"	"	"	
C29-C40 (MORO)	59	10	"	"	"	"	"	"	
Surrogate: p-Terphenyl		68.4 %	65-	135	"	"	"	"	
Metals by EPA 6010B									
Antimony	ND	3.0	mg/kg	1	8040616	04/06/18	04/09/18	EPA 6010B	
Silver	ND	2.0	"	"	"	"	"	"	
Arsenic	ND	5.0	"	"	"	"	"	"	
Barium	58	1.0	"	"	"	"	"	"	
Beryllium	ND	1.0	"	"	"	"	"	"	
Cadmium	ND	2.0	"	"	"	"	"	"	
Chromium	6.2	2.0	"	"	"	"	"	"	
Cobalt	4.9	2.0	"	"	"	"	"	"	
Copper	5.2	1.0	"	"	"	"	"	"	
Lead	13	3.0	"	"	"	"	"	"	
Molybdenum	ND	5.0	"	"	"	"	"	"	
Nickel	5.9	2.0	"	"	"	"	"	"	
Selenium	ND	5.0	"	"	"	"	"	"	
Thallium	ND	2.0	"	"	"	"	"	"	
Vanadium	20	5.0	"	"	"	"	"	"	
Zinc	33	1.0	"	"		"	"	"	
Cold Vapor Extraction EPA 7470/	7471								
Mercury	0.52	0.10	mg/kg	1	8040615	04/06/18	04/09/18	EPA 7471A Soil	

SunStar Laboratories, Inc.

Brusca Associates Inc.										
PO Box 332		Project Numb	er: 137-00)2				Reported:		
Roseville CA, 95661		Project Manag	ger: Joe Br	usca				04/13/18 15	:53	
		:	SP2-1							
		T1811	79-01 (So	oil)						
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes	
		SunStar L	aboratori	ies, Inc.						
Polychlorinated Biphenyls by EPA N	lethod 8082									
PCB-1016	ND	10	ug/kg	1	8040620	04/06/18	04/10/18	EPA 8082		
PCB-1221	ND	10	"	"	"	"		"		
PCB-1232	ND	10	"	"	"	"		"		
PCB-1242	ND	10	"	"	"	"		"		
PCB-1248	ND	10	"	"	"	"		"		
PCB-1254	ND	10	"	"	"	"		"		
PCB-1260	29	10	"	"	"	"		"		
Surrogate: Tetrachloro-meta-xylene		134 %	35-	140	"	"	"	"		
Surrogate: Decachlorobiphenyl		132 %	35-	140	"	"	"	"		
Somivolatile Organic Compounds by	FDA Mathad 8270C									
Carbazola	ND	300	ug/kg	1	8040619	04/06/18	04/11/18	EPA 8270C		
Phenol	ND	1000	ug/kg "	"	"	"	"	"		
Aniline	ND	300	"	"		"				
2-Chlorophenol	ND	1000	"	"		"				
1 4-Dichlorobenzene	ND	300	"	"		"				
N-Nitrosodi-n-propylamine	ND	300	"	"		"				
1.2.4-Trichlorobenzene	ND	300	"	"		"				
4-Chloro-3-methylphenol	ND	1000	"	"		"				
2-Methylnanhthalene	ND	300	"	"		"		"		
1-Methylnaphthalene	ND	300	"	"		"		"		
Acenaphthene	ND	300	"	"		"		"		
4-Nitrophenol	ND	1000	"	"		"		"		
2 4-Dinitrotoluene	ND	300	"	"		"		"		
Pentachlorophenol	ND	1000	"	"		"		"		
Pyrene	ND	300	"	"		"		"		
Acenaphthylene	ND	300	"	"		"		"		
Anthracene	ND	300	"	"		"		"		
Benzo (a) anthracene	ND	300	"	"		"	"			
Benzo (b) fluoranthene	ND	300	"	"		"	"			
Benzo (k) fluoranthene	ND	300	"	"		"		"		
Benzo (g.h.i) pervlene	ND	1000	"	"		"		"		
(0,,-) Per J terre	1.0	1000								

SunStar Laboratories, Inc.

Brusca Associates Inc. PO Box 332 Roseville CA, 95661		Proje Project Numb Project Manag	Reported: 04/13/18 15:53						
		T1811	SP2-1 79-01 (Se	oil)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aborator	ies, Inc.					
Semivolatile Organic Compounds by EP.	A Method 8270C								
Benzo (a) pyrene	ND	300	ug/kg	1	8040619	04/06/18	04/11/18	EPA 8270C	
Benzyl alcohol	ND	300	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	300	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	300	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	300	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	300	"	"	"	"	"	"	
4-Bromophenyl phenyl ether	ND	300	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	300	"	"	"	"	"	"	
4-Chloroaniline	ND	300	"	"	"	"	"	"	
2-Chloronaphthalene	ND	300	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether	ND	300	"	"	"	"	"	"	
Chrysene	ND	300	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	300	"	"	"	"	"	"	
Dibenzofuran	ND	300	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	300	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	300	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	300	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	1000	"	"	"	"	"	"	
Diethyl phthalate	ND	300	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	1000	"	"	"	"	"	"	
Dimethyl phthalate	ND	300	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol	ND	1000	"	"	"	"	"	"	
2,4-Dinitrophenol	ND	1000	"	"	"	"	"	"	
2,6-Dinitrotoluene	ND	1000	"	"	"	"	"	"	
Di-n-octyl phthalate	ND	300	"	"	"	"	"	"	
Fluoranthene	ND	300	"	"	"	"	"	"	
Fluorene	ND	300	"	"	"	"	"	"	
Hexachlorobenzene	ND	1500	"	"	"	"	"	"	
Hexachlorobutadiene	ND	300	"	"	"	"	"	"	
Hexachlorocyclopentadiene	ND	1000	"	"	"	"	"	"	
Hexachloroethane	ND	300	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene	ND	300	"			"	"	"	

SunStar Laboratories, Inc.

Brusca Associates Inc. PO Box 332 Roseville CA, 95661		Reported: 04/13/18 15:53							
		T1811	SP2-1 79-01 (So	oil)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	ies, Inc.					
Semivolatile Organic Compounds by EPA Meth	od 8270C								
Isophorone	ND	300	ug/kg	1	8040619	04/06/18	04/11/18	EPA 8270C	
2-Methylphenol	ND	1000	"	"	"	"	"	"	
4-Methylphenol	ND	1000	"	"	"	"	"	"	
Naphthalene	ND	300	"	"	"	"	"	"	
2-Nitroaniline	ND	300	"	"	"	"	"	"	
3-Nitroaniline	ND	300	"	"	"	"	"	"	
4-Nitroaniline	ND	300	"	"	"	"	"	"	
Nitrobenzene	ND	1000	"	"	"	"	"	"	
2-Nitrophenol	ND	1000	"	"	"	"	"	"	
N-Nitrosodimethylamine	ND	300	"	"	"	"	"	"	
N-Nitrosodiphenylamine	ND	300	"	"	"	"	"	"	
2,3,5,6-Tetrachlorophenol	ND	300	"	"	"	"	"	"	
2,3,4,6-Tetrachlorophenol	ND	300	"	"	"	"	"	"	
Phenanthrene	ND	300	"	"	"	"	"	"	
Azobenzene	ND	300	"	"	"	"	"	"	
Pyridine	ND	300	"	"	"	"	"	"	
2,4,5-Trichlorophenol	ND	1000	"	"	"	"	"	"	
2,4,6-Trichlorophenol	ND	1000	"	"	"	"	"	"	
Surrogate: 2-Fluorophenol		46.4 %	15-	121	"	"	"	"	
Surrogate: Phenol-d6		52.9 %	24-	113	"	"	"	"	
Surrogate: Nitrobenzene-d5		57.7 %	21.3	-119	"	"	"	"	
Surrogate: 2-Fluorobiphenyl		63.4 %	32.4	-102	"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		86.7 %	18.1	-105	"	"	"	"	
Surrogate: Terphenyl-dl4		90.3 %	29.1	-130	"	"	"	"	

SunStar Laboratories, Inc.

Brusca Associates Inc. PO Box 332		Reported:							
Koseville CA, 93001		Project Manag	gel. Jue Bl	usca				04/13/18 13	
			SP2-2						
		T181	179-02 (So	oil)					
		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Extractable Petroleum Hydrocar	bons by 8015B with Silica	Gel Cleanu	þ						
C6-C12 (GRO)	ND	10	mg/kg	1	8040617	04/06/18	04/06/18	EPA 8015B	
C13-C28 (DRO)	24	10	"	"	"	"	"	"	
C29-C40 (MORO)	42	10	"	"	"	"	"	"	
Surrogate: p-Terphenyl		80.9 %	65-	135	"	"	"	"	
Metals by EPA 6010B									
Antimony	ND	3.0	mg/kg	1	8040616	04/06/18	04/09/18	EPA 6010B	
Silver	ND	2.0	"	"	"	"	"	"	
Arsenic	ND	5.0	"	"	"	"	"	"	
Barium	55	1.0	"	"	"	"	"	"	
Beryllium	ND	1.0	"	"	"	"	"	"	
Cadmium	ND	2.0	"	"	"	"	"	"	
Chromium	5.5	2.0	"	"	"	"	"	"	
Cobalt	4.7	2.0	"	"	"	"	"	"	
Copper	3.5	1.0	"	"	"	"	"	"	
Lead	11	3.0	"	"	"	"	"	"	
Molybdenum	ND	5.0	"	"	"	"	"	"	
Nickel	5.3	2.0	"	"	"	"	"	"	
Selenium	ND	5.0	"	"	"	"	"	"	
Thallium	ND	2.0	"	"	"	"	"	"	
Vanadium	20	5.0	"	"	"	"	"	"	
Zinc	29	1.0	"	"		"		"	
Cold Vapor Extraction EPA 7470	/7471								
Mercury	ND	0.10	mg/kg	1	8040615	04/06/18	04/09/18	EPA 7471A Soil	

SunStar Laboratories, Inc.

Brusca Associates Inc.											
PO Box 332		Project Number: 137-002									
Roseville CA, 95661		Project Manag	ger: Joe Br	usca				04/13/18 15	:53		
		:	SP2-2								
		T1811	79-02 (So	oil)							
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes		
		SunStar L	aboratori	ies, Inc.							
Polychlorinated Biphenyls by EPA N	lethod 8082										
PCB-1016	66	10	ug/kg	1	8040620	04/06/18	04/10/18	EPA 8082			
PCB-1221	ND	10	"	"	"	"	"	"			
PCB-1232	ND	10	"	"	"	"	"	"			
PCB-1242	ND	10	"	"	"	"	"	"			
PCB-1248	ND	10	"	"	"	"	"	"			
PCB-1254	ND	10	"	"	"	"	"	"			
PCB-1260	72	10	"	"	"	"	"	"			
Surrogate: Tetrachloro-meta-xylene		140 %	35-	140	"	"	"	"			
Surrogate: Decachlorobiphenyl		135 %	35-	140	"	"	"	"			
Semivolatile Organic Compounds by	EPA Method 8270C										
Carbazole	ND	300	ug/kg	1	8040619	04/06/18	04/11/18	EPA 8270C			
Phenol	ND	1000	"	"	"	"	"	"			
Aniline	ND	300	"	"		"		"			
2-Chlorophenol	ND	1000	"	"		"		"			
1.4-Dichlorobenzene	ND	300	"	"		"	"	"			
N-Nitrosodi-n-propylamine	ND	300	"	"		"	"	"			
1.2.4-Trichlorobenzene	ND	300	"	"		"	"	"			
4-Chloro-3-methylphenol	ND	1000	"	"		"	"	"			
1-Methylnaphthalene	ND	300	"	"		"	"	"			
2-Methylnaphthalene	ND	300	"	"		"		"			
Acenaphthene	ND	300	"	"		"		"			
4-Nitrophenol	ND	1000	"	"		"		"			
2.4-Dinitrotoluene	ND	300	"	"		"		"			
Pentachlorophenol	ND	1000	"	"		"	"	"			
Pyrene	ND	300	"	"		"		"			
Acenaphthylene	ND	300	"	"	"	"	"	"			
Anthracene	ND	300	"	"	"	"	"	"			
Benzo (a) anthracene	ND	300	"	"		"	"				
Benzo (b) fluoranthene	ND	300	"	"		"	"				
Benzo (k) fluoranthene	ND	300	"	"		"	"				
Benzo (g,h,i) perylene	ND	1000	"	"	"	"	"	"			

SunStar Laboratories, Inc.

Brusca Associates Inc. PO Box 332 Roseville CA, 95661	Proje Project Numb Project Manag	Reported: 04/13/18 15:53						
	5 T1811	SP2-2 79-02 (Se	oil)					
Analyte Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	SunStar L	aborator	ies, Inc.					
Semivolatile Organic Compounds by EPA Method 8270C								
Benzo (a) pyrene ND	300	ug/kg	1	8040619	04/06/18	04/11/18	EPA 8270C	
Benzyl alcohol ND	300	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane ND	300	"	"	"	"	"	"	
Bis(2-chloroethyl)ether ND	300	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether ND	300	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate ND	300	"	"	"	"	"	"	
4-Bromophenyl phenyl ether ND	300	"	"	"	"	"	"	
Butyl benzyl phthalate ND	300	"	"	"	"	"	"	
4-Chloroaniline ND	300	"	"	"	"	"	"	
2-Chloronaphthalene ND	300	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether ND	300	"	"	"	"	"	"	
Chrysene ND	300	"	"	"	"	"	"	
Dibenz (a,h) anthracene ND	300	"	"	"	"	"	"	
Dibenzofuran ND	300	"	"	"	"	"	"	
Di-n-butyl phthalate ND	300	"	"	"	"	"	"	
1,2-Dichlorobenzene ND	300	"	"	"	"	"	"	
1,3-Dichlorobenzene ND	300	"	"	"	"	"	"	
2,4-Dichlorophenol ND	1000	"	"	"	"	"	"	
Diethyl phthalate ND	300	"	"	"	"	"	"	
2,4-Dimethylphenol ND	1000	"	"	"	"		"	
Dimethyl phthalate ND	300	"	"	"	"		"	
4,6-Dinitro-2-methylphenol ND	1000	"	"	"	"		"	
2,4-Dinitrophenol ND	1000	"	"	"	"		"	
2,6-Dinitrotoluene ND	1000	"	"	"	"	"	"	
Di-n-octyl phthalate ND	300	"	"	"	"	"	"	
Fluoranthene ND	300	"	"	"	"		"	
Fluorene ND	300	"	"	"	"		"	
Hexachlorobenzene ND	1500	"	"	"	"		"	
Hexachlorobutadiene ND	300	"	"	"	"	"		
Hexachlorocyclopentadiene ND	1000	"	"		"	"	"	
Hexachloroethane ND	300	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene ND	300	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Brusca Associates Inc. PO Box 332 Roseville CA, 95661		Reported: 04/13/18 15:53							
		T1811	SP2-2 79-02 (So	oil)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Semivolatile Organic Compounds by EPA	Method 8270C								
Isophorone	ND	300	ug/kg	1	8040619	04/06/18	04/11/18	EPA 8270C	
2-Methylphenol	ND	1000	"	"		"	"	"	
4-Methylphenol	ND	1000	"	"	"	"	"	"	
Naphthalene	ND	300	"	"	"	"	"	"	
2-Nitroaniline	ND	300	"	"	"	"	"	"	
3-Nitroaniline	ND	300	"	"	"	"	"	"	
4-Nitroaniline	ND	300	"	"	"	"	"	"	
Nitrobenzene	ND	1000	"	"	"	"	"	"	
2-Nitrophenol	ND	1000	"	"	"	"	"	"	
N-Nitrosodimethylamine	ND	300	"	"	"	"	"	"	
N-Nitrosodiphenylamine	ND	300	"	"	"	"	"	"	
2,3,5,6-Tetrachlorophenol	ND	300	"	"	"	"	"	"	
2,3,4,6-Tetrachlorophenol	ND	300	"	"	"	"	"	"	
Phenanthrene	ND	300	"	"	"	"	"	"	
Azobenzene	ND	300	"	"	"	"	"	"	
2,4,5-Trichlorophenol	ND	1000	"	"	"	"	"	"	
Pyridine	ND	300	"	"	"	"	"	"	
2,4,6-Trichlorophenol	ND	1000	"	"	"	"	"	"	
Surrogate: 2-Fluorophenol		47.9 %	15-	121	"	"	"	"	
Surrogate: Phenol-d6		52.4 %	24-	113	"	"	"	"	
Surrogate: Nitrobenzene-d5		60.8 %	21.3	-119	"	"	"	"	
Surrogate: 2-Fluorobiphenyl		66.9 %	32.4	-102	"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		83.2 %	18.1	-105	"	"	"	"	
Surrogate: Terphenyl-dl4		83.5 %	29.1	-130	"	"	"	"	

SunStar Laboratories, Inc.

Brusca Associates Inc. PO Box 332 Roseville CA, 95661		Reported: 04/13/18 15:53							
			SP2-3						
		T181	179-03 (So	oil)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Extractable Petroleum Hydrocar	bons by 8015B with Silica	a Gel Cleanu	p						
C6-C12 (GRO)	ND	10	mg/kg	1	8040617	04/06/18	04/06/18	EPA 8015B	
C13-C28 (DRO)	18	10	"	"	"	"	"	"	
C29-C40 (MORO)	55	10	"	"	"	"		"	
Surrogate: p-Terphenyl		70.2 %	65-	135	"	"	"	"	
Metals by EPA 6010B									
Antimony	ND	3.0	mg/kg	1	8040616	04/06/18	04/09/18	EPA 6010B	
Silver	ND	2.0	"	"	"	"		"	
Arsenic	ND	5.0	"	"	"	"		"	
Barium	63	1.0	"	"	"	"		"	
Beryllium	ND	1.0	"	"	"	"	"	"	
Cadmium	ND	2.0	"	"	"	"		"	
Chromium	6.7	2.0	"	"	"	"		"	
Cobalt	4.2	2.0	"	"	"	"	"	"	
Copper	5.5	1.0	"	"	"	"	"	"	
Lead	ND	3.0	"	"	"	"	"	"	
Molybdenum	ND	5.0	"	"	"	"	"	"	
Nickel	6.2	2.0	"	"	"	"	"	"	
Selenium	ND	5.0	"	"	"	"	"	"	
Thallium	ND	2.0	"	"	"	"	"	"	
Vanadium	22	5.0	"	"	"	"		"	
Zinc	33	1.0	"		"	"	"	"	
Cold Vapor Extraction EPA 7470	/7471								
Mercury	ND	0.10	mg/kg	1	8040615	04/06/18	04/09/18	EPA 7471A Soil	

SunStar Laboratories, Inc.

Brusca Associates Inc.										
PO Box 332		Project Numb	per: 137-00)2				Reported:		
Roseville CA, 95661		Project Manag	ger: Joe Br	usca				04/13/18 15	:53	
			SP2-3							
		T1811	.79-03 (So	oil)						
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes	
		SunStar L	aboratori	es, Inc.						
Polychlorinated Biphenyls by EPA M	ethod 8082									
PCB-1016	ND	10	ug/kg	1	8040620	04/06/18	04/10/18	EPA 8082		
PCB-1221	ND	10	"	"	"	"	"	"		
PCB-1232	ND	10	"	"	"	"	"	"		
PCB-1242	ND	10	"	"	"	"	"	"		
PCB-1248	ND	10	"	"	"	"	"	"		
PCB-1254	36	10	"	"	"	"	"	"		
PCB-1260	ND	10	"	"	"	"	"	"		
Surrogate: Tetrachloro-meta-xylene		137 %	35-	140	"	"	"	"		
Surrogate: Decachlorobiphenyl		144 %	35-	140	"	"	"	"	S-GC	
Semivolatile Organic Compounds by	FPA Method 8270C									
Carbazole	ND	300	110/ko	1	8040619	04/06/18	04/11/18	EPA 8270C		
Phenol	ND	1000	"		"	"	"	"		
Aniline	ND	300		"		"				
2-Chlorophenol	ND	1000		"		"				
1 4-Dichlorobenzene	ND	300		"		"				
N-Nitrosodi-n-propylamine	ND	300		"		"				
1.2.4-Trichlorobenzene	ND	300		"			"	"		
4-Chloro-3-methylphenol	ND	1000		"			"	"		
1-Methylnaphthalene	ND	300		"			"	"		
2-Methylnaphthalene	ND	300	"	"			"	"		
Acenaphthene	ND	300		"			"	"		
4-Nitrophenol	ND	1000	"	"			"	"		
2.4-Dinitrotoluene	ND	300	"	"			"	"		
Pentachlorophenol	ND	1000	"	"			"	"		
Pyrene	ND	300	"	"			"	"		
Acenaphthylene	ND	300	"	"		"	"	"		
Anthracene	ND	300	"	"		"	"	"		
Benzo (a) anthracene	ND	300	"	"		"	"	"		
Benzo (b) fluoranthene	ND	300	"	"		"	"	"		
Benzo (k) fluoranthene	ND	300	"	"		"	"	"		
Benzo (g,h,i) perylene	ND	1000	"	"		"	"	"		

SunStar Laboratories, Inc.

Brusca Associates Inc.Project:Lathrop 48-Ac PropertyPO Box 332Project Number:137-002Roseville CA, 95661Project Manager:Joe Brusca									
		T1911	SP2-3	SI)					
		11011	79-03 (30)11)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aborator	ies, Inc.					
Semivolatile Organic Compounds by	EPA Method 8270C								
Benzo (a) pyrene	ND	300	ug/kg	1	8040619	04/06/18	04/11/18	EPA 8270C	
Benzyl alcohol	ND	300	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	300	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	300	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	300	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	300	"	"	"	"	"	"	
4-Bromophenyl phenyl ether	ND	300	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	300	"	"	"	"	"	"	
4-Chloroaniline	ND	300	"	"	"	"	"	"	
2-Chloronaphthalene	ND	300	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether	ND	300	"	"	"	"	"	"	
Chrysene	ND	300	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	300	"	"	"	"	"	"	
Dibenzofuran	ND	300	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	300	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	300	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	300	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	1000	"	"	"	"	"	"	
Diethyl phthalate	ND	300	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	1000	"	"	"	"	"	"	
Dimethyl phthalate	ND	300	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol	ND	1000	"	"	"	"	"	"	
2,4-Dinitrophenol	ND	1000	"	"	"	"	"	"	
2,6-Dinitrotoluene	ND	1000	"	"	"	"	"	"	
Di-n-octyl phthalate	ND	300	"	"	"	"	"	"	
Fluoranthene	ND	300	"	"	"	"	"		
Fluorene	ND	300	"	"	"	"	"	"	
Hexachlorobenzene	ND	1500	"	"	"	"	"	"	
Hexachlorobutadiene	ND	300	"	"	"	"	"	"	
Hexachlorocyclopentadiene	ND	1000	"	"	"	"	"	"	
Hexachloroethane	ND	300	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene	ND	300	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Brusca Associates Inc. PO Box 332 Roseville CA, 95661		Reported: 04/13/18 15:53							
		T1811	SP2-3 .79-03 (So	oil)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar La	aboratori	ies, Inc.					
Semivolatile Organic Compounds by EPA Method	1 8270C								
Isophorone	ND	300	ug/kg	1	8040619	04/06/18	04/11/18	EPA 8270C	
2-Methylphenol	ND	1000	"	"	"	"	"	"	
4-Methylphenol	ND	1000	"	"	"	"	"	"	
Naphthalene	ND	300	"	"	"	"	"	"	
2-Nitroaniline	ND	300	"	"	"	"	"	"	
3-Nitroaniline	ND	300	"	"	"	"	"	"	
4-Nitroaniline	ND	300	"	"	"	"	"	"	
Nitrobenzene	ND	1000	"	"	"	"	"	"	
2-Nitrophenol	ND	1000	"	"	"	"	"	"	
N-Nitrosodimethylamine	ND	300	"	"	"	"	"	"	
N-Nitrosodiphenylamine	ND	300	"	"	"	"	"	"	
2,3,5,6-Tetrachlorophenol	ND	300	"	"	"	"	"	"	
2,3,4,6-Tetrachlorophenol	ND	300	"	"	"	"	"	"	
Phenanthrene	ND	300	"	"	"	"	"	"	
Azobenzene	ND	300	"	"	"	"	"	"	
Pyridine	ND	300	"	"	"	"	"	"	
2,4,5-Trichlorophenol	ND	1000	"	"	"	"	"	"	
2,4,6-Trichlorophenol	ND	1000	"	"	"	"	"	"	
Surrogate: 2-Fluorophenol		54.9 %	15-	121	"	"	"	"	
Surrogate: Phenol-d6		60.2 %	24-	113	"	"	"	"	
Surrogate: Nitrobenzene-d5		65.4 %	21.3	-119	"	"	"	"	
Surrogate: 2-Fluorobiphenyl		66.0 %	32.4	-102	"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		86.1 %	18.1	-105	"	"	"	"	
Surrogate: Terphenyl-dl4		85.7 %	29.1	-130	"	"	"	"	

SunStar Laboratories, Inc.

Brusca Associates Inc. PO Box 332 Roseville CA, 95661	sociates Inc. Project: Lathrop 48-Ac Property 32 Project Number: 137-002 CA, 95661 Project Manager: Joe Brusca SP2-4 T181179-04 (Soil)									
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes	
		SunStar L	aboratori	es, Inc.						
Extractable Petroleum Hydrocarl	bons by 8015B with Silic	a Gel Cleanu	0							
C6-C12 (GRO)	ND	10	mg/kg	1	8040617	04/06/18	04/06/18	EPA 8015B		
C13-C28 (DRO)	94	10	"	"	"	"	"	"		
C29-C40 (MORO)	69	10	"	"	"	"		"		
Surrogate: p-Terphenyl		69.4 %	65-	135	"	"	"	"		
Metals by EPA 6010B										
Antimony	ND	3.0	mg/kg	1	8040616	04/06/18	04/09/18	EPA 6010B		
Silver	ND	2.0	"	"	"	"	"	"		
Arsenic	ND	5.0	"	"	"	"	"	"		
Barium	62	1.0	"	"	"	"	"	"		
Beryllium	ND	1.0	"	"	"	"		"		
Cadmium	ND	2.0	"	"	"	"		"		
Chromium	6.5	2.0	"	"	"	"	"	"		
Cobalt	4.9	2.0	"	"	"	"		"		
Copper	5.5	1.0	"	"	"	"	"	"		
Lead	9.8	3.0	"	"	"	"	"	"		
Molybdenum	ND	5.0	"	"	"	"	"	"		
Nickel	6.6	2.0	"	"	"	"	"	"		
Selenium	ND	5.0	"	"	"	"	"	"		
Thallium	ND	2.0	"	"	"	"	"	"		
Vanadium	22	5.0	"	"	"	"	"	"		
Zinc	30	1.0	"	"	"	"	"	"		
Cold Vapor Extraction EPA 7470/	/7471									
Mercury	ND	0.10	mg/kg	1	8040615	04/06/18	04/09/18	EPA 7471A Soil		

SunStar Laboratories, Inc.

m l

Brusca Associates Inc. PO Box 332 Roseville CA, 95661	Reported 04/13/18 15	: :53							
		T1811	SP2-4 179-04 (So	oil)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Polychlorinated Biphenyls by EPA M	Iethod 8082								
PCB-1016	ND	10	ug/kg	1	8040620	04/06/18	04/10/18	EPA 8082	
PCB-1221	ND	10	"	"		"	"	"	
PCB-1232	ND	10	"	"	"	"	"	"	
PCB-1242	ND	10	"	"		"	"	"	
PCB-1248	ND	10	"	"		"	"	"	
PCB-1254	ND	10	"	"	"	"	"	"	
PCB-1260	77	10	"	"	"	"	"	"	
Surrogate: Tetrachloro-meta-xylene		138 %	35-	140	"	"	"	"	
Surrogate: Decachlorobiphenyl		134 %	35-	140	"	"	"	"	
	EDA M (1 19270.C								
Semivolatile Organic Compounds by	<u>EPA Method 8270C</u>	200	a		0040610	04/06/10	04/11/10		
Carbazole	ND	300	ug/kg	1	8040619	04/06/18	04/11/18	EPA 8270C	
Phenol	ND	1000							
	ND	300							
2-Chlorophenol	ND	1000							
I,4-Dichlorobenzene	ND	300							
N-Nitrosodi-n-propylamine	ND	300							
1,2,4-Trichlorobenzene	ND	300							
4-Chioro-3-methylphenol	ND	1000							
	ND	300							
	ND	300	"						
4 Nitronhanal	ND	1000	"	"					
4-INItrophenoi	ND	1000	"						
2,4-Dimitotoluene	ND	1000	"	"					
Prenactionophenoi	ND	200	"	"					
A second the law s	ND	300	"	"					
Accenaphinylene	ND	300	"	"					
Anunacene Danza (a) anthrasana	ND	300	"						
Denzo (a) antificene	ND	300	"						
Denzo (b) fluorantnene	ND	300	"						
Denzo (k) nuoraninene	ND	300	"						
Benzo (g,n,1) perylene	ND	1000	- 4		"				

SunStar Laboratories, Inc.

Brusca Associates Inc.	Proj							
PO Box 332	Project Numl	Reported:						
Roseville CA, 95661	Project Manag	ger: Joe B	rusca				04/13/18 15	:53
		SP2-4						
	T181	179-04 (S	oil)					
Analyte Resu	Reporting It Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	SunStar L	aborator	ies, Inc.					
Semivolatile Organic Compounds by EPA Method 82	70C							
Benzo (a) pyrene NI	300	ug/kg	1	8040619	04/06/18	04/11/18	EPA 8270C	
Benzyl alcohol NI) 300	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane NI) 300	"	"	"	"	"	"	
Bis(2-chloroethyl)ether NI	300	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether NI	300	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate NI	300	"	"	"	"	"	"	
4-Bromophenyl phenyl ether NI	300	"	"	"	"	"	"	
Butyl benzyl phthalate NI	300	"	"	"	"	"	"	
4-Chloroaniline NI	300	"	"	"	"	"	"	
2-Chloronaphthalene NI	300	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether NI	300	"	"	"	"	"	"	
Chrysene NI	300	"	"	"	"	"	"	
Dibenz (a,h) anthracene NI	300	"	"	"	"	"	"	
Dibenzofuran NI	300	"	"	"	"	"	"	
Di-n-butyl phthalate NI	300	"	"	"	"	"	"	
1,2-Dichlorobenzene NI	300	"	"	"	"	"	"	
1,3-Dichlorobenzene NI	300	"	"	"	"	"	"	
2,4-Dichlorophenol NI	D 1000	"	"	"	"	"	"	
Diethyl phthalate NI	300	"	"	"	"	"	"	
2,4-Dimethylphenol NI	D 1000	"	"	"	"	"	"	
Dimethyl phthalate NI	300	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol NI	D 1000	"	"	"	"	"	"	
2,4-Dinitrophenol NI	D 1000	"	"	"	"	"	"	
2,6-Dinitrotoluene NI	D 1000	"	"	"	"	"	"	
Di-n-octyl phthalate NI	300	"	"	"	"	"	"	
Fluoranthene NI	300	"	"	"	"	"	"	
Fluorene NI	300	"	"	"	"	"	"	
Hexachlorobenzene NI	0 1500	"	"		"	"	"	
Hexachlorobutadiene NI	300	"	"		"	"	"	
Hexachlorocyclopentadiene NI	D 1000	"	"		"	"	"	
Hexachloroethane NI	300	"	"		"	"	"	
Indeno (1,2,3-cd) pyrene NI	300	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Brusca Associates Inc. PO Box 332 Roseville CA, 95661		Reported: 04/13/18 15:53							
		T1811	SP2-4 79-04 (So	oil)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	ies, Inc.					
Semivolatile Organic Compounds by EP	A Method 8270C								
Isophorone	ND	300	ug/kg	1	8040619	04/06/18	04/11/18	EPA 8270C	
2-Methylphenol	ND	1000	"	"	"	"	"	"	
4-Methylphenol	ND	1000		"	"	"	"	"	
Naphthalene	ND	300	"	"	"	"	"	"	
2-Nitroaniline	ND	300	"	"	"	"	"	"	
3-Nitroaniline	ND	300	"	"	"	"	"	"	
4-Nitroaniline	ND	300		"	"	"	"	"	
Nitrobenzene	ND	1000	"	"	"	"	"	"	
2-Nitrophenol	ND	1000	"	"	"	"	"	"	
N-Nitrosodimethylamine	ND	300	"	"	"	"	"	"	
N-Nitrosodiphenylamine	ND	300	"	"	"	"	"	"	
2,3,5,6-Tetrachlorophenol	ND	300	"	"	"	"	"	"	
2,3,4,6-Tetrachlorophenol	ND	300		"	"	"	"	"	
Phenanthrene	ND	300	"	"	"	"	"	"	
Azobenzene	ND	300	"	"	"	"	"	"	
Pyridine	ND	300	"	"	"	"	"	"	
2,4,5-Trichlorophenol	ND	1000	"	"	"	"	"	"	
2,4,6-Trichlorophenol	ND	1000	"	"	"	"	"	"	
Surrogate: 2-Fluorophenol		55.5 %	15-	121	"	"	"	"	
Surrogate: Phenol-d6		60.4 %	24-	113	"	"	"	"	
Surrogate: Nitrobenzene-d5		65.1 %	21.3	-119	"	"	"	"	
Surrogate: 2-Fluorobiphenyl		65.4 %	32.4	-102	"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		87.0 %	18.1	-105	"	"	"	"	
Surrogate: Terphenyl-dl4		88.3 %	29.1	-130	"	"	"	"	

SunStar Laboratories, Inc.

Brusca Associates Inc. Project: Lathrop 48-Ac Property PO Box 332 Project Number: 137-002 Roseville CA, 95661 Project Manager: Joe Brusca SP2-5 T181179-05 (Soil)									
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	ies, Inc.					
Extractable Petroleum Hydrocarl	oons by 8015B with Silic	a Gel Cleanu	þ						
C6-C12 (GRO)	ND	10	mg/kg	1	8040617	04/06/18	04/06/18	EPA 8015B	
C13-C28 (DRO)	51	10	"	"	"	"		"	
C29-C40 (MORO)	46	10	"	"	"	"	"	"	
Surrogate: p-Terphenyl		83.7 %	65-	135	"	"	"	"	
Metals by EPA 6010B									
Antimony	ND	3.0	mg/kg	1	8040616	04/06/18	04/09/18	EPA 6010B	
Silver	ND	2.0	"	"	"	"	"	"	
Arsenic	ND	5.0	"	"	"	"	"	"	
Barium	59	1.0	"	"	"	"		"	
Beryllium	ND	1.0	"	"	"	"		"	
Cadmium	ND	2.0	"	"	"	"		"	
Chromium	6.2	2.0	"	"	"	"		"	
Cobalt	4.4	2.0	"	"	"	"	"	"	
Copper	5.6	1.0	"	"	"	"	"	"	
Lead	17	3.0	"	"	"	"	"	"	
Molybdenum	ND	5.0	"	"	"	"	"	"	
Nickel	5.9	2.0	"	"	"	"	"	"	
Selenium	ND	5.0	"	"	"	"	"	"	
Thallium	ND	2.0	"	"	"	"	"	"	
Vanadium	18	5.0	"	"	"	"	"	"	
Zinc	31	1.0	"	"	"	"	"	"	
Cold Vapor Extraction EPA 7470/	7471								
Mercury	ND	0.10	mg/kg	1	8040615	04/06/18	04/09/18	EPA 7471A Soil	

SunStar Laboratories, Inc.

Mike Jaroudi, Project Manager

Brusca Associates Inc.		Proje	ect: Lathro	p 48-Ac Pro	perty				
PO Box 332		Project Numb	er: 137-00	02				Reported	:
Roseville CA, 95661		Project Manag	ger: Joe Br	rusca				04/13/18 15	:53
			SP2-5						
		T1811	79-05 (So	oil)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	ies. Inc.					
Polychlorinated Biphenyls by EPA Method 3	3082			,					
PCB-1016	ND	10	ug/kg	1	8040620	04/06/18	04/10/18	EPA 8082	
PCB-1221	ND	10	"	"	"	"	"	"	
PCB-1232	ND	10	"	"	"	"	"	"	
PCB-1242	ND	10	"	"	"	"	"	"	
PCB-1248	ND	10	"	"	"	"	"	"	
PCB-1254	ND	10	"	"	"	"	"	"	
PCB-1260	32	10	"	"	"	"	"	"	
Surrogate: Tetrachloro-meta-xylene		135 %	35-	140	"	"	"	"	
Surrogate: Decachlorobiphenyl		137 %	35-	140	"	"	"	"	
Somivolatile Organic Compounds by FDA N	lathad 8270C								
Carbazole	ND	300	ug/kg	1	8040619	04/06/18	04/11/18	EPA 8270C	
Phenol	ND	1000	ug/kg "	"	"	"	"	"	
Aniline	ND	300	"	"		"	"	"	
2-Chlorophenol	ND	1000	"	"	"	"	"		
1 4-Dichlorobenzene	ND	300	"	"	"	"			
N-Nitrosodi-n-propylamine	ND	300	"	"	"	"		"	
1.2.4-Trichlorobenzene	ND	300	"	"	"	"		"	
4-Chloro-3-methylphenol	ND	1000	"	"	"	"	"	"	
2-Methylnaphthalene	ND	300	"	"	"	"	"	"	
1-Methylnaphthalene	ND	300	"	"	"	"	"	"	
Acenaphthene	ND	300	"	"	"	"	"	"	
4-Nitrophenol	ND	1000	"	"	"	"	"	"	
2.4-Dinitrotoluene	ND	300	"	"	"	"	"	"	
Pentachlorophenol	ND	1000	"	"	"	"	"	"	
Pvrene	950	300	"	"	"	"	"	"	
Acenaphthylene	ND	300	"	"	"	"	"	"	
Anthracene	ND	300	"	"	"	"	"	"	
Benzo (a) anthracene	340	300	"	"	"	"	"	"	
Benzo (b) fluoranthene	ND	300	"	"	"	"	"	"	
Benzo (k) fluoranthene	ND	300	"	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	1000	"	"	"	"	"	"	
Benzo (a) pyrene	ND	300	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Brusca Associates Inc. PO Box 332 Roseville CA, 95661		Proje Project Numb Project Manag	eet: Lathro er: 137-00 er: Joe Br	op 48-Ac Pro)2 usca	perty			Reported : 04/13/18 15	:53
		T1811	SP2-5 79-05 (So	oil)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	ies, Inc.					
Semivolatile Organic Compounds by	y EPA Method 8270C								
Benzyl alcohol	ND	300	ug/kg	1	8040619	04/06/18	04/11/18	EPA 8270C	
Bis(2-chloroethoxy)methane	ND	300	"	"		"		"	
Bis(2-chloroethyl)ether	ND	300	"	"		"		"	
Bis(2-chloroisopropyl)ether	ND	300	"	"		"	"	"	
Bis(2-ethylhexyl)phthalate	ND	300	"	"		"		"	
4-Bromophenyl phenyl ether	ND	300	"	"		"	"	"	
Butyl benzyl phthalate	ND	300	"	"		"	"	"	
4-Chloroaniline	ND	300	"	"		"	"	"	
2-Chloronaphthalene	ND	300	"	"		"	"	"	
4-Chlorophenyl phenyl ether	ND	300	"	"		"	"	"	
Chrysene	440	300	"	"		"	"	"	
Dibenz (a,h) anthracene	ND	300	"	"	"	"	"	"	
Dibenzofuran	ND	300	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	300	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	300	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	300	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	1000	"	"	"	"	"	"	
Diethyl phthalate	ND	300	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	1000	"	"	"	"	"	"	
Dimethyl phthalate	ND	300	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol	ND	1000	"	"		"	"	"	
2,4-Dinitrophenol	ND	1000	"	"		"	"	"	
2,6-Dinitrotoluene	ND	1000	"	"		"	"	"	
Di-n-octyl phthalate	ND	300	"	"		"	"	"	
Fluoranthene	880	300	"	"	"	"	"	"	
Fluorene	ND	300	"	"		"	"	"	
Hexachlorobenzene	ND	1500	"	"		"	"	"	
Hexachlorobutadiene	ND	300	"	"		"	"	"	
Hexachlorocyclopentadiene	ND	1000	"	"	"	"	"	"	
Hexachloroethane	ND	300	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene	ND	300	"	"	"	"	"	"	
Isophorone	ND	300	"		"		"	"	

SunStar Laboratories, Inc.

Brusca Associates Inc. PO Box 332 Roseville CA, 95661		Reported 04/13/18 15	:::53						
		T1811	79-05 (So	oil)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	ies, Inc.					
Semivolatile Organic Compounds by	EPA Method 8270C								
2-Methylphenol	ND	1000	ug/kg	1	8040619	04/06/18	04/11/18	EPA 8270C	
4-Methylphenol	ND	1000	"	"	"	"	"	"	
Naphthalene	ND	300	"	"	"	"	"	"	
2-Nitroaniline	ND	300	"	"	"	"	"	"	
3-Nitroaniline	ND	300	"	"	"	"	"	"	
4-Nitroaniline	ND	300	"	"	"	"	"	"	
Nitrobenzene	ND	1000	"	"	"	"	"	"	
2-Nitrophenol	ND	1000	"	"	"	"	"	"	
N-Nitrosodimethylamine	ND	300	"	"		"	"	"	
N-Nitrosodiphenylamine	ND	300	"	"		"	"	"	
2,3,5,6-Tetrachlorophenol	ND	300	"	"	"	"	"	"	
2,3,4,6-Tetrachlorophenol	ND	300	"	"	"	"	"	"	
Phenanthrene	530	300	"	"		"	"	"	
Azobenzene	ND	300	"	"	"	"	"	"	
Pyridine	ND	300	"	"	"	"	"	"	
2,4,5-Trichlorophenol	ND	1000	"	"	"	"	"	"	
2,4,6-Trichlorophenol	ND	1000	"	"	"	"	"	"	
Surrogate: 2-Fluorophenol		54.2 %	15-	121	"	"	"	"	
Surrogate: Phenol-d6		59.1 %	24-	113	"	"	"	"	
Surrogate: Nitrobenzene-d5		62.7 %	21.3	-119	"	"	"	"	
Surrogate: 2-Fluorobiphenyl		66.3 % 32.4-102				"	"	"	
Surrogate: 2,4,6-Tribromophenol		90.3 %	18.1	-105	"	"	"	"	
Surrogate: Terphenyl-dl4		89.8 %	29.1	-130	"	"	"	"	

SunStar Laboratories, Inc.

Brusca Associates Inc. Project: Lathrop 48-Ac Property PO Box 332 Project Number: 137-002 Roseville CA, 95661 Project Manager: Joe Brusca SP2-6 T181179-06 (Soil)									:53
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Extractable Petroleum Hydrocarl	bons by 8015B with Silic	a Gel Cleanuj	D						
C6-C12 (GRO)	ND	10	mg/kg	1	8040617	04/06/18	04/06/18	EPA 8015B	
C13-C28 (DRO)	90	10	"	"	"	"		"	
C29-C40 (MORO)	49	10	"	"	"	"		"	
Surrogate: p-Terphenyl		70.7 %	65-	135	"	"	"	"	
Metals by EPA 6010B									
Antimony	ND	3.0	mg/kg	1	8040616	04/06/18	04/09/18	EPA 6010B	
Silver	ND	2.0	"	"	"	"	"	"	
Arsenic	ND	5.0	"	"	"	"	"	"	
Barium	68	1.0	"	"	"	"	"	"	
Beryllium	ND	1.0	"	"	"	"	"	"	
Cadmium	ND	2.0	"	"	"	"	"	"	
Chromium	7.1	2.0	"	"	"	"	"	"	
Cobalt	5.0	2.0	"	"	"	"	"	"	
Copper	5.7	1.0	"	"	"	"	"	"	
Lead	13	3.0	"	"	"	"		"	
Molybdenum	ND	5.0	"	"	"	"		"	
Nickel	7.5	2.0	"	"	"	"	"	"	
Selenium	ND	5.0	"	"	"	"	"	"	
Thallium	ND	2.0	"	"	"	"	"	"	
Vanadium	24	5.0	"	"	"	"		"	
Zinc	33	1.0	"	"	"	"	"	"	
Cold Vapor Extraction EPA 7470/	7471								
Mercury	ND	0.10	mg/kg	1	8040615	04/06/18	04/09/18	EPA 7471A Soil	

SunStar Laboratories, Inc.

Mike Jaroudi, Project Manager

Project Number: 137-002 Reported: Roseville CA, 95661 Project Number: 197-062 04/12/18 15.53 SP2-6 SP2-6 SITTP3-66 (Soil) Amlyte Reporting Dilation Barel: Prepared Analyzed Method Notes Determine the prepared (Soil) Distribution (Soil) Distribution (S	Brusca Associates Inc.		Proje	ect: Lathro	p 48-Ac Pro	perty				
Resouth CA, 95661 Project Manager: Joe Brusca 04/13/18 15.53 SP2-6 TISH179-06 (Soli) SP2-6 TISH179-06 (Soli) Analyse Reputing Reputing Analyse Reputing Reputing Battering Battering Analyse Method Notes POR-Info ND 10 up kg 1 840620 04/013 PEPA Method Notes POR-Info ND 10 up kg 1 840620 04/013 PEPA Method POR-Info ND 10 up kg 1 840620 04/013 PEPA Method POR-Info ND 10 up kg 1 840620 04/013 PEPA Method POR-Info ND 10 up kg 1 840620 04/013 PEPA Method POR-Info ND 10 up kg 1 840620 04/013 PEPA Method POR-Info ND 10 up kg 1 840620 04/013 PEPA Method POR-Info ND 10 up kg 1 840620 04/013 PEPA Method ND 30	PO Box 332		Project Numb	per: 137-00	02				Reported	:
SP2-6 T181179-06 (Soil) Analyte Result Reporting Lamit Dilution Batch Prepared Analyzed Method Notes SumStar Laboratories, Inc. POte-liorinated Biphenvis by EPA Method 8082 PCB-1016 ND 10 ug/kg 1 8040620 0406/18 04/10/18 EPA 8082 PCB-121 ND 10 " - <th>Roseville CA, 95661</th> <th></th> <th>Project Manag</th> <th>ger: Joe Br</th> <th>rusca</th> <th></th> <th></th> <th></th> <th colspan="2">04/13/18 15:53</th>	Roseville CA, 95661		Project Manag	ger: Joe Br	rusca				04/13/18 15:53	
THIPP-06 (Sulf)AnalyzeResultReporting LimitDutterBatchPreparelAnalyzedMethodNotesSubstructures to the substructures to the substructure sub				SP2-6						
Analyte Result Reporting Limit Units Dilution Bach Propared Analyzed Method Noses SunStar Laboratories, Inc. Porchiorinated Biphenyls by EPA Method 8092 PCB-1016 ND 10 ug/kg 1 804020 0440618 04/10/18 EPA.8082 PCB-121 ND 10 "			T1811	179-06 (So	oil)					
SunStar Laboratories, Inc. Porchlorinated Biphenyls by EPA Method 8082 PCB-1016 ND 10 ug/kg 1 804020 04-06/18 04/10/18 EPA 8082 PCB-1221 ND 10 " " " " " PCB-1232 ND 10 " " " " " PCB-1242 ND 10 " " " " " " PCB-1242 ND 10 " " " " " " " PCB-1248 ND 10 " <th>Analyte</th> <th>Result</th> <th>Reporting Limit</th> <th>Units</th> <th>Dilution</th> <th>Batch</th> <th>Prepared</th> <th>Analyzed</th> <th>Method</th> <th>Notes</th>	Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Barban Laboratories, interserview Poterbiorante Biphenvis by EPA Method 882 Poterbiorante Biphenvis by EPA Method 882 ND 10 " <td></td> <td></td> <td>SunStor I</td> <td>aborator</td> <td>ios Ino</td> <td></td> <td>-</td> <td>-</td> <td></td> <td></td>			SunStor I	aborator	ios Ino		-	-		
Lance unpueries of ELFA include door ND 10 ug/kg 1 8040620 04/10/18 EPA 8082 PCB-1221 ND 10 " - " " " PCB-1232 ND 10 " - " " " PCB-124 ND 10 " - " " " " PCB-124 ND 10 " - " " " " PCB-124 ND 10 " - "	Dolyablaringtod Binhanyls by FDA M	athad 8082	Sulistai L	aborator	ies, me.					
R.D. 100 ND 100 up applied 1 owner in the first of th	PCB-1016	ND	10	ug/kg	1	8040620	04/06/18	04/10/18	EDA 8082	
PCB-123 ND 10 "	PCB-1221	ND	10	ug/kg	"	8040020 "	"	"	EFA 8082	
RDD R	PCB-1232	ND	10		"		"			
No <td>PCB-1242</td> <td>ND</td> <td>10</td> <td></td> <td>"</td> <td></td> <td>"</td> <td></td> <td></td> <td></td>	PCB-1242	ND	10		"		"			
PCB-1254 ND 10 "	PCB-1242	ND	10		"		"			
No. 100 No. No	PCB-1254	ND	10	"	"		"		"	
Instruction Instruction <thinstruction< th=""> <thinstruction< th=""></thinstruction<></thinstruction<>	PCB-1260	58	10	"	"		"		"	
Martingent 127% 35-10 "	Surrogate: Tetrachloro-meta-rylene		137 %	35-	140	"	"	"	"	
Semi-service Semi-service Semi-service Semi-service Semi-service ND 300 ug/gg 1 8040619 04/06/18 04/11/18 EPA 8270C Aniline ND 300 " " " " " " Phenol ND 1000 " " " " " " 2-Chlorophenol ND 1000 " <t< td=""><td>Surrogate: Decachlorobinhenvl</td><td></td><td>127 %</td><td>35-</td><td>140</td><td>"</td><td>"</td><td>"</td><td>"</td><td></td></t<>	Surrogate: Decachlorobinhenvl		127 %	35-	140	"	"	"	"	
Semivolatile Organic Compounds by EPA Method 8270C Carbazole ND 300 ug/kg 1 8040619 04/01/18 EPA 8270C Aniline ND 300 " " " " " " Phenol ND 1000 " " " " " " 2-Chlorophenol ND 300 " " " " " " 1,4-Dichlorobenzene ND 300 " " " " " " NNItrosodi-n-propylamine ND 300 " " " " " " " 1,2,4-Trichlorobenzene ND 300 " " " " " " " 1.Methylaphthalene ND 300 " " " " " " 2.Methylaphthalene ND 300 " " " " " " 2.Mothylaphthalene			127 70	50						
Carbazole ND 300 ug/kg I 8040619 04/0618 04/11/18 EPA 8270C Aniline ND 300 "	Semivolatile Organic Compounds by	EPA Method 8270C								
Annine ND 300 "	Carbazole	ND	300	ug/kg	1	8040619	04/06/18	04/11/18	EPA 8270C	
Prenol ND 1000 "	Aniline	ND	300							
2-Chirotophenol ND 300 "	Phenol	ND	1000							
1,4-Dichlorobenzene ND 300 " <td>2-Chlorophenol</td> <td>ND</td> <td>1000</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	2-Chlorophenol	ND	1000							
N-Nutrosoul-n-propyramine ND 300 " <th< td=""><td>I,4-Dichlorobenzene</td><td>ND</td><td>300</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	I,4-Dichlorobenzene	ND	300							
1,2,4 Intentorooenzene ND 300 "<	N-Nitrosodi-n-propylamine	ND	300							
4-Choro-s-menyipmendi ND 300 " </td <td>4 Chlanz 2 methodelene</td> <td>ND</td> <td>1000</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	4 Chlanz 2 methodelene	ND	1000							
1-Ndethylnaphthalene ND 300 " <td>4-Chloro-3-methylphenol</td> <td>ND</td> <td>200</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	4-Chloro-3-methylphenol	ND	200							
Acenaphthanene ND 300 "	2 Methylnephthelene	ND	200							
Accenapititiene ND 300 "		ND	200							
2,4-Dinitrotoluene ND 300 "	4 Nitrophonol	ND	1000	"	"				"	
Pentachlorophenol ND 1000 "	2.4 Dinitrateluene	ND	200	"	"				"	
Pyrene 1200 300 " <th< td=""><td>Pentachlorophenol</td><td>ND</td><td>1000</td><td></td><td></td><td></td><td>"</td><td></td><td>"</td><td></td></th<>	Pentachlorophenol	ND	1000				"		"	
Acenaphthylene ND 300 "	Pyrono	1200	300				"		"	
Anthracene ND 300 " <	Acenaphthylene	1200 ND	300		"		"			
Benzo (a) anthracene 490 300 " </td <td>Anthracene</td> <td>ND</td> <td>300</td> <td>"</td> <td>"</td> <td></td> <td>"</td> <td></td> <td></td> <td></td>	Anthracene	ND	300	"	"		"			
Benzo (b) fluoranthene 410 300 "	Renzo (a) anthracene	490	300	"	"		"			
Benzo (k) fluoranthene ND 300 " <th"< th=""> " " <th"< t<="" td=""><td>Benzo (b) fluoranthene</td><td>410</td><td>300</td><td></td><td>"</td><td></td><td>"</td><td></td><td>"</td><td></td></th"<></th"<>	Benzo (b) fluoranthene	410	300		"		"		"	
Benzo (g,h,i) perylene ND 1000 " </td <td>Benzo (k) fluoranthene</td> <td>ND</td> <td>300</td> <td>"</td> <td>"</td> <td></td> <td>"</td> <td>"</td> <td>"</td> <td></td>	Benzo (k) fluoranthene	ND	300	"	"		"	"	"	
Benzo (a) pyrene ND 300 " " " " " " "	Benzo (g,h,i) perylene	ND	1000	"	"		"	"		
	Benzo (a) pyrene	ND	300	"	"		"	"	"	

SunStar Laboratories, Inc.

SunStar Laboratories, Inc. PROVIDING QUALITY ANALYTICAL SERVICES NATIONWIDE

25712 Commercentre Drive Lake Forest, California 92630 949.297.5020 Phone 949.297.5027 Fax

Brusca Associates Inc.		Proje								
PO Box 332		Project Number: 137-002								
Roseville CA, 95661		Project Manag	ger: Joe Br	usca				04/13/18 15:53		
		:	SP2-6							
		T1811	79-06 (So	oil)						
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes	
		SunStar L	aboratori	ies, Inc.						
Semivolatile Organic Compounds b	y EPA Method 8270C									
Benzyl alcohol	ND	300	ug/kg	1	8040619	04/06/18	04/11/18	EPA 8270C		
Bis(2-chloroethoxy)methane	ND	300	"	"	"	"	"	"		
Bis(2-chloroethyl)ether	ND	300	"	"	"	"		"		
Bis(2-chloroisopropyl)ether	ND	300	"	"	"	"	"	"		
Bis(2-ethylhexyl)phthalate	ND	300	"	"	"	"		"		
4-Bromophenyl phenyl ether	ND	300	"	"	"	"		"		
Butyl benzyl phthalate	ND	300	"	"	"	"		"		
4-Chloroaniline	ND	300	"	"	"	"	"	"		
2-Chloronaphthalene	ND	300	"	"	"	"	"	"		
4-Chlorophenyl phenyl ether	ND	300	"	"	"	"	"	"		
Chrysene	570	300	"	"	"	"	"	"		
Dibenz (a,h) anthracene	ND	300	"	"	"	"		"		
Dibenzofuran	ND	300	"	"	"	"		"		
Di-n-butyl phthalate	ND	300	"	"	"	"		"		
1,2-Dichlorobenzene	ND	300	"	"	"	"	"	"		
1,3-Dichlorobenzene	ND	300	"	"	"	"	"	"		
2,4-Dichlorophenol	ND	1000	"	"	"	"	"	"		
Diethyl phthalate	ND	300	"	"	"	"	"	"		
2,4-Dimethylphenol	ND	1000	"	"	"	"	"	"		
Dimethyl phthalate	ND	300	"	"	"	"	"	"		
4,6-Dinitro-2-methylphenol	ND	1000	"	"	"	"		"		
2,4-Dinitrophenol	ND	1000	"	"	"	"	"	"		
2,6-Dinitrotoluene	ND	1000	"	"	"	"		"		
Di-n-octyl phthalate	ND	300	"	"	"	"	"	"		
Fluoranthene	1100	300	"	"	"	"	"	"		
Fluorene	ND	300	"	"	"	"		"		
Hexachlorobenzene	ND	1500	"	"	"	"		"		
Hexachlorobutadiene	ND	300	"	"	"	"		"		
Hexachlorocyclopentadiene	ND	1000	"	"	"	"	"	"		
Hexachloroethane	ND	300	"	"	"	"	"	"		
Indeno (1,2,3-cd) pyrene	ND	300	"	"	"	"	"	"		
Isophorone	ND	300	"	"	"		"	"		

SunStar Laboratories, Inc.

Brusca Associates Inc. PO Box 332 Roseville CA, 95661		Reported : 04/13/18 15	:53						
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	ies, Inc.					
Semivolatile Organic Compounds by	EPA Method 8270C								
2-Methylphenol	ND	1000	ug/kg	1	8040619	04/06/18	04/11/18	EPA 8270C	
4-Methylphenol	ND	1000	"	"	"	"	"	"	
Naphthalene	ND	300	"	"	"	"	"	"	
2-Nitroaniline	ND	300	"	"	"	"	"	"	
3-Nitroaniline	ND	300	"	"	"	"	"	"	
4-Nitroaniline	ND	300	"	"	"	"	"	"	
Nitrobenzene	ND	1000	"	"	"	"	"	"	
2-Nitrophenol	ND	1000	"	"	"	"	"	"	
N-Nitrosodimethylamine	ND	300	"	"	"	"	"	"	
N-Nitrosodiphenylamine	ND	300	"	"	"	"	"	"	
2,3,5,6-Tetrachlorophenol	ND	300	"	"	"	"	"	"	
2,3,4,6-Tetrachlorophenol	ND	300	"	"	"	"	"	"	
Phenanthrene	750	300	"	"	"	"	"	"	
Azobenzene	ND	300	"	"	"	"	"	"	
2,4,5-Trichlorophenol	ND	1000	"	"	"	"	"	"	
Pyridine	ND	300	"	"	"	"	"	"	
2,4,6-Trichlorophenol	ND	1000	"	"	"	"	"	"	
Surrogate: 2-Fluorophenol		55.3 %	15-	121	"	"	"	"	
Surrogate: Phenol-d6		60.1 %	24-	113	"	"	"	"	
Surrogate: Nitrobenzene-d5		65.6 %	21.3	-119	"	"	"	"	
Surrogate: 2-Fluorobiphenyl		67.2 %	32.4	-102	"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		92.0 %	18.1	-105	"	"	"	"	
Surrogate: Terphenyl-dl4	88.9 % 29.1-130 " " "							"	

SunStar Laboratories, Inc.

Brusca Associates Inc. Project: Lathrop 48-Ac Property PO Box 332 Project Number: 137-002 Roseville CA, 95661 Project Manager: Joe Brusca									: :53
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Extractable Petroleum Hydrocar	bons by 8015B with Silio	ca Gel Cleanuj	D						
C6-C12 (GRO)	ND	10	mg/kg	1	8040617	04/06/18	04/06/18	EPA 8015B	
C13-C28 (DRO)	60	10	"	"	"	"	"	"	
C29-C40 (MORO)	57	10	"	"	"	"	"	"	
Surrogate: p-Terphenyl		72.0 %	65-	135	"	"	"	"	
Metals by EPA 6010B									
Antimony	ND	3.0	mg/kg	1	8040616	04/06/18	04/09/18	EPA 6010B	
Silver	ND	2.0	"	"	"	"	"	"	
Arsenic	ND	5.0	"	"	"	"	"	"	
Barium	58	1.0	"	"	"	"	"	"	
Beryllium	ND	1.0	"	"	"	"	"	"	
Cadmium	ND	2.0	"	"	"	"	"	"	
Chromium	6.0	2.0	"	"	"	"	"	"	
Cobalt	4.6	2.0	"	"	"	"	"	"	
Copper	4.1	1.0	"	"	"	"	"	"	
Lead	ND	3.0	"	"	"	"	"	"	
Molybdenum	ND	5.0	"	"	"	"	"	"	
Nickel	6.4	2.0	"	"	"	"	"	"	
Selenium	ND	5.0	"	"	"	"	"	"	
Thallium	ND	2.0	"	"	"	"	"	"	
Vanadium	22	5.0	"	"	"	"	"	"	
Zinc	24	1.0	"	"	"	"		"	
Cold Vapor Extraction EPA 7470/	/7471								
Mercury	ND	0.10	mg/kg	1	8040615	04/06/18	04/09/18	EPA 7471A Soil	

SunStar Laboratories, Inc.

Brusca Associates Inc. PO Box 332 Roseville CA, 95661	Project: Lathrop 48-Ac Property Project Number: 137-002 Project Manager: Joe Brusca								
	T1811	SP2-7 179-07 (S	oil)						
Analyte Resul	Reporting It Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes	
	SunStar L	aborator	ies, Inc.						
Polychlorinated Biphenyls by EPA Method 8082									
PCB-1016 NI) 10	ug/kg	1	8040620	04/06/18	04/10/18	EPA 8082		
PCB-1221 NI	D 10	"	"	"	"		"		
PCB-1232 NI	D 10	"	"		"	"	"		
PCB-1242 NI	D 10	"	"	"	"	"	"		
PCB-1248 NI	D 10	"	"	"	"	"	"		
PCB-1254 NI	D 10	"	"	"	"	"	"		
PCB-1260 8	6 10	"	"	"	"	"	"		
Surrogate: Tetrachloro-meta-xylene	133 %	35.	-140	"	"	"	"		
Surrogate: Decachlorobiphenyl	125 %	35-	-140	"	"	"	"		
Somivalatile Organia Compounds by FDA Mothod 92	700								
Carbazele	200	ug/kg	1	8040610	04/06/18	04/11/18	EDA 8270C		
Dhanol NI) 1000	ug/kg	"	"	"	"	"		
Aniline NI	300	"	"		"				
2-Chlorophenol) 1000	"	"		"				
1 4-Dichlorobenzene NI	300	"	"		"				
N-Nitrosodi-n-propylamine NI	3 00	"	"		"				
1 2 4-Trichlorobenzene NI	3 00	"	"		"				
4-Chloro-3-methylphenol) 1000	"	"		"				
2-Methylpaphthalene NI	300	"			"		"		
1-Methylnaphthalene NI) 300	"		"	"				
Acenaphthene NI) 300	"	"		"		"		
4-Nitrophenol NI	D 1000	"	"		"		"		
2 4-Dinitrotoluene NI) 300	"	"		"		"		
Pentachlorophenol NI	D 1000	"	"		"	"	"		
Pyrene NI	300	"	"		"				
Acenaphthylene NI	300	"	"		"				
Anthracene NI	300	"	"	"	"				
Benzo (a) anthracene NI	300	"	"		"		"		
Benzo (b) fluoranthene NI	300	"	"		"		"		
Benzo (k) fluoranthene NI	300	"	"	"	"		"		
Benzo (g,h,i) perylene NI	D 1000	"	"	"	"	"	"		

SunStar Laboratories, Inc.

SunStar Laboratories, Inc. PROVIDING QUALITY ANALYTICAL SERVICES NATIONWIDE

25712 Commercentre Drive Lake Forest, California 92630 949.297.5020 Phone 949.297.5027 Fax

Brusca Associates Inc. PO Box 332 Roseville CA, 95661		Project: Lathrop 48-Ac Property Project Number: 137-002 Project Manager: Joe Brusca							Reported: 04/13/18 15:53	
			SP2-7							
		T1811	79-07 (Se	oil)						
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes	
		SunStar L	aborator	ies, Inc.						
Semivolatile Organic Compounds by	EPA Method 8270C									
Benzo (a) pyrene	ND	300	ug/kg	1	8040619	04/06/18	04/11/18	EPA 8270C		
Benzyl alcohol	ND	300	"	"	"	"	"	"		
Bis(2-chloroethoxy)methane	ND	300	"	"	"	"	"	"		
Bis(2-chloroethyl)ether	ND	300	"	"	"	"	"	"		
Bis(2-chloroisopropyl)ether	ND	300	"	"	"	"	"	"		
Bis(2-ethylhexyl)phthalate	ND	300	"	"	"	"	"	"		
4-Bromophenyl phenyl ether	ND	300	"	"	"	"	"	"		
Butyl benzyl phthalate	ND	300	"	"	"	"	"	"		
4-Chloroaniline	ND	300	"	"	"	"	"	"		
2-Chloronaphthalene	ND	300	"	"	"	"	"	"		
4-Chlorophenyl phenyl ether	ND	300	"	"	"	"	"	"		
Chrysene	ND	300	"	"	"	"	"	"		
Dibenz (a,h) anthracene	ND	300	"	"	"	"	"	"		
Dibenzofuran	ND	300	"	"	"	"	"	"		
Di-n-butyl phthalate	ND	300	"	"	"	"	"	"		
1,2-Dichlorobenzene	ND	300	"	"	"	"	"	"		
1,3-Dichlorobenzene	ND	300	"	"	"	"	"	"		
2,4-Dichlorophenol	ND	1000	"	"	"	"	"	"		
Diethyl phthalate	ND	300	"	"	"	"	"	"		
2,4-Dimethylphenol	ND	1000	"	"	"	"	"	"		
Dimethyl phthalate	ND	300	"	"	"	"	"	"		
4,6-Dinitro-2-methylphenol	ND	1000	"	"	"	"	"	"		
2,4-Dinitrophenol	ND	1000	"	"	"	"	"	"		
2,6-Dinitrotoluene	ND	1000	"	"	"	"	"	"		
Di-n-octyl phthalate	ND	300	"	"	"	"	"	"		
Fluoranthene	ND	300	"	"	"	"	"	"		
Fluorene	ND	300	"	"	"	"	"	"		
Hexachlorobenzene	ND	1500	"	"	"	"	"	"		
Hexachlorobutadiene	ND	300	"	"	"	"	"			
Hexachlorocyclopentadiene	ND	1000	"	"		"	"	"		
Hexachloroethane	ND	300	"	"	"	"	"			
Indeno (1,2,3-cd) pyrene	ND	300	"	"		"	"	"		

SunStar Laboratories, Inc.

Brusca Associates Inc. PO Box 332 Roseville CA, 95661		Project: Lathrop 48-Ac Property Project Number: 137-002 Project Manager: Joe Brusca								
		T1811	SP2-7 .79-07 (Sa	oil)						
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes	
		SunStar L	aboratori	ies, Inc.						
Semivolatile Organic Compounds by EF	PA Method 8270C									
Isophorone	ND	300	ug/kg	1	8040619	04/06/18	04/11/18	EPA 8270C		
2-Methylphenol	ND	1000	"	"	"	"	"	"		
4-Methylphenol	ND	1000	"	"	"	"	"	"		
Naphthalene	ND	300	"	"	"	"	"	"		
2-Nitroaniline	ND	300	"	"	"	"	"	"		
3-Nitroaniline	ND	300	"	"	"	"	"	"		
4-Nitroaniline	ND	300	"	"	"	"	"	"		
Nitrobenzene	ND	1000	"	"	"	"	"	"		
2-Nitrophenol	ND	1000	"	"	"	"	"	"		
N-Nitrosodimethylamine	ND	300	"	"	"	"	"	"		
N-Nitrosodiphenylamine	ND	300	"	"	"	"	"	"		
2,3,5,6-Tetrachlorophenol	ND	300	"	"	"	"	"	"		
2,3,4,6-Tetrachlorophenol	ND	300	"	"	"	"	"	"		
Phenanthrene	ND	300	"	"	"	"	"	"		
Azobenzene	ND	300	"	"	"	"	"	"		
Pyridine	ND	300	"	"	"	"	"	"		
2,4,5-Trichlorophenol	ND	1000	"	"	"	"	"	"		
2,4,6-Trichlorophenol	ND	1000	"	"	"	"	"	"		
Surrogate: 2-Fluorophenol		56.0 %	15-	121	"	"	"	"		
Surrogate: Phenol-d6		63.3 %	24-	113	"	"	"	"		
Surrogate: Nitrobenzene-d5		65.7 %	21.3	-119	"	"	"	"		
Surrogate: 2-Fluorobiphenyl		69.3 %	32.4	-102	"	"	"	"		
Surrogate: 2,4,6-Tribromophenol		90.1 %	18.1	-105	"	"	"	"		
Surrogate: Terphenyl-dl4		94.1 %	29.1	-130	"	"	"	"		

SunStar Laboratories, Inc.

Brusca Associates Inc.		Project: Lathrop 48-Ac Property									
Roseville CA, 95661		Project Manager: Joe Brusca									
			SP2-8								
		T181	179-08 (So	oil)							
Analyta	Pacult	Reporting	Unite	Dilution	Batch	Prenared	Analyzed	Method	Notes		
Analyte	Result	Liiiit	Units	Dilution	Batch	Flepared	Allalyzeu	Wethod	Notes		
		SunStar L	aboratori	es, Inc.							
Extractable Petroleum Hydrocar	bons by 8015B with Silica	Gel Cleanu	p								
C6-C12 (GRO)	ND	10	mg/kg	1	8040617	04/06/18	04/06/18	EPA 8015B			
C13-C28 (DRO)	170	10	"	"	"	"	"	"			
C29-C40 (MORO)	120	10	"	"	"	"	"	"			
Surrogate: p-Terphenyl		77.2 %	65-135		"	"	"	"			
Metals by EPA 6010B											
Antimony	ND	3.0	mg/kg	1	8040616	04/06/18	04/09/18	EPA 6010B			
Silver	ND	2.0	"	"	"	"	"	"			
Arsenic	ND	5.0	"	"	"	"		"			
Barium	61	1.0	"	"	"	"		"			
Beryllium	ND	1.0	"	"	"	"		"			
Cadmium	ND	2.0	"	"	"	"		"			
Chromium	5.5	2.0	"	"	"	"	"	"			
Cobalt	4.4	2.0	"	"	"	"		"			
Copper	6.5	1.0	"	"	"	"		"			
Lead	11	3.0	"	"	"	"	"	"			
Molybdenum	ND	5.0	"	"	"	"	"	"			
Nickel	5.1	2.0	"	"	"	"		"			
Selenium	ND	5.0	"	"	"	"	"	"			
Thallium	ND	2.0	"	"	"	"		"			
Vanadium	16	5.0	"	"	"	"	"	"			
Zinc	27	1.0	"				"	"			
Cold Vapor Extraction EPA 7470	/7471										
Mercury	ND	0.10	mg/kg	1	8040615	04/06/18	04/09/18	EPA 7471A Soil			

SunStar Laboratories, Inc.

Brusca Associates Inc. PO Box 332		Reported:							
Roseville CA, 95661	Project Manager: Joe Brusca								5:53
		\$	SP2-8						
		T1811	79-08 (So	oil)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStan L	aharatari	los Ino		1	5		
Delvellaging and Diskeyyle by FDA Mathad 9092		Sunstar La	aboratori	les, mc.					
PCB-1016	ND	10	11g/kg	1	8040620	04/06/18	04/10/18	FPA 8082	
PCB-1221	ND	10	ug/kg "	"	8040020 "	"	"	LFA 8082	
PCB-1221	ND	10	"						
PCB-1242	ND	10	"						
PCB-1248	ND	10	"					"	
PCB-1254	ND	10	"			"			
PCB-1260	58	10	"	"		"		"	
Surrogate: Tetrachloro-meta-xylene		139 %	35-	140	"	"	"	"	
Surrogate: Decachlorobinhenvl		134 %	35-	140	"	"	"	"	
Semivolatile Organic Compounds by EPA Method	1 8270C								
Carbazole	ND	300	ug/kg	1	8040619	04/06/18	04/11/18	EPA 8270C	
Phenol	ND	1000	"	"	"	"	"	"	
Aniline	ND	300	"	"	"	"	"	"	
2-Chlorophenol	ND	1000	"	"		"	"	"	
1,4-Dichlorobenzene	ND	300	"	"	"	"	"	"	
N-Nitrosodi-n-propylamine	ND	300	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	300	"	"	"	"	"	"	
4-Chloro-3-methylphenol	ND	1000	"	"	"	"	"	"	
2-Methylnaphthalene	ND	300	"	"	"	"	"	"	
1-Methylnaphthalene	ND	300	"	"	"	"	"	"	
Acenaphthene	ND	300	"	"	"	"	"	"	
4-Nitrophenol	ND	1000	"	"	"	"	"	"	
2,4-Dinitrotoluene	ND	300	"	"		"	"	"	
Pentachlorophenol	ND	1000	"	"	"	"	"	"	
Pyrene	ND	300	"	"	"	"	"	"	
Acenaphthylene	ND	300	"	"	"	"	"	"	
Anthracene	ND	300	"	"	"	"	"	"	
Benzo (a) anthracene	ND	300	"	"		"	"	"	
Benzo (b) fluoranthene	ND	300	"	"		"	"	"	
Benzo (k) fluoranthene	ND	300	"	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	1000	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Brusca Associates Inc. PO Box 332 Roseville CA 95661		Project: Lathrop 48-Ac Property Project Number: 137-002 Project Manager: Joe Brusca								
SP2-8 T181179-08 (Soil)										
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes	
		SunStar L	aboratori	ies, Inc.		_				
Semivolatile Organic Compounds by	EPA Method 8270C									
Benzo (a) pyrene	ND	300	ug/kg	1	8040619	04/06/18	04/11/18	EPA 8270C		
Benzyl alcohol	ND	300	"	"	"	"	"	"		
Bis(2-chloroethoxy)methane	ND	300	"	"		"		"		
Bis(2-chloroethyl)ether	ND	300	"	"		"				
Bis(2-chloroisopropyl)ether	ND	300	"	"	"	"				
Bis(2-ethylhexyl)phthalate	ND	300	"	"	"	"		"		
4-Bromophenyl phenyl ether	ND	300	"	"	"	"		"		
Butyl benzyl phthalate	ND	300	"	"		"	"	"		
4-Chloroaniline	ND	300	"	"		"	"	"		
2-Chloronaphthalene	ND	300	"	"		"	"	"		
4-Chlorophenyl phenyl ether	ND	300	"	"	"	"		"		
Chrysene	ND	300	"	"		"	"	"		
Dibenz (a,h) anthracene	ND	300	"	"	"	"	"	"		
Dibenzofuran	ND	300	"	"	"	"	"	"		
Di-n-butyl phthalate	ND	300	"	"	"	"	"	"		
1,2-Dichlorobenzene	ND	300	"	"	"	"	"	"		
1,3-Dichlorobenzene	ND	300	"	"	"	"	"	"		
2,4-Dichlorophenol	ND	1000	"	"	"	"	"	"		
Diethyl phthalate	ND	300	"	"	"	"		"		
2,4-Dimethylphenol	ND	1000	"	"	"	"		"		
Dimethyl phthalate	ND	300	"	"	"	"		"		
4,6-Dinitro-2-methylphenol	ND	1000	"	"	"	"		"		
2,4-Dinitrophenol	ND	1000	"	"	"	"		"		
2,6-Dinitrotoluene	ND	1000	"	"	"	"		"		
Di-n-octyl phthalate	ND	300	"	"	"	"		"		
Fluoranthene	ND	300	"	"	"	"		"		
Fluorene	ND	300	"	"	"	"	"	"		
Hexachlorobenzene	ND	1500	"	"	"	"	"	"		
Hexachlorobutadiene	ND	300	"	"	"	"	"	"		
Hexachlorocyclopentadiene	ND	1000	"	"	"	"	"	"		
Hexachloroethane	ND	300	"	"		"	"	"		
Indeno (1,2,3-cd) pyrene	ND	300	"	"	"	"	"	"		

SunStar Laboratories, Inc.

Brusca Associates Inc. PO Box 332 Roseville CA, 95661	Project: Lathrop 48-Ac Property Project Number: 137-002 Project Manager: Joe Brusca								
	T1811	SP2-8 79-08 (So	il)						
Analyte Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes	
	SunStar L	aboratori	es, Inc.						
Semivolatile Organic Compounds by EPA Method 82700									
Isophorone ND	300	ug/kg	1	8040619	04/06/18	04/11/18	EPA 8270C		
2-Methylphenol ND	1000	"	"	"	"	"	"		
4-Methylphenol ND	1000	"	"	"	"	"	"		
Naphthalene ND	300		"	"	"	"	"		
2-Nitroaniline ND	300		"	"	"	"	"		
3-Nitroaniline ND	300	"	"	"	"	"	"		
4-Nitroaniline ND	300	"	"	"	"	"	"		
Nitrobenzene ND	1000	"	"	"	"	"	"		
2-Nitrophenol ND	1000	"	"	"	"	"	"		
N-Nitrosodimethylamine ND	300	"	"	"	"	"	"		
N-Nitrosodiphenylamine ND	300	"	"	"	"	"	"		
2,3,5,6-Tetrachlorophenol ND	300	"	"	"	"	"	"		
2,3,4,6-Tetrachlorophenol ND	300	"	"	"	"	"	"		
Phenanthrene ND	300	"	"	"	"	"	"		
Azobenzene ND	300		"	"	"	"	"		
Pyridine ND	300		"	"	"	"	"		
2,4,5-Trichlorophenol ND	1000		"	"	"	"	"		
2,4,6-Trichlorophenol ND	1000	"	"	"	"	"	"		
Surrogate: 2-Fluorophenol	54.7 %	15-	121	"	"	"	"		
Surrogate: Phenol-d6	62.2 %	24-	113	"	"	"	"		
Surrogate: Nitrobenzene-d5	64.4 %	21.3	-119	"	"	"	"		
Surrogate: 2-Fluorobiphenyl	68.7 %	32.4	-102	"	"	"	"		
Surrogate: 2,4,6-Tribromophenol	90.8 %	18.1	-105	"	"	"	"		
Surrogate: Terphenyl-dl4	96.9 %	29.1	-130	"	"	"	"		

SunStar Laboratories, Inc.

Brusca Associates Inc. PO Box 332 Roseville CA, 95661		Reported: 04/13/18 15:53							
		T1811	179-09 (So	oil)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	ies, Inc.					
Extractable Petroleum Hydrocarl	oons by 8015B with Silic	a Gel Cleanu	þ						
C6-C12 (GRO)	ND	10	mg/kg	1	8040617	04/06/18	04/06/18	EPA 8015B	
C13-C28 (DRO)	370	10	"	"	"	"	"	"	
C29-C40 (MORO)	380	10	"	"	"	"	"	"	
Surrogate: p-Terphenyl		79.2 %	65-	135	"	"	"	"	
Metals by EPA 6010B									
Antimony	ND	3.0	mg/kg	1	8040616	04/06/18	04/09/18	EPA 6010B	
Silver	ND	2.0	"	"	"	"	"	"	
Arsenic	ND	5.0	"	"	"	"	"	"	
Barium	52	1.0	"	"	"	"	"	"	
Beryllium	ND	1.0	"	"	"	"	"	"	
Cadmium	ND	2.0	"	"	"	"	"	"	
Chromium	5.5	2.0	"	"	"	"	"	"	
Cobalt	5.6	2.0	"	"	"	"	"	"	
Copper	8.5	1.0	"	"	"	"	"	"	
Lead	32	3.0	"	"	"	"	"	"	
Molybdenum	ND	5.0	"	"	"	"	"	"	
Nickel	9.5	2.0	"	"	"	"	"	"	
Selenium	ND	5.0	"	"	"	"	"	"	
Thallium	ND	2.0	"	"	"	"	"	"	
Vanadium	17	5.0	"	"	"	"	"	"	
Zinc	28	1.0	"	"	"	"		"	
Cold Vapor Extraction EPA 7470/	7471								
Mercury	ND	0.10	mg/kg	1	8040615	04/06/18	04/09/18	EPA 7471A Soil	

SunStar Laboratories, Inc.

Brusca Associates Inc.Project:Lathrop 48-Ac PropertyPO Box 332Project Number:137-002Roseville CA, 95661Project Manager:Joe Brusca0										
		5	SP2-9							
		T1811	79-09 (So	oil)						
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes	
		SunStar L	aboratori	ies, Inc.						
Polychlorinated Biphenyls by EPA M	Aethod 8082									
PCB-1016	ND	10	ug/kg	1	8040620	04/06/18	04/10/18	EPA 8082		
PCB-1221	ND	10	"	"	"	"	"	"		
PCB-1232	ND	10	"	"	"	"	"	"		
PCB-1242	ND	10	"	"	"	"	"	"		
PCB-1248	ND	10	"	"	"	"	"	"		
PCB-1254	ND	10	"	"	"	"	"	"		
PCB-1260	58	10	"	"	"	"	"	"		
Surrogate: Tetrachloro-meta-xylene		132 %	35-	140	"	"	"	"		
Surrogate: Decachlorobiphenyl		119 %	35-	140	"	"	"	"		
Somivolatilo Organio Compounds h	v FDA Mothod 8270C									
Semivolatile Organic Compounds by	VEFA Method 6270C	200	wa/ka	1	8040610	04/06/19	04/11/19	EDA 9270C		
Dhenol	ND	1000	ug/kg "	"	"	"	"	"		
Aniline	ND	300		"						
2 Chlorophenol	ND	1000		"						
1 4-Dichlorobenzene	ND	300		"						
N Nitrosodi n propylamine	ND	300		"				"		
1.2.4-Trichlorobenzene	ND	300		"						
4-Chloro-3-methylphenol	ND	1000		"						
1-Methylnanhthalene	ND	300		"						
2-Methylnaphthalene	ND	300		"						
Acenanhthene	ND	300		"						
4-Nitrophenol	ND	1000		"						
2 4-Dinitrotoluene	ND	300		"				"		
Pentachlorophenol	ND	1000		"				"		
Pyrene	ND	300		"		"				
Acenanhthylene	ND	300		"		"				
Anthracene	ND	300		"		"				
Benzo (a) anthracene	ND	300		"			"			
Benzo (b) fluoranthene	ND	300		"			"			
Benzo (k) fluoranthene	ND	300		"			"			
Benzo (g h i) pervlene	ND	1000		"						
Sense (S,ii,i) perficie		1000								

SunStar Laboratories, Inc.

Brusca Associates Inc. PO Box 332 Roseville CA 95661		Project Numb Project Manag	Reported:						
		i i ojeet munue	,er: 500 Bi	useu				01/15/10 15	
		T1811	SP2-9 .79-09 (So	oil)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	ies, Inc.					
Semivolatile Organic Compounds by	EPA Method 8270C								
Benzo (a) pyrene	ND	300	ug/kg	1	8040619	04/06/18	04/11/18	EPA 8270C	
Benzyl alcohol	ND	300	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	300	"	"		"	"	"	
Bis(2-chloroethyl)ether	ND	300	"	"		"	"	"	
Bis(2-chloroisopropyl)ether	ND	300	"	"		"	"	"	
Bis(2-ethylhexyl)phthalate	ND	300	"	"		"		"	
4-Bromophenyl phenyl ether	ND	300	"	"		"		"	
Butyl benzyl phthalate	ND	300	"	"		"	"	"	
4-Chloroaniline	ND	300	"	"		"		"	
2-Chloronaphthalene	ND	300	"	"		"		"	
4-Chlorophenyl phenyl ether	ND	300	"	"		"		"	
Chrysene	ND	300	"	"		"		"	
Dibenz (a,h) anthracene	ND	300	"	"		"		"	
Dibenzofuran	ND	300	"	"		"	"	"	
Di-n-butyl phthalate	ND	300	"	"		"	"	"	
1,2-Dichlorobenzene	ND	300	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	300	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	1000	"	"	"	"	"	"	
Diethyl phthalate	ND	300	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	1000	"	"	"	"	"	"	
Dimethyl phthalate	ND	300	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol	ND	1000	"	"	"	"	"	"	
2,4-Dinitrophenol	ND	1000	"	"	"	"	"	"	
2,6-Dinitrotoluene	ND	1000	"	"	"	"	"	"	
Di-n-octyl phthalate	ND	300	"	"	"	"	"	"	
Fluoranthene	ND	300	"	"		"	"	"	
Fluorene	ND	300	"	"	"	"	"	"	
Hexachlorobenzene	ND	1500	"	"	"	"	"	"	
Hexachlorobutadiene	ND	300	"	"	"	"	"	"	
Hexachlorocyclopentadiene	ND	1000	"	"	"	"	"	"	
Hexachloroethane	ND	300	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene	ND	300	"	"			"	"	

SunStar Laboratories, Inc.

Brusca Associates Inc. PO Box 332 Roseville CA, 95661	Project: Lathrop 48-Ac Property Project Number: 137-002 Project Manager: Joe Brusca										
		5 T1811	SP2-9 79-09 (So	oil)							
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes		
		SunStar L	aboratori	ies, Inc.							
Semivolatile Organic Compounds by EPA Metho	d 8270C										
Isophorone	ND	300	ug/kg	1	8040619	04/06/18	04/11/18	EPA 8270C			
2-Methylphenol	ND	1000	"	"	"	"	"	"			
4-Methylphenol	ND	1000	"	"	"	"	"	"			
Naphthalene	ND	300	"	"	"	"	"	"			
2-Nitroaniline	ND	300	"	"	"	"	"	"			
3-Nitroaniline	ND	300	"	"	"	"	"	"			
4-Nitroaniline	ND	300	"	"	"	"	"	"			
Nitrobenzene	ND	1000	"	"	"	"	"	"			
2-Nitrophenol	ND	1000	"	"	"	"	"	"			
N-Nitrosodimethylamine	ND	300	"	"	"	"	"	"			
N-Nitrosodiphenylamine	ND	300	"	"	"	"	"	"			
2,3,5,6-Tetrachlorophenol	ND	300	"	"	"	"	"	"			
2,3,4,6-Tetrachlorophenol	ND	300	"	"	"	"	"	"			
Phenanthrene	ND	300	"	"	"	"	"	"			
Azobenzene	ND	300	"	"	"	"	"	"			
2,4,5-Trichlorophenol	ND	1000	"	"	"	"	"	"			
Pyridine	ND	300	"	"	"	"	"	"			
2,4,6-Trichlorophenol	ND	1000	"	"	"	"	"	"			
Surrogate: 2-Fluorophenol		50.7 %	15-	121	"	"	"	"			
Surrogate: Phenol-d6		58.9 %	24-	113	"	"	"	"			
Surrogate: Nitrobenzene-d5		62.2 %	21.3	-119	"	"	"	"			
Surrogate: 2-Fluorobiphenyl		71.7 %	32.4	-102	"	"	"	"			
Surrogate: 2,4,6-Tribromophenol		88.9 %	18.1	-105	"	"	"	"			
Surrogate: Terphenyl-dl4		86.1 %	29.1	-130	"	"	"	"			

SunStar Laboratories, Inc.

Brusca Associates Inc. PO Box 332 Roseville CA, 95661	Inc. Project: Lathrop 48-Ac Property Project Number: 137-002 61 Project Manager: Joe Brusca									
			SP2-10							
		T181	179-10 (So	oil)						
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes	
Thurye	resur	SunStar I	aboratori	os Inc	Duten	Tiepuleu	ThuryZou	inculou	110105	
Extractable Detroloum Hydrogerh	ons by 8015B with Silico (abor atorr	cs, mc.						
C6-C12 (GRO)	ND	10	p	1	8040617	04/06/18	04/06/18	FPA 8015B		
C13-C28 (DBO)	150	10	"	"	"	"	"	"		
C29-C40 (MORO)	76	10	"	"	"	"		"		
Surrogate: p-Terphenyl		70.1 %	65-	135	"	"	"	"		
Metals by EPA 6010B										
Antimony	ND	3.0	mg/kg	1	8040616	04/06/18	04/09/18	EPA 6010B		
Silver	ND	2.0	"	"	"	"		"		
Arsenic	ND	5.0	"	"	"	"		"		
Barium	61	1.0	"	"	"	"		"		
Beryllium	ND	1.0	"	"	"	"	"	"		
Cadmium	ND	2.0	"	"	"	"	"	"		
Chromium	6.1	2.0	"	"	"	"	"	"		
Cobalt	4.6	2.0	"	"	"	"	"	"		
Copper	4.1	1.0	"	"	"	"	"	"		
Lead	ND	3.0	"	"	"	"	"	"		
Molybdenum	ND	5.0	"	"	"	"	"	"		
Nickel	6.2	2.0	"	"	"	"	"	"		
Selenium	ND	5.0	"	"	"	"	"	"		
Thallium	ND	2.0	"	"	"	"	"	"		
Vanadium	21	5.0	"	"	"	"	"	"		
Zinc	26	1.0	"	"	"	"	"	"		
Cold Vapor Extraction EPA 7470/2	7471									
Mercury	ND	0.10	mg/kg	1	8040615	04/06/18	04/09/18	EPA 7471A Soil		

SunStar Laboratories, Inc.

Brusca Associates Inc.Project: Lathrop 48-Ac PropertyPO Box 332Project Number: 137-002Roseville CA, 95661Project Manager: Joe Brusca04										
		S T1811	SP2-10 79-10 (So	il)						
		Reporting		,						
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes	
		SunStar L	aboratori	es, Inc.						
Polychlorinated Biphenyls by EPA M	ethod 8082									
PCB-1016	72	10	ug/kg	1	8040620	04/06/18	04/10/18	EPA 8082		
PCB-1221	ND	10	"	"	"	"	"	"		
PCB-1232	ND	10	"	"	"	"	"	"		
PCB-1242	ND	10	"	"	"	"	"	"		
PCB-1248	ND	10	"	"	"	"	"	"		
PCB-1254	ND	10	"	"	"	"	"	"		
PCB-1260	45	10	"	"	"	"	"	"		
Surrogate: Tetrachloro-meta-xylene		142 %	35-	140	"	"	"	"	S-GC	
Surrogate: Decachlorobiphenyl		120 %	35-	140	"	"	"	"		
Semivolatile Organic Compounds by	EPA Method 8270C									
Carbazole	ND	300	110/ko	1	8040619	04/06/18	04/11/18	FPA 8270C		
Phenol	ND	1000	"		"	"	"	"		
Aniline	ND	300						"		
2-Chlorophenol	ND	1000				"				
1 4-Dichlorobenzene	ND	300				"				
N-Nitrosodi-n-propylamine	ND	300				"				
1 2 4-Trichlorobenzene	ND	300				"				
4-Chloro-3-methylphenol	ND	1000				"	"	"		
2-Methylnaphthalene	ND	300				"	"	"		
1-Methylnaphthalene	ND	300			"	"	"	"		
Acenaphthene	ND	300			"	"	"	"		
4-Nitrophenol	ND	1000			"	"	"	"		
2.4-Dinitrotoluene	ND	300				"	"	"		
Pentachlorophenol	ND	1000			"	"	"	"		
Pyrene	ND	300	"			"	"	"		
Acenaphthylene	ND	300	"			"	"	"		
Anthracene	ND	300	"			"	"			
Benzo (a) anthracene	ND	300	"			"	"			
Benzo (b) fluoranthene	ND	300	"			"	"	"		
Benzo (k) fluoranthene	ND	300	"			"	"			
Benzo (g,h,i) perylene	ND	1000				"	"			

SunStar Laboratories, Inc.

Brusca Associates Inc. PO Box 332 Roseville CA, 95661	Proje Project Numb Project Manag	eet: Lathro per: 137-00 ger: Joe Bi	op 48-Ac Pro 02 rusca	perty			Reported : 04/13/18 15	:53
	S T1811	SP2-10 79-10 (Se	oil)					
Analyte Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	SunStar L	aborator	ies, Inc.					
Semivolatile Organic Compounds by EPA Method 8270C								
Benzo (a) pyrene ND	300	ug/kg	1	8040619	04/06/18	04/11/18	EPA 8270C	
Benzyl alcohol ND	300	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane ND	300	"	"	"	"	"	"	
Bis(2-chloroethyl)ether ND	300	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether ND	300	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate ND	300	"	"	"	"	"	"	
4-Bromophenyl phenyl ether ND	300	"	"	"	"	"	"	
Butyl benzyl phthalate ND	300	"	"	"	"	"	"	
4-Chloroaniline ND	300	"	"	"	"	"	"	
2-Chloronaphthalene ND	300	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether ND	300	"	"	"	"	"	"	
Chrysene ND	300	"	"	"	"	"	"	
Dibenz (a,h) anthracene ND	300	"	"	"	"	"	"	
Dibenzofuran ND	300	"	"	"	"	"	"	
Di-n-butyl phthalate ND	300	"	"	"	"	"	"	
1,2-Dichlorobenzene ND	300	"	"	"	"	"	"	
1,3-Dichlorobenzene ND	300	"	"	"	"	"	"	
2,4-Dichlorophenol ND	1000	"	"	"	"	"	"	
Diethyl phthalate ND	300	"	"	"	"	"	"	
2,4-Dimethylphenol ND	1000	"	"	"	"	"	"	
Dimethyl phthalate ND	300	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol ND	1000	"	"	"	"	"	"	
2,4-Dinitrophenol ND	1000	"	"	"	"	"	"	
2,6-Dinitrotoluene ND	1000	"	"	"	"	"	"	
Di-n-octyl phthalate ND	300	"	"	"	"	"	"	
Fluoranthene ND	300	"	"	"	"	"	"	
Fluorene ND	300	"	"	"	"	"	"	
Hexachlorobenzene ND	1500	"	"	"	"	"	"	
Hexachlorobutadiene ND	300	"	"		"	"	"	
Hexachlorocyclopentadiene ND	1000	"	"		"	"	"	
Hexachloroethane ND	300	"	"		"	"	"	
Indeno (1,2,3-cd) pyrene ND	300	"	"		"	"	"	

SunStar Laboratories, Inc.

Brusca Associates Inc. PO Box 332 Roseville CA, 95661		Reported: 04/13/18 15:53							
		S T1811	SP2-10 179-10 (Soi	il)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratorio	es, Inc.					
Semivolatile Organic Compounds by El	PA Method 8270C								
Isophorone	ND	300	ug/kg	1	8040619	04/06/18	04/11/18	EPA 8270C	
2-Methylphenol	ND	1000	"		"	"	"	"	
4-Methylphenol	ND	1000	"		"	"	"	"	
Naphthalene	ND	300	"		"	"	"	"	
2-Nitroaniline	ND	300	"	"	"	"	"	"	
3-Nitroaniline	ND	300	"	"	"	"	"	"	
4-Nitroaniline	ND	300	"	"	"	"	"	"	
Nitrobenzene	ND	1000	"	"	"	"	"	"	
2-Nitrophenol	ND	1000	"	"	"	"	"	"	
N-Nitrosodimethylamine	ND	300	"	"	"	"	"	"	
N-Nitrosodiphenylamine	ND	300	"		"	"	"	"	
2,3,5,6-Tetrachlorophenol	ND	300	"		"	"	"	"	
2,3,4,6-Tetrachlorophenol	ND	300	"	"	"	"	"	"	
Phenanthrene	ND	300	"	"	"	"	"	"	
Azobenzene	ND	300	"	"	"	"	"	"	
Pyridine	ND	300	"	"	"	"	"	"	
2,4,5-Trichlorophenol	ND	1000	"	"	"	"	"	"	
2,4,6-Trichlorophenol	ND	1000	"	"	"	"	"	"	
Surrogate: 2-Fluorophenol		51.5 %	15-1	21	"	"	"	"	
Surrogate: Phenol-d6		56.8 %	24-1	13	"	"	"	"	
Surrogate: Nitrobenzene-d5		60.0 %	21.3-	119	"	"	"	"	
Surrogate: 2-Fluorobiphenyl		67.2 %	32.4-	102	"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		91.0 %	18.1-	105	"	"	"	"	
Surrogate: Terphenyl-dl4		95.8 %	29.1-	130	"	"	"	"	

SunStar Laboratories, Inc.

Brusca Associates Inc.	Project: Lathrop 48-Ac Property										
PO BOX 552 Roseville CA 95661		Project Num	per: 157-00	12				Reported: 04/13/18 15	-53		
1050 viile C/1, 55001		1 Tojeet Ivianag	501. 500 DI	useu				04/15/10 15	.55		
		T101	SP2-11	.							
		1181	1/9-11 (80)))							
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes		
		SunStar L	aboratori	es, Inc.							
Extractable Petroleum Hydrocar	bons by 8015B with Silica	Gel Cleanu	p								
C6-C12 (GRO)	ND	10	mg/kg	1	8040617	04/06/18	04/06/18	EPA 8015B			
C13-C28 (DRO)	110	10	"	"	"	"	"	"			
C29-C40 (MORO)	68	10	"	"	"	"	"	"			
Surrogate: p-Terphenyl		82.1 %	65	135	"	"	"	"			
Metals by EPA 6010B											
Antimony	ND	3.0	mg/kg	1	8040616	04/06/18	04/09/18	EPA 6010B			
Silver	ND	2.0	"	"	"	"	"	"			
Arsenic	ND	5.0	"	"	"	"	"	"			
Barium	58	1.0	"	"	"	"	"	"			
Beryllium	ND	1.0	"	"	"	"	"	"			
Cadmium	ND	2.0	"	"	"	"	"	"			
Chromium	6.7	2.0	"	"	"	"	"	"			
Cobalt	4.4	2.0	"	"	"	"	"	"			
Copper	6.5	1.0	"	"	"	"	"	"			
Lead	17	3.0	"	"	"	"	"	"			
Molybdenum	ND	5.0	"	"	"	"	"	"			
Nickel	6.4	2.0	"	"	"	"	"	"			
Selenium	ND	5.0	"	"	"	"	"	"			
Thallium	ND	2.0	"	"	"	"	"	"			
Vanadium	20	5.0	"	"	"	"	"	"			
Zinc	31	1.0	"		"	"		"			
Cold Vapor Extraction EPA 7470	/7471										
Mercury	ND	0.10	mg/kg	1	8040615	04/06/18	04/09/18	EPA 7471A Soil			

SunStar Laboratories, Inc.

Brusca Associates Inc. PO Box 332 Roseville CA, 95661		Reported: 04/13/18 15:53							
		S T1811	SP2-11 79-11 (So	oil)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	ies, Inc.					
Polychlorinated Biphenyls by EPA M	lethod 8082								
PCB-1016	ND	10	ug/kg	1	8040620	04/06/18	04/10/18	EPA 8082	
PCB-1221	ND	10	"	"		"	"	"	
PCB-1232	ND	10	"	"	"	"	"	"	
PCB-1242	ND	10	"	"	"	"	"	"	
PCB-1248	ND	10	"	"	"	"	"	"	
PCB-1254	ND	10	"	"	"	"	"	"	
PCB-1260	26	10	"	"	"	"	"	"	
Surrogate: Tetrachloro-meta-xylene		134 %	35-	140	"	"	"	"	
Surrogate: Decachlorobiphenyl		129 %	35-	140	"	"	"	"	
Seminal 41. Owners Commune to be	EDA M-41 - 1 9270C								
Semivolatile Organic Compounds by	ND	200	ug/kg	1	8040610	04/06/18	04/11/19	EDA 8270C	
Dhamal	ND	300	ug/kg "	1	8040619	04/06/18	04/11/18	EPA 8270C	
Anilina	ND	1000		"		"			
2 Chlorophonol	ND	1000		"		"			
1.4 Dishlorohonzono	ND	200				"		"	
N Nitrosodi n propulamine	ND	300		"		"			
1.2.4 Trichlorobanzana	ND	300		"		"			
4 Chloro 3 methylphenol	ND	1000		"		"			
2 Mathylnanhthalana	ND	300		"		"			
1-Methylnaphthalene	ND	300		"		"			
A cenant thene	ND	300		"		"			
4-Nitrophenol	ND	1000		"		"	"		
2 4-Dinitrotoluene	ND	300		"		"	"		
Pentachlorophenol	ND	1000		"		"		"	
Pyrene	ND	300		"		"		"	
Acenaphthylene	ND	300		"		"		"	
Anthracene	ND	300		"		"		"	
Benzo (a) anthracene	ND	300		"		"	"	"	
Benzo (b) fluoranthene	ND	300	"	"		"	"	"	
Benzo (k) fluoranthene	ND	300	"	"		"	"		
Benzo (g,h,i) pervlene	ND	1000	"	"		"	"		
(C) / f · J · ·									

SunStar Laboratories, Inc.

Brusca Associates Inc. PO Box 332 Roseville CA, 95661	Proje Project Numb Project Manag	eet: Lathro per: 137-00 ger: Joe Bi	op 48-Ac Pro 02 rusca	perty			Reported : 04/13/18 15	:53
	S T1811	SP2-11 79-11 (So	oil)					
Analyte Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	SunStar L	aborator	ies, Inc.					
Semivolatile Organic Compounds by EPA Method 8270C								
Benzo (a) pyrene ND	300	ug/kg	1	8040619	04/06/18	04/11/18	EPA 8270C	
Benzyl alcohol ND	300	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane ND	300	"	"	"	"	"	"	
Bis(2-chloroethyl)ether ND	300	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether ND	300	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate ND	300	"	"	"	"	"	"	
4-Bromophenyl phenyl ether ND	300	"	"	"	"	"	"	
Butyl benzyl phthalate ND	300	"	"	"	"	"	"	
4-Chloroaniline ND	300	"	"	"	"	"	"	
2-Chloronaphthalene ND	300	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether ND	300	"	"	"	"	"	"	
Chrysene ND	300	"	"	"	"	"	"	
Dibenz (a,h) anthracene ND	300	"	"	"	"	"	"	
Dibenzofuran ND	300	"	"	"	"	"	"	
Di-n-butyl phthalate ND	300	"	"	"	"	"	"	
1,2-Dichlorobenzene ND	300	"	"	"	"	"	"	
1,3-Dichlorobenzene ND	300	"	"	"	"	"	"	
2,4-Dichlorophenol ND	1000	"	"	"	"	"	"	
Diethyl phthalate ND	300	"	"	"	"	"	"	
2,4-Dimethylphenol ND	1000	"	"	"	"	"	"	
Dimethyl phthalate ND	300	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol ND	1000	"	"	"	"	"	"	
2,4-Dinitrophenol ND	1000	"	"	"	"	"	"	
2,6-Dinitrotoluene ND	1000	"	"	"	"	"	"	
Di-n-octyl phthalate ND	300	"	"	"	"	"	"	
Fluoranthene ND	300	"	"	"	"	"	"	
Fluorene ND	300	"	"	"	"	"	"	
Hexachlorobenzene ND	1500	"	"		"	"	"	
Hexachlorobutadiene ND	300	"	"		"	"	"	
Hexachlorocyclopentadiene ND	1000	"	"		"	"	"	
Hexachloroethane ND	300	"	"		"	"	"	
Indeno (1,2,3-cd) pyrene ND	300	"	"		"	"	"	

SunStar Laboratories, Inc.

Brusca Associates Inc. PO Box 332 Roseville CA, 95661		Reported: 04/13/18 15:53							
		S T1811	SP2-11 79-11 (So	il)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Semivolatile Organic Compounds by E	PA Method 8270C								
Isophorone	ND	300	ug/kg	1	8040619	04/06/18	04/11/18	EPA 8270C	
2-Methylphenol	ND	1000	"		"	"	"	"	
4-Methylphenol	ND	1000	"		"	"	"	"	
Naphthalene	ND	300	"		"	"	"	"	
2-Nitroaniline	ND	300	"		"	"	"	"	
3-Nitroaniline	ND	300	"		"	"	"	"	
4-Nitroaniline	ND	300	"		"	"	"	"	
Nitrobenzene	ND	1000	"	"	"	"	"	"	
2-Nitrophenol	ND	1000	"	"	"	"	"	"	
N-Nitrosodimethylamine	ND	300	"	"	"	"	"	"	
N-Nitrosodiphenylamine	ND	300	"		"	"	"	"	
2,3,5,6-Tetrachlorophenol	ND	300	"		"	"	"	"	
2,3,4,6-Tetrachlorophenol	ND	300	"		"	"	"	"	
Phenanthrene	ND	300	"		"	"	"	"	
Azobenzene	ND	300	"		"	"	"	"	
Pyridine	ND	300	"		"	"	"	"	
2,4,5-Trichlorophenol	ND	1000	"		"	"	"	"	
2,4,6-Trichlorophenol	ND	1000	"	"	"	"	"	"	
Surrogate: 2-Fluorophenol		54.1 %	15-1	121	"	"	"	"	
Surrogate: Phenol-d6		60.5 %	24-1	113	"	"	"	"	
Surrogate: Nitrobenzene-d5		62.2 %	21.3-	-119	"	"	"	"	
Surrogate: 2-Fluorobiphenyl		67.8 %	32.4-	102	"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		96.6 %	18.1-	105	"	"	"	"	
Surrogate: Terphenyl-dl4		93.2 %	29.1-	130	"	"	"	"	

SunStar Laboratories, Inc.

Brusca Associates Inc. PO Box 332 Roseville CA, 95661		Proj Project Numl Project Manaş	ect: Lathro per: 137-00 ger: Joe Br	p 48-Ac Pro)2 usca	operty			Reported: 04/13/18 15	:53
		5 T1811	SP2-12 179-12 (Sa	oil)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Extractable Petroleum Hydrocart	oons by 8015B with Silica	Gel Cleanu	p						
C6-C12 (GRO)	ND	10	mg/kg	1	8040617	04/06/18	04/06/18	EPA 8015B	
C13-C28 (DRO)	140	10	"	"	"	"	"	"	
C29-C40 (MORO)	150	10	"	"	"	"	"	"	
Surrogate: p-Terphenyl		77.4 %	65-	135	"	"	"	"	
Metals by EPA 6010B									
Antimony	ND	3.0	mg/kg	1	8040616	04/06/18	04/09/18	EPA 6010B	
Silver	ND	2.0	"	"	"	"	"	"	
Arsenic	ND	5.0	"	"	"	"	"	"	
Barium	58	1.0	"	"	"	"	"	"	
Beryllium	ND	1.0	"	"	"	"	"	"	
Cadmium	ND	2.0	"	"	"	"	"	"	
Chromium	5.8	2.0	"	"	"	"	"	"	
Cobalt	4.5	2.0	"	"	"	"	"	"	
Copper	5.8	1.0	"	"	"	"	"	"	
Lead	11	3.0	"	"	"	"	"	"	
Molybdenum	ND	5.0	"	"	"	"	"	"	
Nickel	5.4	2.0	"	"	"	"	"	"	
Selenium	ND	5.0	"	"	"	"	"	"	
Thallium	ND	2.0	"	"	"	"	"	"	
Vanadium	17	5.0	"	"	"	"	"	"	
Zinc	29	1.0	"	"		"	"	"	
Cold Vapor Extraction EPA 7470/	7471								
Mercury	ND	0.10	mg/kg	1	8040615	04/06/18	04/09/18	EPA 7471A Soil	

SunStar Laboratories, Inc.

Mike Jaroudi, Project Manager

Brusca Associates Inc. PO Box 332 Roseville CA, 95661		Proje Project Numb Project Manag	ect: Lathro ber: 137-00 ger: Joe Br	p 48-Ac Pro)2 usca	operty			Reported 04/13/18 15	: :53
		S T1811	SP2-12 179-12 (So	oil)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Polychlorinated Biphenyls by EPA M	lethod 8082								
PCB-1016	ND	10	ug/kg	1	8040620	04/06/18	04/10/18	EPA 8082	
PCB-1221	ND	10	"	"	"	"	"	"	
PCB-1232	ND	10	"	"	"	"	"	"	
PCB-1242	ND	10	"	"	"	"	"	"	
PCB-1248	ND	10	"	"	"	"	"	"	
PCB-1254	ND	10	"	"	"	"	"	"	
PCB-1260	61	10	"	"	"	"	"	"	
Surrogate: Tetrachloro-meta-xylene		137 %	35-	140	"	"	"	"	
Surrogate: Decachlorobiphenyl		127 %	35-	140	"	"	"	"	
Saminalatila Organia Compounda hu	EDA Mathad 9270C								
Semivolatile Organic Compounds by	LPA Method 82/0C	200	walka	1	8040610	04/06/19	04/11/19	EDA 8270C	
Dhamal	ND	1000	ug/kg "	1	8040019	04/00/18	04/11/18	EPA 8270C	
Aniline	ND	200	"	"				"	
2 Chlorophonol	ND	1000	"	"		"		"	
1.4 Dishlorohonzono	ND	200	"	"				"	
N Nitrosodi n propulamine	ND	300	"	"		"		"	
1.2.4 Trichlorobenzene	ND	300	"	"	"	"		"	
4-Chloro-3-methylphenol	ND	1000	"	"		"			
2-Methylnanhthalene	ND	300	"	"		"			
1-Methylnaphthalene	ND	300	"	"		"			
Acenaphthene	ND	300	"	"		"		"	
4-Nitrophenol	ND	1000	"	"		"		"	
2 4-Dinitrotoluene	ND	300	"	"	"	"		"	
Pentachlorophenol	ND	1000	"	"	"	"		"	
Pyrene	ND	300	"	"	"	"	"	"	
Acenaphthylene	ND	300	"	"	"	"	"	"	
Anthracene	ND	300	"	"	"	"	"		
Benzo (a) anthracene	ND	300	"	"	"	"	"		
Benzo (b) fluoranthene	ND	300	"	"	"	"	"		
Benzo (k) fluoranthene	ND	300	"	"	"	"	"		
Benzo (g,h,i) perylene	ND	1000	"	"	"	"	"	"	
·····									

SunStar Laboratories, Inc.

SPE-1F TINITAL DESCRIPTION OF CONSTRUCTAnalyeReadinReparing ManageDatationReparedAnalyeeMethodMethodMethodAnalyeeReparedReparedDatationBanageReparedAnalyeeMethodMethodMethodAnalyeeReparedNDMonUsingNDMethodMethodMethodMethodBenzy alcoholMDMONMonNDMethodMethodMethodMethodMethodBenzy alcoholMDMONMonMethodMethodMethodMethodMethodMethodBid2-chloreothypitherMDMONMethodMethodMethodMethodMethodMethodBid2-chloreothypitherMDMONMethodMethodMethodMethodMethodMethodBid2-chloreothypitherMDMONMethodMethodMethodMethodMethodMethodBid2-chloreothypitherMDMONMethodMethodMethodMethodMethodBid2-chloreothypitherMDMONMethodMethodMethodMethodMethodBid2-chloreothypitherMDMONMethodMethodMethodMethodMethodBid2-chloreothypitherMDMONMethodMethodMethodMethodMethodChloreothypitherMDMONMethodMethodMethodMethodMethodChloreothypitherMDM	Brusca Associates Inc. PO Box 332 Roseville CA, 95661		Proje Project Numb Project Manag	eet: Lathro per: 137-0 ger: Joe Bi	op 48-Ac Pro 02 rusca	perty			Reported 04/13/18 15	:53
Analyte Result Reporting Limit Dilution Batch Prepared Analyzed Method Notes SunStar Laboratories, Inc. Semivolatile Organic Compounds by EPA Method 8270C Benzo (n) pyrene ND 300 ug/kg 1 8040619 04/06/18 04/11/18 EPA 8270C Benzo (n) pyrene ND 300 " - " <th></th> <th></th> <th>S T1811</th> <th>SP2-12 79-12 (Se</th> <th>oil)</th> <th></th> <th></th> <th></th> <th></th> <th></th>			S T1811	SP2-12 79-12 (Se	oil)					
Buscher Schweiter Sch	Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Semivolatile Organic Compounds by EPA Method 8270C ND 300 ug/kg 1 84040 ¹ 04/11/18 FPA 8270C Benzy lacohol ND 300 " -			SunStar L	aborator	ies, Inc.					
Bancy () pyreneND<	Semivolatile Organic Compounds by	y EPA Method 8270C								
Benzyl alcoholND300""" <td>Benzo (a) pyrene</td> <td>ND</td> <td>300</td> <td>ug/kg</td> <td>1</td> <td>8040619</td> <td>04/06/18</td> <td>04/11/18</td> <td>EPA 8270C</td> <td></td>	Benzo (a) pyrene	ND	300	ug/kg	1	8040619	04/06/18	04/11/18	EPA 8270C	
Bis(2-chloroethy)ethaneND300"" <td>Benzyl alcohol</td> <td>ND</td> <td>300</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td></td>	Benzyl alcohol	ND	300	"	"	"	"	"	"	
Bis(2-chloreispropy)therND300"" <td>Bis(2-chloroethoxy)methane</td> <td>ND</td> <td>300</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td></td>	Bis(2-chloroethoxy)methane	ND	300	"	"	"	"	"	"	
Bis(2-chloroisopropylpetherND300""	Bis(2-chloroethyl)ether	ND	300	"	"	"	"		"	
Bis/2-ethylhexyl)phthalateND300""<	Bis(2-chloroisopropyl)ether	ND	300	"	"	"	"	"	"	
4-Bromophenyl phenyl etherND300""<	Bis(2-ethylhexyl)phthalate	ND	300	"	"	"	"	"	"	
Butyl benzyl phthalateND300""	4-Bromophenyl phenyl ether	ND	300	"	"	"	"	"	"	
4-ChloroanilineND300""" </td <td>Butyl benzyl phthalate</td> <td>ND</td> <td>300</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td></td>	Butyl benzyl phthalate	ND	300	"	"	"	"	"	"	
2-ChloronaphthaleneND300"" <th< td=""><td>4-Chloroaniline</td><td>ND</td><td>300</td><td>"</td><td>"</td><td>"</td><td>"</td><td>"</td><td>"</td><td></td></th<>	4-Chloroaniline	ND	300	"	"	"	"	"	"	
4-Chlorophenyl phenyl etherND300""	2-Chloronaphthalene	ND	300	"	"	"	"	"	"	
ChryseneND300"""	4-Chlorophenyl phenyl ether	ND	300	"	"	"	"	"	"	
Dibenz (a,h) anthracene ND 300 "	Chrysene	ND	300	"	"	"	"	"	"	
DibenzofuranND300"""	Dibenz (a,h) anthracene	ND	300	"	"	"	"		"	
Di-n-buryl phthalate ND 300 " <td>Dibenzofuran</td> <td>ND</td> <td>300</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td></td> <td>"</td> <td></td>	Dibenzofuran	ND	300	"	"	"	"		"	
1,2-Dichlorobenzene ND 300 " <td>Di-n-butyl phthalate</td> <td>ND</td> <td>300</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td></td> <td>"</td> <td></td>	Di-n-butyl phthalate	ND	300	"	"	"	"		"	
1,3-Dichlorobenzene ND 300 " <td>1,2-Dichlorobenzene</td> <td>ND</td> <td>300</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td></td> <td>"</td> <td></td>	1,2-Dichlorobenzene	ND	300	"	"	"	"		"	
2,4-Dichlorophenol ND 1000 " <td>1,3-Dichlorobenzene</td> <td>ND</td> <td>300</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td></td>	1,3-Dichlorobenzene	ND	300	"	"	"	"	"	"	
Diethyl phthalateND300"""	2,4-Dichlorophenol	ND	1000	"	"	"	"	"	"	
2,4-Dimethylphenol ND 1000 " <td>Diethyl phthalate</td> <td>ND</td> <td>300</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td></td>	Diethyl phthalate	ND	300	"	"	"	"	"	"	
Dimethyl phthalate ND 300 "	2,4-Dimethylphenol	ND	1000	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol ND 1000 " <	Dimethyl phthalate	ND	300	"	"	"	"	"	"	
2,4-Dinitrophenol ND 1000 "	4,6-Dinitro-2-methylphenol	ND	1000	"	"	"	"	"	"	
2,6-Dinitrotoluene ND 1000 " <td>2,4-Dinitrophenol</td> <td>ND</td> <td>1000</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td></td>	2,4-Dinitrophenol	ND	1000	"	"	"	"	"	"	
Di-n-octyl phthalate ND 300 " <td>2,6-Dinitrotoluene</td> <td>ND</td> <td>1000</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td>"</td> <td></td>	2,6-Dinitrotoluene	ND	1000	"	"	"	"	"	"	
Fluoranthene ND 300 "	Di-n-octyl phthalate	ND	300	"	"	"	"	"	"	
Fluorene ND 300 " <th< td=""><td>Fluoranthene</td><td>ND</td><td>300</td><td>"</td><td>"</td><td>"</td><td>"</td><td>"</td><td>"</td><td></td></th<>	Fluoranthene	ND	300	"	"	"	"	"	"	
HexachlorobenzeneND1500"""""""HexachlorobutadieneND300""""""""HexachlorocyclopentadieneND1000""""""""HexachloroethaneND300""""""""Indeno (1,2,3-cd) pyreneND300"""""""	Fluorene	ND	300	"	"	"	"	"	"	
HexachlorobutadieneND300"""""""HexachlorocyclopentadieneND1000""""""""HexachlorocethaneND300""""""""Indeno (1,2,3-cd) pyreneND300"""""""	Hexachlorobenzene	ND	1500	"	"	"	"		"	
Hexachlorocyclopentadiene ND 1000 " <t< td=""><td>Hexachlorobutadiene</td><td>ND</td><td>300</td><td>"</td><td>"</td><td>"</td><td>"</td><td>"</td><td>"</td><td></td></t<>	Hexachlorobutadiene	ND	300	"	"	"	"	"	"	
Hexachloroethane ND 300 "	Hexachlorocyclopentadiene	ND	1000	"	"	"	"		"	
Indeno (1,2,3-cd) pyrene ND 300 " " " " " " "	Hexachloroethane	ND	300	"	"	"	"		"	
	Indeno (1,2,3-cd) pyrene	ND	300	"	"	"	"		"	

SunStar Laboratories, Inc.

Brusca Associates Inc. PO Box 332 Roseville CA, 95661		Proje Project Numb Project Manag	ect: Lathro per: 137-00 ger: Joe Br	op 48-Ac Pro 02 usca	perty			Reported: 04/13/18 15	:53
		S T1811	SP2-12 79-12 (So	oil)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	ies, Inc.					
Semivolatile Organic Compounds by EPA Meth	od 8270C	2							
Isophorone	ND	300	ug/kg	1	8040619	04/06/18	04/11/18	EPA 8270C	
2-Methylphenol	ND	1000	"	"	"	"	"	"	
4-Methylphenol	ND	1000	"	"	"	"	"	"	
Naphthalene	ND	300	"	"	"	"	"	"	
2-Nitroaniline	ND	300	"	"	"	"	"	"	
3-Nitroaniline	ND	300	"	"	"	"	"	"	
4-Nitroaniline	ND	300	"	"	"	"	"	"	
Nitrobenzene	ND	1000	"	"		"	"	"	
2-Nitrophenol	ND	1000	"	"		"	"	"	
N-Nitrosodimethylamine	ND	300	"	"		"	"	"	
N-Nitrosodiphenylamine	ND	300	"	"	"	"	"	"	
2,3,5,6-Tetrachlorophenol	ND	300	"	"	"	"	"	"	
2,3,4,6-Tetrachlorophenol	ND	300	"	"	"	"	"	"	
Phenanthrene	ND	300	"	"	"	"	"	"	
Azobenzene	ND	300	"	"	"	"	"	"	
Pyridine	ND	300	"	"	"	"	"	"	
2,4,5-Trichlorophenol	ND	1000	"	"	"	"	"	"	
2,4,6-Trichlorophenol	ND	1000	"	"	"	"	"	"	
Surrogate: 2-Fluorophenol		50.6 %	15-	121	"	"	"	"	
Surrogate: Phenol-d6		58.5 %	24-	113	"	"	"	"	
Surrogate: Nitrobenzene-d5		59.6 %	21.3	-119	"	"	"	"	
Surrogate: 2-Fluorobiphenyl		67.5 %	32.4	-102	"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		93.0 %	18.1	-105	"	"	"	"	
Surrogate: Terphenyl-dl4		94.0 %	29.1	-130	"	"	"	"	

SunStar Laboratories, Inc.

Brusca Associates Inc.	Project: Lathrop 48-Ac Property	
PO Box 332	Project Number: 137-002	Reported:
Roseville CA, 95661	Project Manager: Joe Brusca	04/13/18 15:53

Extractable Petroleum Hydrocarbons by 8015B with Silica Gel Cleanup - Quality Control

SunStar Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 8040617 - EPA 3550B GC										
Blank (8040617-BLK1)				Prepared &	k Analyzed:	04/06/18				
C6-C12 (GRO)	ND	10	mg/kg							
C13-C28 (DRO)	ND	10	"							
C29-C40 (MORO)	ND	10	"							
Surrogate: p-Terphenyl	81.1		"	100		81.1	65-135			
LCS (8040617-BS1)				Prepared &	k Analyzed:	04/06/18				
C13-C28 (DRO)	450	10	mg/kg	500		90.2	75-125			
Surrogate: p-Terphenyl	77.4		"	100		77.4	65-135			
LCS Dup (8040617-BSD1)				Prepared &	k Analyzed:	04/06/18				
C13-C28 (DRO)	490	10	mg/kg	500		98.3	75-125	8.56	20	
Surrogate: p-Terphenyl	82.8		"	100		82.8	65-135			

SunStar Laboratories, Inc.

SunStar Laboratories, Inc. Providing Quality Analytical Services Nationwide

25712 Commercentre Drive Lake Forest, California 92630 949.297.5020 Phone 949.297.5027 Fax

Brusca Associates Inc.	Project: Lathrop 48-Ac Property	
PO Box 332	Project Number: 137-002	Reported:
Roseville CA, 95661	Project Manager: Joe Brusca	04/13/18 15:53

Metals by EPA 6010B - Quality Control

SunStar Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch 8040616 - EPA 3050B

Blank (8040616-BLK1)				Prepared: 0	4/06/18 Ai	nalyzed: 04	/09/18		
Antimony	ND	3.0	mg/kg					 	
Silver	ND	2.0	"						
Arsenic	ND	5.0	"						
Barium	ND	1.0	"						
Beryllium	ND	1.0	"						
Cadmium	ND	2.0	"						
Chromium	ND	2.0	"						
Cobalt	ND	2.0	"						
Copper	ND	1.0	"						
Lead	ND	3.0	"						
Molybdenum	ND	5.0	"						
Nickel	ND	2.0	"						
Selenium	ND	5.0	"						
Thallium	ND	2.0	"						
Vanadium	ND	5.0							
Zine	ND	1.0	"						
LCS (8040616-BS1)				Prepared: 0	4/06/18 Ai	nalyzed: 04	/09/18		
Arsenic	95.3	5.0	mg/kg	100		95.3	75-125		
Barium	95.6	1.0		100		95.6	75-125		
Cadmium	95.8	2.0		100		95.8	75-125		
Chromium	95.8	2.0		100		95.8	75-125		
Lead	98.3	3.0	"	100		98.3	75-125		
Matrix Spike (8040616-MS1)	Source	: T181174-	01	Prepared: 0	4/06/18 Ai	nalyzed: 04	/09/18		
Arsenic	99.8	5.0	mg/kg	99.0	4.03	96.7	75-125	 	
Barium	142	1.0	"	99.0	45.4	97.3	75-125		
Cadmium	97.8	2.0		99.0	ND	98.7	75-125		
Chromium	102	2.0		99.0	4.73	98.5	75-125		
Lead	99.4	3.0		99.0	1.84	98.5	75-125		

SunStar Laboratories, Inc.

Mike Jaroudi, Project Manager

SunStar Laboratories, Inc. Providing Quality Analytical Services Nationwide

25712 Commercentre Drive Lake Forest, California 92630 949.297.5020 Phone 949.297.5027 Fax

20

20

20

Brusca Associates Inc.	Project: Lathrop 48-Ac Property	
PO Box 332	Project Number: 137-002	Reported:
Roseville CA, 95661	Project Manager: Joe Brusca	04/13/18 15:53

Metals by EPA 6010B - Quality Control

SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 8040616 - EPA 3050B										
Matrix Spike Dup (8040616-MSD1)	Sour	ce: T181174-	01	Prepared: (04/06/18 A	nalyzed: 04	/09/18			
Arsenic	83.9	4.5	mg/kg	90.9	4.03	87.8	75-125	17.3	20	
Barium	130	0.91	"	90.9	45.4	93.2	75-125	8.51	20	

...

..

...

1.8

1.8

2.7

90.9

90.9

90.9

ND

4.73

1.84

90.6

93.0

90.3

75-125

75-125

75-125

17.1

13.5

16.8

82.3

89.3

84.0

SunStar Laboratories, Inc.

Cadmium

Chromium

Lead

Brusca Associates Inc.	Project: Lathrop 48-Ac Property	
PO Box 332	Project Number: 137-002	Reported:
Roseville CA, 95661	Project Manager: Joe Brusca	04/13/18 15:53

Cold Vapor Extraction EPA 7470/7471 - Quality Control

SunStar Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 8040615 - EPA 7471A Soil										
Blank (8040615-BLK1)				Prepared: 0	4/06/18 A	nalyzed: 04	/09/18			
Mercury	ND	0.10	mg/kg							
LCS (8040615-BS1)				Prepared: 0	4/06/18 A	nalyzed: 04	/09/18			
Mercury	0.438	0.10	mg/kg	0.410		107	80-120			
Matrix Spike (8040615-MS1)	Sour	ce: T181174-(01	Prepared: 0	4/06/18 A	nalyzed: 04	/09/18			
Mercury	0.453	0.10	mg/kg	0.417	ND	109	75-125			
Matrix Spike Dup (8040615-MSD1)	Sour	ce: T181174-(01	Prepared: 04/06/18 Analyzed: 04/09/18						
Mercury	0.414	0.10	mg/kg	0.391	ND	106	75-125	8.91	20	

SunStar Laboratories, Inc.

Brusca Associates Inc.	Project: Lathrop 48-Ac Property	
PO Box 332	Project Number: 137-002	Reported:
Roseville CA, 95661	Project Manager: Joe Brusca	04/13/18 15:53

Polychlorinated Biphenyls by EPA Method 8082 - Quality Control

SunStar Laboratories, Inc.

Analyza	Result	Reporting	Unite	Spike	Source	%PEC	%REC	רוקא	RPD Limit	Notes
Аналус	Result	Linut	Units	Level	Result	70KEU	Linius	KrD	LIIIII	inotes
Batch 8040620 - EPA 3550 ECD/GCMS										
Blank (8040620-BLK1)				Prepared:	04/06/18 A	nalyzed: 04	/09/18			
PCB-1016	ND	10	ug/kg							
PCB-1221	ND	10	"							
PCB-1232	ND	10	"							
PCB-1242	ND	10	"							
PCB-1248	ND	10	"							
PCB-1254	ND	10	"							
PCB-1260	ND	10	"							
Surrogate: Tetrachloro-meta-xylene	13.3		"	9.90		134	35-140			
Surrogate: Decachlorobiphenyl	15.9		"	9.90		160	35-140			S-GC
LCS (8040620-BS1)				Prepared:	04/06/18 A	nalyzed: 04	/09/18			
PCB-1016	84.5	10	ug/kg	99.0		85.3	40-130			
PCB-1260	68.5	10	"	99.0		69.2	40-130			
Surrogate: Tetrachloro-meta-xylene	13.6		"	9.90		138	35-140			
Surrogate: Decachlorobiphenyl	16.0		"	9.90		162	35-140			S-GC
Matrix Spike (8040620-MS1)	Sou	ırce: T181174-	01	Prepared:	04/06/18 A	nalyzed: 04	/09/18			
PCB-1016	68.6	10	ug/kg	98.0	ND	70.0	40-130			
PCB-1260	62.9	10	"	98.0	ND	64.2	40-130			
Surrogate: Tetrachloro-meta-xylene	14.8		"	9.80		151	35-140			QM-05
Surrogate: Decachlorobiphenyl	15.9		"	9.80		162	35-140			QM-05
Matrix Spike Dup (8040620-MSD1)	Sou	ırce: T181174-	01	Prepared:	04/06/18 A	nalyzed: 04	/09/18			
PCB-1016	74.2	10	ug/kg	99.0	ND	74.9	40-130	7.75	30	
PCB-1260	68.0	10	"	99.0	ND	68.7	40-130	7.76	30	
Surrogate: Tetrachloro-meta-xylene	15.3		"	9.90		155	35-140			QM-05
Surrogate: Decachlorobiphenyl	16.4		"	9.90		165	35-140			QM-05

SunStar Laboratories, Inc.

Brusca Associates Inc.	Project: Lathrop 48-Ac Property	
PO Box 332	Project Number: 137-002	Reported:
Roseville CA, 95661	Project Manager: Joe Brusca	04/13/18 15:53

Semivolatile Organic Compounds by EPA Method 8270C - Quality Control

SunStar Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch 8040619 - EPA 3550 ECD/GCMS

Blank (8040619-BLK1)				Prepared: 04/06/18 Analyzed: 04/11/18
Carbazole	ND	300	ug/kg	
Aniline	ND	300	"	
Phenol	ND	1000	"	
2-Chlorophenol	ND	1000	"	
1,4-Dichlorobenzene	ND	300	"	
N-Nitrosodi-n-propylamine	ND	300	"	
1,2,4-Trichlorobenzene	ND	300	"	
4-Chloro-3-methylphenol	ND	1000	"	
1-Methylnaphthalene	ND	300	"	
2-Methylnaphthalene	ND	300	"	
Acenaphthene	ND	300	"	
4-Nitrophenol	ND	1000	"	
2,4-Dinitrotoluene	ND	300	"	
Pentachlorophenol	ND	1000	"	
Pyrene	ND	300	"	
Acenaphthylene	ND	300	"	
Anthracene	ND	300	"	
Benzo (a) anthracene	ND	300	"	
Benzo (b) fluoranthene	ND	300	"	
Benzo (k) fluoranthene	ND	300	"	
Benzo (g,h,i) perylene	ND	1000	"	
Benzo (a) pyrene	ND	300	"	
Benzyl alcohol	ND	300	"	
Bis(2-chloroethoxy)methane	ND	300	"	
Bis(2-chloroethyl)ether	ND	300	"	
Bis(2-chloroisopropyl)ether	ND	300	"	
Bis(2-ethylhexyl)phthalate	ND	300	"	
4-Bromophenyl phenyl ether	ND	300	"	
Butyl benzyl phthalate	ND	300	"	
4-Chloroaniline	ND	300	"	
2-Chloronaphthalene	ND	300	"	
4-Chlorophenyl phenyl ether	ND	300	"	
Chrysene	ND	300	"	
Dibenz (a,h) anthracene	ND	300	"	
Dibenzofuran	ND	300	"	
Di-n-butyl phthalate	ND	300	"	

SunStar Laboratories, Inc.

Brusca Associates Inc.	Project: Lathrop 48-Ac Property	
PO Box 332	Project Number: 137-002	Reported:
Roseville CA, 95661	Project Manager: Joe Brusca	04/13/18 15:53

Semivolatile Organic Compounds by EPA Method 8270C - Quality Control

SunStar Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch 8040619 - EPA 3550 ECD/GCMS

Blank (8040619-BLK1)				Prepared: 04/06/18 Analyzed: 04/11/18
1,2-Dichlorobenzene	ND	300	ug/kg	
1,3-Dichlorobenzene	ND	300	"	
2,4-Dichlorophenol	ND	1000	"	
Diethyl phthalate	ND	300	"	
2,4-Dimethylphenol	ND	1000	"	
Dimethyl phthalate	ND	300	"	
4,6-Dinitro-2-methylphenol	ND	1000	"	
2,4-Dinitrophenol	ND	1000	"	
2,6-Dinitrotoluene	ND	1000	"	
Di-n-octyl phthalate	ND	300	"	
Fluoranthene	ND	300	"	
Fluorene	ND	300	"	
Hexachlorobenzene	ND	1500	"	
Hexachlorobutadiene	ND	300	"	
Hexachlorocyclopentadiene	ND	1000	"	
Hexachloroethane	ND	300	"	
Indeno (1,2,3-cd) pyrene	ND	300	"	
Isophorone	ND	300	"	
2-Methylphenol	ND	1000	"	
4-Methylphenol	ND	1000	"	
Naphthalene	ND	300	"	
2-Nitroaniline	ND	300	"	
3-Nitroaniline	ND	300	"	
4-Nitroaniline	ND	300	"	
Nitrobenzene	ND	1000	"	
2-Nitrophenol	ND	1000	"	
N-Nitrosodimethylamine	ND	300	"	
N-Nitrosodiphenylamine	ND	300	"	
2,3,5,6-Tetrachlorophenol	ND	300	"	
2,3,4,6-Tetrachlorophenol	ND	300	"	
Phenanthrene	ND	300	"	
Azobenzene	ND	300	"	
2,4,5-Trichlorophenol	ND	1000		
Pyridine	ND	300		
2,4,6-Trichlorophenol	ND	1000	"	

SunStar Laboratories, Inc.

Brusca Associates Inc.	Project: Lathrop 48-Ac Property	
PO Box 332	Project Number: 137-002	Reported:
Roseville CA, 95661	Project Manager: Joe Brusca	04/13/18 15:53

Semivolatile Organic Compounds by EPA Method 8270C - Quality Control

SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
D 4 1 9949610 ED4 2559 ECD/COM6						,				
Batch 8040619 - EPA 3550 ECD/GCM8										
Blank (8040619-BLK1)				Prepared: 0	04/06/18 Ar	nalyzed: 04	/11/18			
Surrogate: 2-Fluorophenol	1920		ug/kg	3380		56.7	15-121			
Surrogate: Phenol-d6	1890		"	3380		55.9	24-113			
Surrogate: Nitrobenzene-d5	2290		"	3380		67.7	21.3-119			
Surrogate: 2-Fluorobiphenyl	2380		"	3380		70.3	32.4-102			
Surrogate: 2,4,6-Tribromophenol	2600		"	3380		77.0	18.1-105			
Surrogate: Terphenyl-dl4	2820		"	3380		83.6	29.1-130			
LCS (8040619-BS1)				Prepared: 0	04/06/18 Ar	nalyzed: 04	/11/18			
Phenol	1910	1000	ug/kg	3270		58.5	34-114			
2-Chlorophenol	2220	1000	"	3270		68.0	34-114			
1,4-Dichlorobenzene	2250	300	"	3270		68.9	34-114			
N-Nitrosodi-n-propylamine	2620	300	"	3270		80.1	30-110			
1,2,4-Trichlorobenzene	2420	300	"	3270		73.9	39-119			
4-Chloro-3-methylphenol	2270	1000		3270		69.4	50-130			
Acenaphthene	2480	300		3270		76.0	34-114			
Pentachlorophenol	3980	1000		3270		122	50-130			
Pyrene	2150	300		3270		65.8	30-110			
Surrogate: 2-Fluorophenol	1900		"	3270		58.1	15-121			
Surrogate: Phenol-d6	1970		"	3270		60.4	24-113			
Surrogate: Nitrobenzene-d5	2250		"	3270		68.8	21.3-119			
Surrogate: 2-Fluorobiphenyl	2190		"	3270		66.9	32.4-102			
Surrogate: 2,4,6-Tribromophenol	2840		"	3270		87.0	18.1-105			
Surrogate: Terphenyl-dl4	2800		"	3270		85.7	29.1-130			
LCS Dup (8040619-BSD1)				Prepared: 0	04/06/18 Ar	nalyzed: 04	/11/18			
Phenol	1820	1000	ug/kg	3320		54.8	34-114	4.88	42	
2-Chlorophenol	2140	1000		3320		64.3	34-114	3.95	40	
1,4-Dichlorobenzene	2180	300	"	3320		65.7	34-114	3.11	28	
N-Nitrosodi-n-propylamine	2660	300	"	3320		80.1	30-110	1.61	38	
1,2,4-Trichlorobenzene	2380	300	"	3320		71.5	39-119	1.72	28	
4-Chloro-3-methylphenol	2310	1000	"	3320		69.5	50-130	1.76	42	
Acenaphthene	2500	300	"	3320		75.3	34-114	0.788	31	
Pentachlorophenol	4080	1000		3320		123	50-130	2.43	50	
Pyrene	2200	300	"	3320		66.2	30-110	2.31	31	
Surrogate: 2-Fluorophenol	1800		"	3320		54.0	15-121			
Surrogate: Phenol-d6	1870		"	3320		56.4	24-113			

SunStar Laboratories, Inc.

Brusca Associates Inc.	Project: Lathrop 48-Ac Property	
PO Box 332	Project Number: 137-002	Reported:
Roseville CA, 95661	Project Manager: Joe Brusca	04/13/18 15:53

Semivolatile Organic Compounds by EPA Method 8270C - Quality Control

SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 8040619 - EPA 3550 ECD/GCMS										
LCS Dup (8040619-BSD1)	Prepared: 04/06/18 Analyzed: 04/11/18									
Surrogate: Nitrobenzene-d5	2210		ug/kg	3320		66.4	21.3-119			
Surrogate: 2-Fluorobiphenyl	2180		"	3320		65.6	32.4-102			
Surrogate: 2,4,6-Tribromophenol	2870		"	3320		86.3	18.1-105			
Surrogate: Terphenyl-dl4	2910		"	3320		87.7	29.1-130			

SunStar Laboratories, Inc.

Brusca Associates Inc.	Project: Lathrop 48-Ac Property	
PO Box 332	Project Number: 137-002	Reported:
Roseville CA, 95661	Project Manager: Joe Brusca	04/13/18 15:53

Notes and Definitions

- S-GC Surrogate recovery outside of established control limits. The data was accepted based on valid recovery of the remaining surrogate(s).
- QM-05 The spike recovery was outside acceptance limits for the MS and/or MSD due to possible matrix interference. The LCS was within acceptance criteria. The data is acceptable as no negative impact on data is expected.
- DET Analyte DETECTED
- ND Analyte NOT DETECTED at or above the reporting limit
- NR Not Reported
- dry Sample results reported on a dry weight basis
- RPD Relative Percent Difference

SunStar Laboratories, Inc.

Mike Jaroudi, Project Manager

لا جون Relinquished by: (sig	Reinfluished by (sign	-	512-12	592-10	292-9	£-235	3-2-6	512-4	5- 225	SP2-2	292-1	Project Manager:	PROVIDING QUALITY AN 25712 Comme 949-297-5020 Client: DRUSC Address: PO Sc Phone: U(6)
4 <u>16 18</u> / 0 200 nature) Date / Time	nature) Date / Time 4/5/13 - 13 nature) Date / Time			9:	216	156	9:0	0:0	5:8	5:9 1,	415/18 3:5	Date Tin	ALYTICAL SERVICES NATIONWIDE roentre Drive, Lake Forest, A ASS OLTATES 332, Roseval 677-1470 Fax:
Received by: (signati	Received by (signation of the second										4 Salis JAR	Sample Contain Type Type	CA 92630 INC - INC - SCA 95661 (1) 677 - 1471
<i>#∳₁≋ /₁⅓₀</i> Ire) Date / Time	re) Date / Time 4/5/8 (3: he) Date / Time		X		X		X			X	XX	9 8200- SVOCS 8270 8260 + OXY 8260 BTEX, OXY only 8270- PCBS 8082 8021 BTEX	Date: Project N Collector Batch #:
Turn around time:	Total # of c Chain of Custody sea Seals intac		×	××	XX		XX				XX	8015M (gasoline) 8015M (diesel) 8015M Ext./Carbon Chain Galactic 6010/7000 Title 22 Metals 6020 ICP-MS Metals	4/5/18 Jame: LARHPOP REVSCA
URMAL			- F	10	60	07	90	50	202	02	0	Laboratory ID #	Page: 46-AC fueron Client Project EDF #:
	Notes DAT TAT ON			in the second		花莲						mments/Preservative	of 1
										-	` -	Total # of containers	

PROVIDING QUALITY ANALYTICAL SERVICES NATIONWIDE

30 April 2018

Joe Brusca Brusca Associates Inc. PO Box 332 Roseville, CA 95661 RE: Lathrop 48-Ac Property

Enclosed are the results of analyses for samples received by the laboratory on 04/06/18 10:00. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Mike Jaroudi Project Manager

Brusca Associates Inc.	Project: Lathrop 48-Ac Property	
PO Box 332	Project Number: 137-002	Reported:
Roseville CA, 95661	Project Manager: Joe Brusca	04/30/18 17:08

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
SP2-6	T181179-06	Soil	04/05/18 09:08	04/06/18 10:00
SP2-9	T181179-09	Soil	04/05/18 09:21	04/06/18 10:00

SunStar Laboratories, Inc.

Mike Jaroudi, Project Manager

Brusca Associates Inc.	Project: Lathrop 48-Ac Property	
PO Box 332	Project Number: 137-002	Reported:
Roseville CA, 95661	Project Manager: Joe Brusca	04/30/18 17:08

DETECTIONS SUMMARY

Sample ID: SP2-6	Laboratory ID: T		T181179-06		
		Reporting			
Analyte	Result	Limit	Units	Method	Notes
Arsenic	28	1.0	ug/l	6020 ICP-MS	STLC
Barium	520	1.0	ug/l	6020 ICP-MS	STLC
Beryllium	1.9	1.0	ug/l	6020 ICP-MS	STLC
Chromium	54	1.0	ug/l	6020 ICP-MS	STLC
Cobalt	44	1.0	ug/l	6020 ICP-MS	STLC
Copper	99	1.0	ug/l	6020 ICP-MS	STLC
Lead	110	2.0	ug/l	6020 ICP-MS	STLC
Mercury	0.21	0.10	ug/l	6020 ICP-MS	STLC
Molybdenum	7.2	1.0	ug/l	6020 ICP-MS	STLC
Nickel	73	1.0	ug/l	6020 ICP-MS	STLC
Silver	3.0	1.0	ug/l	6020 ICP-MS	STLC
Vanadium	250	1.0	ug/l	6020 ICP-MS	STLC
Zinc	320	1.0	ug/l	6020 ICP-MS	STLC

Sample ID: SP2-9	Laboratory ID:		T181179-09					
		Reporting						
Analyte	Result	Limit	Units	Method	Notes			
Antimony	0.97	0.25	ug/l	6020 ICP-MS	STLC			
Arsenic	8.9	0.25	ug/l	6020 ICP-MS	STLC			
Barium	120	0.25	ug/l	6020 ICP-MS	STLC			
Beryllium	0.36	0.25	ug/l	6020 ICP-MS	STLC			
Cadmium	0.25	0.25	ug/l	6020 ICP-MS	STLC			
Chromium	16	0.25	ug/l	6020 ICP-MS	STLC			
Cobalt	13	0.25	ug/l	6020 ICP-MS	STLC			
Copper	34	0.25	ug/l	6020 ICP-MS	STLC			
Lead	51	0.25	ug/l	6020 ICP-MS	STLC			
Mercury	0.091	0.025	ug/l	6020 ICP-MS	STLC			
Molybdenum	5.7	0.25	ug/l	6020 ICP-MS	STLC			
Nickel	15	0.25	ug/l	6020 ICP-MS	STLC			
Selenium	1.6	1.2	ug/l	6020 ICP-MS	STLC			
Silver	0.73	0.25	ug/l	6020 ICP-MS	STLC			
Vanadium	80	0.25	ug/l	6020 ICP-MS	STLC			

SunStar Laboratories, Inc.

Brusca Associates Inc. PO Box 332 Roseville CA, 95661	Projec Project Numbe Project Manage	Kathrop 48-Ac Property Reported: 137-002 04/30/18 17:08					
Sample ID: SP2		boratory ID: T181179-09					

 1					
		Reporting			
Analyte	Result	Limit	Units	Method	Notes
Zinc	68	0.25	ug/l	6020 ICP-MS	STLC

SunStar Laboratories, Inc.

Brusca Associates Inc. PO Box 332 Roseville CA, 95661	Associates Inc.Project:Lathrop 48-Ac Property232Project Number:137-002le CA, 95661Project Manager:Joe Brusca						Reported: 04/30/18 17:08		
	T1811	SP2-6 79-06 (S	oil)						
Analyte Resul	Reporting t Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes	
	SunStar L	aborator	ies, Inc.						
Metals by EPA 6020 Method									
Antimony NE) 1.0	ug/l	1	8042318	04/23/18	04/26/18	6020 ICP-MS	STLC	
Arsenic 28	3 1.0	"	"	"	"	"	"	STLC	
Barium 520) 1.0	"		"	"	"	"	STLC	
Beryllium 1.9	1.0	"	"	"	"	04/27/18	"	STLC	
Cadmium NE) 1.0	"	"	"	"	04/26/18	"	STLC	
Chromium 54	1.0	"	"	"	"	"	"	STLC	
Cobalt 44	1.0	"		"	"	"	"	STLC	
Copper 99	1.0	"	"	"	"	"	"	STLC	
Lead 110	2.0	"	"	"	"	"	"	STLC	
Mercury 0.21	0.10	"	"	"	"	"	"	STLC	
Molybdenum 7.2	2 1.0	"	"	"	"	"	"	STLC	
Nickel 73	3 1.0	"	"	"	"	"	"	STLC	
Selenium NE	5.0	"	"	"	"	"	"	STLC	
Silver 3.0	1.0	"	"	"	"	"	"	STLC	
Thallium NE	0 1.0	"	"	"	"	"	"	STLC	
Vanadium 250	1.0	"	"	"	"	"	"	STLC	
Zinc 320	1.0	"	"	"	"		"	STLC	

SunStar Laboratories, Inc.

Mike Jaroudi, Project Manager

Brusca Associates Inc. PO Box 332 Roseville CA, 95661		Proje Project Numb Project Manag	ect: Lathro er: 137-00 er: Joe Br	op 48-Ac Pro 02 rusca	perty			Reported: 04/30/18 17:	08
		5 T1811	SP2-9 79-09 (So	oil)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar La	aboratori	ies, Inc.					
Metals by EPA 6020 Method									
Antimony	0.97	0.25	ug/l	1	8042319	04/23/18	04/30/18	6020 ICP-MS	STLC
Arsenic	8.9	0.25	"	"	"	"	"	"	STLC
Barium	120	0.25	"	"	"	"	"	"	STLC
Beryllium	0.36	0.25	"	"	"	"	"	"	STLC
Cadmium	0.25	0.25	"	"	"	"	"	"	STLC
Chromium	16	0.25	"	"	"	"	"	"	STLC
Cobalt	13	0.25	"	"	"	"	"	"	STLC
Copper	34	0.25	"	"	"	"	"	"	STLC
Lead	51	0.25	"	"	"	"	"	"	STLC
Mercury	0.091	0.025	"	"	"	"	"	"	STLC
Molybdenum	5.7	0.25	"	"	"	"	"	"	STLC
Nickel	15	0.25	"	"	"	"	"	"	STLC
Selenium	1.6	1.2	"	"	"	"	"	"	STLC
Silver	0.73	0.25	"	"	"	"	"	"	STLC
Thallium	ND	0.25	"	"	"	"	"	"	STLC
Vanadium	80	0.25	"	"	"	"	"	"	STLC
Zinc	68	0.25	"	"	"	"	"	"	STLC

SunStar Laboratories, Inc.

Brusca Associates Inc.	Project: Lathrop 48-Ac Property	
PO Box 332	Project Number: 137-002	Reported:
Roseville CA, 95661	Project Manager: Joe Brusca	04/30/18 17:08

Metals by EPA 6020 Method - Quality Control

SunStar Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch 8042318 - STLC Metals

Blank (8042318-BLK1)				Prepared: 04/23/18	Analyzed: 04	/26/18			
Antimony	ND	1.0	ug/l						
Arsenic	ND	1.0	"						
Barium	ND	1.0	"						
Beryllium	ND	1.0	"						
Cadmium	ND	1.0	"						
Chromium	ND	1.0	"						
Cobalt	ND	1.0	"						
Copper	ND	1.0	"						
Lead	ND	2.0	"						
Mercury	ND	0.10	"						
Molybdenum	ND	1.0	"						
Nickel	ND	1.0	"						
Selenium	ND	5.0	"						
Silver	ND	1.0	"						
Thallium	ND	1.0	"						
Vanadium	ND	1.0	"						
Zinc	ND	1.0	"						
LCS (8042318-BS1)				Prepared: 04/23/18	Analyzed: 04	/26/18			
Arsenic	57.4	1.0	ug/l	50.0	115	80-120			
Barium	56.4	1.0	"	50.0	113	80-120			
Cadmium	56.5	1.0	"	50.0	113	80-120			
Chromium	55.6	1.0	"	50.0	111	80-120			
Lead	56.2	2.0	"	50.0	112	80-120			
Duplicate (8042318-DUP1)	Sour	ce: T181179-0	6	Prepared: 04/23/18	Analyzed: 04	/26/18			
Barium	548	5.0	ug/l	521			4.95	200	
Chromium	54.5	5.0	"	53.8			1.28	200	

SunStar Laboratories, Inc.

Brusca Associates Inc.	Project: Lathrop 48-Ac Property	
PO Box 332	Project Number: 137-002	Reported:
Roseville CA, 95661	Project Manager: Joe Brusca	04/30/18 17:08

Metals by EPA 6020 Method - Quality Control

SunStar Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 8042318 - STLC Metals										
Matrix Spike (8042318-MS1)	Sour	Prepared: (04/23/18 A	nalyzed: 04						
Arsenic	72.5	1.0	ug/l	50.0	27.8	89.2	75-125			
Barium	611	1.0		50.0	521	178	75-125			QM-PS
Cadmium	46.0	1.0		50.0	0.966	90.1	75-125			
Chromium	121	1.0	"	50.0	53.8	134	75-125			QM-PS
Lead	168	2.0	"	50.0	112	112	75-125			
Matrix Spike Dup (8042318-MSD1)	Source: T181179-06		Prepared: 04/23/18 Analyzed: 04/26/18			4/26/18				
Arsenic	73.4	1.0	ug/l	50.0	27.8	91.2	75-125	1.36	20	
Barium	595	1.0	"	50.0	521	147	75-125	2.61	20	QM-PS
Cadmium	47.4	1.0	"	50.0	0.966	92.9	75-125	2.97	20	

Lead	164	2.0		50.0	112	104	75-125	2.22	20
Post Spike (8042318-PS1)	Source: T18	1179-06		Prepared: 04/2	23/18 Anal	yzed: 04/2	26/18		
Barium	287	u	ıg/l	25.0	261	104	80-120		
Chromium	56.2		"	25.0	26.9	117	80-120		

50.0

53.8

141

75-125

2.85

20

QM-PS

1.0

124

Batch 8042319 - STLC Metals

Chromium

Blank (8042319-BLK1)				Prepared: 04/23/18 Analyzed: 04/30/18
Antimony	ND	0.25	ug/l	STLC
Arsenic	0.366	0.25	"	STLC
Barium	4.73	0.25	"	QB-01, STLC
Beryllium	ND	0.25	"	STLC
Cadmium	ND	0.25	"	STLC
Chromium	0.518	0.25	"	QB-01, STLC
Cobalt	ND	0.25	"	STLC
Copper	0.663	0.25	"	QB-01, STLC
Lead	0.269	0.25	"	STLC
Mercury	ND	0.025	"	STLC
Molybdenum	0.282	0.25	"	STLC
Nickel	ND	0.25	"	STLC
Selenium	ND	1.2	"	STLC
Silver	ND	0.25	"	STLC
Thallium	ND	0.25	"	STLC

SunStar Laboratories, Inc.

SunStar Laboratories, Inc. Providing Quality Analytical Services Nationwide

25712 Commercentre Drive Lake Forest, California 92630 949.297.5020 Phone 949.297.5027 Fax

Brusca Associates Inc.	Project: Lathrop 48-Ac Property	
PO Box 332	Project Number: 137-002	Reported:
Roseville CA, 95661	Project Manager: Joe Brusca	04/30/18 17:08

Metals by EPA 6020 Method - Quality Control

SunStar Laboratories, Inc.

Applyto	D 201-14	Reporting	Unit-	Spike	Source	0/DEC	%REC	רותם	RPD	Notor
Anaryte	Kesult	Limit	Units	Level	Kesult	%KEC	Limits	KPD	Limit	inotes
Batch 8042319 - STLC Metals										
Blank (8042319-BLK1)				Prepared: 0)4/23/18 Ai	nalyzed: 04	/30/18			
Vanadium	1.01	0.25	ug/l							QB-01,
Zina	0.000	0.25								STLC
	0.090	0.25								QB-01, STLC
LCS (8042319-BS1)				Prepared: 0	04/23/18 Ai	nalyzed: 04	/30/18			
Arsenic	45.9	0.25	ug/l	50.0		91.7	80-120			STLC
Barium	51.1	0.25		50.0		102	80-120			STLC
Cadmium	45.4	0.25		50.0		90.8	80-120			STLC
Chromium	45.9	0.25		50.0		91.8	80-120			STLC
Lead	44.8	0.25	"	50.0		89.5	80-120			STLC
Matrix Spike (8042319-MS1)	Source	<u>e: T181</u> 179-()9	Prepared: 0						
Arsenic	55.4	0.25	ug/l	50.0	8.92	93.0	75-125			STLC
Barium	174	0.25		50.0	115	117	75-125			STLC
Cadmium	46.3	0.25		50.0	0.251	92.0	75-125			STLC
Chromium	67.0	0.25	"	50.0	15.5	103	75-125			STLC
Lead	102	0.25	"	50.0	50.7	103	75-125			STLC
Matrix Spike Dup (8042319-MSD1)	Source	e: T181179-0)9	Prepared: 0	04/23/18 Ai	nalyzed: 04	/30/18			
Arsenic	70.7	0.28	ug/l	56.8	8.92	109	75-125	24.3	20	QR-04,
Barium	211	0.28	"	56.8	115	169	75-125	19.4	20	QR-04,
Cadmium	60.2	0.28	"	56.8	0.251	105	75-125	26.2	20	STLC QR-04,
Chromium	82.6	0.28	"	56.8	15.5	118	75-125	20.9	20	STLC QR-04,
Lead	123	0.28	"	56.8	50.7	127	75-125	17.9	20	STLC QR-04, STLC

SunStar Laboratories, Inc.

Brusca Associates Inc.	Project: Lathrop 48-Ac Property	
PO Box 332	Project Number: 137-002	Reported:
Roseville CA, 95661	Project Manager: Joe Brusca	04/30/18 17:08

Notes and Definitions

- STLC Sample prepared in accordance with CCR Chapter 11, Article 5, Appendix II, Waste Extraction Test (WET).
- QR-04 The pecent recovery and/or RPD was outside acceptance criteria. Results accepted based upon percent recovery results in duplicate QC sample and the CCV and CCB results.
- QM-PS The percent recovery and/or RPD are outside acceptance criteria. Results accepted based upon percent recovery results in the post spike and/or serial dilution.
- QB-01 The method blank contains analyte at a concentration above the MRL; however, concentration is less than 10% of the sample result, which is negligible according to method criteria.

DET Analyte DETECTED

- ND Analyte NOT DETECTED at or above the reporting limit
- NR Not Reported
- dry Sample results reported on a dry weight basis
- RPD Relative Percent Difference

SunStar Laboratories, Inc.

Mike Jaroudi, Project Manager

لا جون Relinquished by: (sig	Reinfluished by (sign	-	512-12	592-10	292-9	£-235	3-2-6	512-4	5- 225	SP2-2	292-1	Project Manager:	PROVIDING QUALITY AN 25712 Comme 949-297-5020 Client: DRUSC Address: PO Sc Phone: U(6)
4 <u>16 18</u> / 0 200 nature) Date / Time	nature) Date / Time 4/5/13 - 13 nature) Date / Time			9:	216	156	9:0	0:0	5:8	5:9 1,	415/18 3:5	Date Tin	ALYTICAL SERVICES NATIONWIDE roentre Drive, Lake Forest, A ASS OLTATES 332, Roseval 677-1470 Fax:
Received by: (signati	Received by (signation of the second										4 Salis JAR	Sample Contain Type Type	CA 92630 INC - INC - SCA 95661 (1) 677 - 1471
<i>#∳₁≋ /₁⅓₀</i> Ire) Date / Time	re) Date / Time 4/5/8 (3: he) Date / Time		X		X		X			X	X	9 8200- SVOCS 8270 8260 + OXY 8260 BTEX, OXY only 8270- PCBS 8082 8021 BTEX	Date: Project N Collector Batch #:
Turn around time:	Total # of c Chain of Custody sea Seals intac		×	××	XX		XX				XX	8015M (gasoline) 8015M (diesel) 8015M Ext./Carbon Chain Galacter 6010/7000 Title 22 Metals 6020 ICP-MS Metals	4/5/18 Jame: LARHPOP REVSCA
URMAL			- F	10	60	07	90	50	202	82	0	Laboratory ID #	Page: 46-AC fueron Client Project EDF #:
	Notes DAT TAT ON			in the second		花莲						mments/Preservative	of 1
										-	` -	Total # of containers	

PROVIDING QUALITY ANALYTICAL SERVICES NATIONWIDE

27 April 2018

Joe Brusca Brusca Associates Inc. PO Box 332 Roseville, CA 95661 RE: Lathrop 48-Ac Property

Enclosed are the results of analyses for samples received by the laboratory on 04/13/18 09:30. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Mike Jaroudi Project Manager

Brusca Associates Inc.	Project: Lathrop 48-Ac Property	
PO Box 332	Project Number: 137-002	Reported:
Roseville CA, 95661	Project Manager: Joe Brusca	04/27/18 11:10

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
SP3-3	T181249-03	Soil	04/12/18 11:00	04/13/18 09:30
SP3-12	T181249-12	Soil	04/12/18 11:26	04/13/18 09:30
SP4-1	T181249-13	Soil	04/12/18 11:35	04/13/18 09:30

SunStar Laboratories, Inc.

Mike Jaroudi, Project Manager

Brusca Associates Inc.	Project: Lathrop 48-Ac Property	
PO Box 332	Project Number: 137-002	Reported:
Roseville CA, 95661	Project Manager: Joe Brusca	04/27/18 11:10

DETECTIONS SUMMARY

Sample ID: SP3-3	Laborat	tory ID:	T181249-03		
		Reporting			
Analyte	Result	Limit	Units	Method	Notes
Arsenic	13	1.0	ug/l	6020 ICP-MS	STLC
Barium	340	1.0	ug/l	6020 ICP-MS	STLC
Cadmium	1.5	1.0	ug/l	6020 ICP-MS	STLC
Chromium	40	1.0	ug/l	6020 ICP-MS	STLC
Cobalt	33	1.0	ug/l	6020 ICP-MS	STLC
Copper	120	1.0	ug/l	6020 ICP-MS	STLC
Lead	170	2.0	ug/l	6020 ICP-MS	STLC
Mercury	0.28	0.10	ug/l	6020 ICP-MS	STLC
Molybdenum	7.1	1.0	ug/l	6020 ICP-MS	STLC
Nickel	41	1.0	ug/l	6020 ICP-MS	STLC
Silver	3.1	1.0	ug/l	6020 ICP-MS	STLC
Vanadium	99	1.0	ug/l	6020 ICP-MS	STLC
Zinc	210	1.0	ug/l	6020 ICP-MS	STLC

Sample ID:	SP3-12	Labora	Laboratory ID:			
			Reporting			
Analyte		Result	Limit	Units	Method	Notes
Arsenic		9.0	1.0	ug/l	6020 ICP-MS	STLC
Barium		360	1.0	ug/l	6020 ICP-MS	STLC
Beryllium		1.3	1.0	ug/l	6020 ICP-MS	STLC
Cadmium		1.6	1.0	ug/l	6020 ICP-MS	STLC
Chromium		40	1.0	ug/l	6020 ICP-MS	STLC
Cobalt		49	1.0	ug/l	6020 ICP-MS	STLC
Copper		110	1.0	ug/l	6020 ICP-MS	STLC
Lead		200	2.0	ug/l	6020 ICP-MS	STLC
Mercury		0.52	0.10	ug/l	6020 ICP-MS	STLC
Molybdenur	m	4.8	1.0	ug/l	6020 ICP-MS	STLC
Nickel		54	1.0	ug/l	6020 ICP-MS	STLC
Silver		7.0	1.0	ug/l	6020 ICP-MS	STLC
Vanadium		110	1.0	ug/l	6020 ICP-MS	STLC
Zinc		230	1.0	ug/l	6020 ICP-MS	STLC

SunStar Laboratories, Inc.

Brusca Associates Inc.	Project: Lathrop 48-Ac Property	
PO Box 332	Project Number: 137-002	Reported:
Roseville CA, 95661	Project Manager: Joe Brusca	04/27/18 11:10

Sa	mple ID: SP4-1	Laboratory ID:				
			Reporting			
	Analyte	Result	Limit	Units	Method	Notes
	Arsenic	11	1.0	ug/l	6020 ICP-MS	STLC
	Barium	230	1.0	ug/l	6020 ICP-MS	STLC
	Cadmium	1.9	1.0	ug/l	6020 ICP-MS	STLC
	Chromium	33	1.0	ug/l	6020 ICP-MS	STLC
	Cobalt	31	1.0	ug/l	6020 ICP-MS	STLC
	Copper	110	1.0	ug/l	6020 ICP-MS	STLC
	Lead	170	2.0	ug/l	6020 ICP-MS	STLC
	Mercury	0.32	0.10	ug/l	6020 ICP-MS	STLC
	Molybdenum	7.4	1.0	ug/l	6020 ICP-MS	STLC
	Nickel	28	1.0	ug/l	6020 ICP-MS	STLC
	Silver	3.0	1.0	ug/l	6020 ICP-MS	STLC
	Vanadium	75	1.0	ug/l	6020 ICP-MS	STLC
	Zinc	250	1.0	ug/l	6020 ICP-MS	STLC

SunStar Laboratories, Inc.

Brusca Associates Inc. PO Box 332 Roseville CA, 95661	Project: Lathrop 48-Ac Property Project Number: 137-002 Project Manager: Joe Brusca						Reported: 04/27/18 11:	10	
		S T1812	SP3-3 49-03 (Se	oil)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar La	borator	ies, Inc.					
Metals by EPA 6020 Method									
Antimony	ND	1.0	ug/l	1	8042318	04/23/18	04/26/18	6020 ICP-MS	STLC
Arsenic	13	1.0		"	"	"	"		STLC
Barium	340	1.0	"	"	"	"	"	"	STLC
Beryllium	ND	1.0		"	"	"	04/27/18	"	STLC
Cadmium	1.5	1.0	"	"	"	"	04/26/18	"	STLC
Chromium	40	1.0		"	"	"	"	"	STLC
Cobalt	33	1.0		"	"	"	"	"	STLC
Copper	120	1.0	"	"	"	"	"	"	STLC
Lead	170	2.0	"	"	"	"	"	"	STLC
Mercury	0.28	0.10	"	"	"	"	"	"	STLC
Molybdenum	7.1	1.0	"	"	"	"	"	"	STLC
Nickel	41	1.0	"	"	"	"	"	"	STLC
Selenium	ND	5.0	"	"	"	"	"	"	STLC
Silver	3.1	1.0	"	"	"	"	"	"	STLC
Thallium	ND	1.0	"	"	"	"	"	"	STLC
Vanadium	99	1.0		"	"	"	"	"	STLC
Zinc	210	1.0	"	"	"	"	"	"	STLC

SunStar Laboratories, Inc.

Mike Jaroudi, Project Manager

Brusca Associates Inc. PO Box 332 Roseville CA, 95661	. Project: Lathrop 48-Ac Property Project Number: 137-002 Project Manager: Joe Brusca						Reported: 04/27/18 11:	10	
		S T1812	93-12 49-12 (Se	oil)					
		Penarting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar La	aborator	ies, Inc.					
Metals by EPA 6020 Method									
Antimony	ND	1.0	ug/l	1	8042318	04/23/18	04/26/18	6020 ICP-MS	STLC
Arsenic	9.0	1.0	"	"	"	"	"	"	STLC
Barium	360	1.0	"	"	"	"	"	"	STLC
Beryllium	1.3	1.0	"	"	"	"	04/27/18	"	STLC
Cadmium	1.6	1.0	"	"	"	"	04/26/18	"	STLC
Chromium	40	1.0	"	"	"	"	"	"	STLC
Cobalt	49	1.0	"	"	"	"	"	"	STLC
Copper	110	1.0	"	"	"	"	"	"	STLC
Lead	200	2.0	"	"	"	"	"	"	STLC
Mercury	0.52	0.10	"	"	"	"	"	"	STLC
Molybdenum	4.8	1.0	"	"	"	"	"	"	STLC
Nickel	54	1.0	"	"	"	"	"	"	STLC
Selenium	ND	5.0	"	"	"	"	"	"	STLC
Silver	7.0	1.0	"	"	"	"	"	"	STLC
Thallium	ND	1.0	"	"	"	"	"	"	STLC
Vanadium	110	1.0	"	"	"	"	"	"	STLC
Zinc	230	1.0	"	"	"	"	"	"	STLC

SunStar Laboratories, Inc.

Mike Jaroudi, Project Manager

Brusca Associates Inc. PO Box 332 Roseville CA, 95661	es Inc. Project: Lathrop 48-Ac Property Project Number: 137-002 5661 Project Manager: Joe Brusca						Reported: 04/27/18 11:	10	
		5	SP4-1						
		11812	49-13 (80	01I)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar La	aborator	ies, Inc.					
Metals by EPA 6020 Method									
Antimony	ND	1.0	ug/l	1	8042318	04/23/18	04/26/18	6020 ICP-MS	STLC
Arsenic	11	1.0	"	"		"	"	"	STLC
Barium	230	1.0	"	"	"	"	"	"	STLC
Beryllium	ND	1.0	"	"	"	"	04/27/18	"	STLC
Cadmium	1.9	1.0	"	"	"	"	04/26/18	"	STLC
Chromium	33	1.0	"	"	"	"	"	"	STLC
Cobalt	31	1.0	"	"	"	"	"	"	STLC
Copper	110	1.0	"	"	"	"	"	"	STLC
Lead	170	2.0	"	"	"	"	"	"	STLC
Mercury	0.32	0.10	"	"	"	"	"	"	STLC
Molybdenum	7.4	1.0	"	"	"	"	"	"	STLC
Nickel	28	1.0	"	"	"	"	"	"	STLC
Selenium	ND	5.0	"	"	"	"	"	"	STLC
Silver	3.0	1.0	"	"	"	"	"	"	STLC
Thallium	ND	1.0	"	"	"	"	"	"	STLC
Vanadium	75	1.0	"	"	"	"	"	"	STLC
Zinc	250	1.0	"	"	"	"	"	"	STLC

SunStar Laboratories, Inc.

Mike Jaroudi, Project Manager

Brusca Associates Inc.	Project: Lathrop 48-Ac Property	
PO Box 332	Project Number: 137-002	Reported:
Roseville CA, 95661	Project Manager: Joe Brusca	04/27/18 11:10

Metals by EPA 6020 Method - Quality Control

SunStar Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch 8042318 - STLC Metals

Blank (8042318-BLK1)				Prepared: 04/23/18	8 Analyzed: 04	/26/18			
Antimony	ND	1.0	ug/l						
Arsenic	ND	1.0	"						
Barium	ND	1.0	"						
Beryllium	ND	1.0	"						
Cadmium	ND	1.0	"						
Chromium	ND	1.0	"						
Cobalt	ND	1.0	"						
Copper	ND	1.0	"						
Lead	ND	2.0	"						
Mercury	ND	0.10	"						
Molybdenum	ND	1.0	"						
Nickel	ND	1.0	"						
Selenium	ND	5.0	"						
Silver	ND	1.0	"						
Thallium	ND	1.0	"						
Vanadium	ND	1.0	"						
Zinc	ND	1.0	"						
LCS (8042318-BS1)				Prepared: 04/23/18	8 Analyzed: 04	/26/18			
Arsenic	57.4	1.0	ug/l	50.0	115	80-120			
Barium	56.4	1.0	"	50.0	113	80-120			
Cadmium	56.5	1.0	"	50.0	113	80-120			
Chromium	55.6	1.0	"	50.0	111	80-120			
Lead	56.2	2.0	"	50.0	112	80-120			
Duplicate (8042318-DUP1)	Sou	rce: T181179-0	6	Prepared: 04/23/18	8 Analyzed: 04	/26/18			
Barium	548	5.0	ug/l	521			4.95	200	
Chromium	54.5	5.0	"	53.8	3		1.28	200	

SunStar Laboratories, Inc.

Mike Jaroudi, Project Manager

Brusca Associates Inc.	Project: Lathrop 48-Ac Property	
PO Box 332	Project Number: 137-002	Reported:
Roseville CA, 95661	Project Manager: Joe Brusca	04/27/18 11:10

Metals by EPA 6020 Method - Quality Control

SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 8042318 - STLC Metals										
Matrix Spike (8042318-MS1)	Sou	rce: T181179-	Prepared: 04/23/18 Analyzed: 04/26/18			4/26/18				
Arsenic	72.5	1.0	ug/l	50.0	27.8	89.2	75-125			
Barium	611	1.0		50.0	521	178	75-125			QM-PS
Cadmium	46.0	1.0		50.0	0.966	90.1	75-125			
Chromium	121	1.0		50.0	53.8	134	75-125			QM-PS
Lead	168	2.0	"	50.0	112	112	75-125			
Matrix Spike Dup (8042318-MSD1)	Sou	rce: T181179-	06	Prepared:	04/23/18 A	nalyzed: 04	4/26/18			
Arsenic	73.4	1.0	ug/l	50.0	27.8	91.2	75-125	1.36	20	
Barium	595	1.0		50.0	521	147	75-125	2.61	20	QM-PS
Cadmium	47.4	1.0		50.0	0.966	92.9	75-125	2.97	20	
Chromium	124	1.0		50.0	53.8	141	75-125	2.85	20	QM-PS
Lead	164	2.0	"	50.0	112	104	75-125	2.22	20	
Post Spike (8042318-PS1)	Sou	rce: T181179-	06	Prepared: 04/23/18 Analyzed: 04/26/18			4/26/18			
Barium	287		ug/l	25.0	261	104	80-120			
Chromium	56.2			25.0	26.9	117	80-120			

SunStar Laboratories, Inc.

Roseville CA, 95661	Project Manager: Joe Brusca	04/27/18 11:10
PO Box 332	Project Number: 137-002	Reported:
Brusca Associates Inc.	Project: Lathrop 48-Ac Property	

Notes and Definitions

- STLC Sample prepared in accordance with CCR Chapter 11, Article 5, Appendix II, Waste Extraction Test (WET).
- QM-PS The percent recovery and/or RPD are outside acceptance criteria. Results accepted based upon percent recovery results in the post spike and/or serial dilution.
- DET Analyte DETECTED
- ND Analyte NOT DETECTED at or above the reporting limit
- NR Not Reported
- dry Sample results reported on a dry weight basis
- RPD Relative Percent Difference

SunStar Laboratories, Inc.

Mike Jaroudi, Project Manager

Client: Sample disposal Instructions: Project Manager: Phone: (116) Address: Po Relinquished by: (signature) Rélinquished by: (signature) Rélinquished by: (signature) SP3 PROVIDING QUALITY ANALYTICAL SERVICES NATIONWIDE SunStar 949-297-5020 25712 Commercentre Drive, Lake Forest, CA 92630 - 1 25 Sis SPS 2021 292 SP3 5-29 P3-2 P3-KRUSCA ASSUCATES, 19 Ĭ Sample ID Ŋ ١ 1 1 Laboratories, Inc.) 14 620 6 0 - 129 Sox 4-12-18 l o D Disposal @ \$2.00 each 9:30 そろ BRUSCA Sampled <u>C</u> Date 17/18 Rossizue Date / Time Date / Time Date / Time 113-12: 10:51 Fax: (916 10:55 20:51 (000 121 11:14 1:09 5 ŝ Time 1:26 223 1:16 :33 Ĵ 513 Received by: (signature) Received by: (signature) Rece Sample Type 147-147 Return to client 3256 by: (signature) LAR Chain of Custody Record Container Type 4-12-18 \$270 SVOLS 3260 8260 + OXÝ Pickup 9:30 Date / Time Date / Time Date / Time 8260 BTEX, OXY only 2 Date: RC 8032 Batch #: Collector: Project Name: 1546 8021 BTEX 8015M (gasoline) Chain of Custody seals XN/NA BRUSCH Turn around time: NORWAL 8015M (diesel Received good condition/cold Silic Carbon Chain ALASA 7000 Title 22 Metals Seals intact? Y/N/NA Total # of containers 181249 6020 ICP-MS Metals パーチ EDF # 3.6 Client Project #: 10 07 90 04 ŝ R 80 8 Q 02 0 ñ Laboratory ID # hotery **COC** 160914 Comments/Preservative 137-002 **Q** Notes Total # of containers

May 1, 2018

FAL Project ID: 11455

Mr. Joe Brusca Brusca Associates 7633 Stonewood Court Granite Bay, CA 95746

Dear Mr. Brusca,

The following results are associated with Frontier Analytical Laboratory project **11455**. This corresponds to your **Lathrop 48-Ac Property** project under project number **137-002**. Thirteen solid samples were received on 4/12/2018 in good condition. These samples were extracted and analyzed by EPA Method 1613 for tetra through octa chlorinated dibenzo dioxins and furans. The Toxic Equivalency (TEQ) for your samples has been calculated using the 2005 World Health Organization's (WHO's) toxic equivalency factors (TEFs). The total TEQ is reported on the upper right hand corner of each sample data sheet. Brusca Associates requested a turnaround time of fifteen business days for project **11455**.

The following report consists of an Analytical Data section and a Sample Receipt section. The Analytical Data section contains our sample tracking log and the analytical results. The Sample Receipt section contains your chain of custody, our sample login form and the sample photos. The attached results are specifically for the samples referenced in this report only. These results meet all NELAC requirements and shall not be reproduced except in full. Frontier Analytical Laboratory's State of Oregon NELAP certificate number is **4041**. Our State of California ELAP certificate number is **2934**. This report has been emailed to you as a portable document format (PDF) file. A hardcopy will not be sent to you unless specifically requested.

If you have any questions regarding project **11455**, please contact me at (916) 934-0900. Thank you for choosing Frontier Analytical Laboratory for your analytical testing needs.

Sincerely,

Bradley B. Silverbush Director of Operations

Frontier Analytical Laboratory

Sample Tracking Log

FAL Project ID: 11455

Received on: 04/12/2018

Project Due: 05/04/2018 Sta

Storage: <u>R-4</u>

FAL Sample ID	Dup	Client Project ID	Client Sample ID	Requested Method	Matrix	Sampling Date	Sampling Time	Hold Time Due Date
11455-001-SA	0	137-002	SP3-1	EPA 1613 D/F	Solid	04/12/2018	10:51 am	04/12/2019
11455-002-SA	0	137-002	SP3-2	EPA 1613 D/F	Solid	04/12/2018	10:55 am	04/12/2019
11455-003-SA	0	137-002	SP3-3	EPA 1613 D/F	Solid	04/12/2018	11:00 am	04/12/2019
11455-004-SA	0	137-002	SP3-4	EPA 1613 D/F	Solid	04/12/2018	11:02 am	04/12/2019
11455-005-SA	0	137-002	SP3-5	EPA 1613 D/F	Solid	04/12/2018	11:05 am	04/12/2019
11455-006-SA	0	137-002	SP3-6	EPA 1613 D/F	Solid	04/12/2018	11:09 am	04/12/2019
11455-007-SA	0	137-002	SP3-7	EPA 1613 D/F	Solid	04/12/2018	11:14 am	04/12/2019
11455-008-SA	0	137-002	SP3-8	EPA 1613 D/F	Solid	04/12/2018	11:16 am	04/12/2019
11455-009-SA	0	137-002	SP3-9	EPA 1613 D/F	Solid	04/12/2018	11:19 am	04/12/2019
11455-010-SA	0	137-002	SP3-10	EPA 1613 D/F	Solid	04/12/2018	11:21 am	04/12/2019
11455-011-SA	0	137-002	SP3-11	EPA 1613 D/F	Solid	04/12/2018	11:23 am	04/12/2019
11455-012-SA	0	137-002	SP3-12	EPA 1613 D/F	Solid	04/12/2018	11:26 am	04/12/2019
11455-013-SA	0	137-002	SP4-1	EPA 1613 D/F	Solid	04/12/2018	11:35 am	04/12/2019

FAL ID: 11455-001-MB Client ID: Method Blank Matrix: Solid Batch No: X4492	Date E Date R Amoun	Extracted: 04-27 Received: NA ht: 5.00 g	7-2018	ICal: PCDI GC Colum Units: pg/g	DFAL4-12- in: DB5MS 9	20-17)-17 Acquired: 04-30-2018 2005 WHO TEQ: 0.0 Basis: Dry Weight		
Compound	Conc	DL (Qual	2005 WHO Tox	MDL	Compound	I Conc	DL	Qual
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD 0CDD	ND ND ND ND ND ND	0.137 0.215 0.222 0.236 0.210 0.275 0.430			0.0273 0.0570 0.0793 0.0940 0.0823 0.0842 0.172	Total TCDD Total PeCDD Total HxCDD Total HxCDD	0 ND 0 ND 0 ND 0 ND	0.137 0.215 0.236 0.275	
2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF 0CDF	ND ND ND ND ND ND ND ND	0.107 0.148 0.159 0.155 0.151 0.161 0.183 0.180 0.195 0.422			0.0269 0.0449 0.0468 0.0437 0.0417 0.0574 0.0657 0.0747 0.0883 0.170	Total TCDF Total PeCDF Total HxCDF Total HpCDF	ND ND ND ND	0.107 0.159 0.183 0.195	
Internal Standards 13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,4,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HxCDD 13C-2,3,7,8-PeCDF 13C-2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-PACDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,7,8,9-HxCDF 13C	% Rec 93.0 96.5 94.6 96.4 83.4 62.6 98.3 90.7 92.1 90.6 88.9 85.6 83.5 84.8 82.7 66.7	QC Limits 25.0 - 164 25.0 - 181 32.0 - 181 28.0 - 130 23.0 - 140 17.0 - 157 24.0 - 169 24.0 - 169 24.0 - 169 24.0 - 185 21.0 - 178 26.0 - 152 26.0 - 152 26.0 - 123 28.0 - 136 29.0 - 147 28.0 - 138 17.0 - 157	Qual		A S B A C O D F DNQ A F A J A ND A ND A NP F S S X M * F	sotopic Labeled S signal to noise rationally the ispresent Chemical Interfere Presence of Diphe Analyte concentral Analyte concentral Analyte concentral Maximum possible Analyte Not Detect Not Provided Pre-filtered through Sample acceptance Matrix interference Result taken from	tandard outs o is >10:1 in Method Bl nce nyl Ethers tion is below tion is above on on second tion is below concentratic ted at Detect n a Whatman e criteria not es dilution or rei	ide QC range ank calibration rar calibration rar lary column calibration rar on Limit Leve 0.7um GF/F met njection	but nge nge el filter
37CI-2,3,7,8-TCDD	87.6	35.0 - 197							

Analyst: Date: 5/1/2018

 $\overline{\bigtriangledown}$ Reviewed By: Date: 5/1/2018

FAL ID: 11455-001-OPR Client ID: OPR Matrix: Solid Batch No: X4492	Date Extracted: 04-27-2018 Date Received: NA Amount: 5.00 g	ICal: PCDDFAL4 GC Column: DB5 Units: ng/ml	-12-20-17 Acquired: 04-30-2018 MS 2005 WHO TEQ: NA
Compound	Conc QC Limits	Qual	
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD 0CDD	10.8 6.70 - 15.8 53.0 35.0 - 71.0 47.7 35.0 - 82.0 50.6 38.0 - 67.0 47.5 32.0 - 81.0 51.0 35.0 - 70.0 101 78.0 - 144		
2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF 1,2,3,4,7,8,9-HpCDF 0CDF	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
Internal Standards	% Rec QC Limits	Qual	
13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HxCDD 13C-1,2,3,7,8-TCDF 13C-2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	A E C D N E F J N N S S	Isotopic Labeled Standard outside QC range but signal to noise ratio is >10:1 Analyte is present in Method Blank Chemical Interference Presence of Diphenyl Ethers Q Analyte concentration is below calibration range Analyte concentration is above calibration range Analyte concentration on secondary column Analyte concentration on secondary column Analyte concentration is below calibration range Maximum possible concentration D Analyte Not Detected at Detection Limit Level Not Provided Pre-filtered through a Whatman 0.7um GF/F filter Sample acceptance criteria not met
Cleanup Surrogate	894 310-191	×	Matrix interferences Result taken from dilution or reinjection
57 OF2, 5, 7, 0-1 CDD	00.4 01.0-191		

Analyst: Date: 5/1/2018

 $\overline{\bigtriangledown}$ Reviewed By: Date: 5/1/2018

FAL ID: 11455-001-SA Client ID: SP3-1 Matrix: Solid Batch No: X4492	Date Date Amou % So	Date Extracted: 04-27-2018ICal: PCDDFAL4-12-20-17Acquired: 04-30-20Date Received: 04-12-2018GC Column: DB5MS2005 WHO TEQ: 1Amount: 5.01 gUnits: pg/gBasis: Dry Weight% Solids: 92.2692.26						30-2018 EQ: 1.79 eight	
Compound	Con	c DL	Qual	2005 WHO Tox	MDL	Compound	Conc	DL	Qual
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD 1,2,3,4,6,7,8-HpCDD OCDD	NI 0.54 0.89 1.8 1.3 27.1 19	D 0.206 5 - 3 - 0 - 3 - 0 - 4 -	၂ ၂ ၂	0.545 0.0893 0.180 0.133 0.270 0.0582	0.0273 0.0570 0.0793 0.0940 0.0823 0.0842 0.172	Total TCDD Total PeCDD Total HxCDD Total HpCDD	ND 4.20 17.8 55.7	0.206	J
2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF 0,00000000000000000000000000000000000	0.76 NI 0.67 0.65 0.47 NI 5.8 0.73 15.4	7 - D 0.224 2 - 8 - 5 - 3 - D 0.202 4 - 5 - 8 - 8 - 0.202	ן 1 1 1	0.0767 0.202 0.0658 0.0555 0.0473 - - 0.0584 0.00735 0.00474	0.0269 0.0449 0.0468 0.0437 0.0417 0.0574 0.0574 0.0657 0.0747 0.0883 0.170	Total TCDF Total PeCDF Total HxCDF Total HpCDF	5.58 3.97 8.08 16.7		J
Internal Standards 13C-2,3,7,8-TCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDF 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,7,8,9-HxCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-0CDF	% Rec 90.0 90.6 95.1 93.1 87.0 76.8 92.3 88.2 88.2 87.8 86.7 84.5 82.5 84.1 84.9 76.1	QC Limits 25.0 - 164 25.0 - 181 32.0 - 141 28.0 - 130 23.0 - 140 17.0 - 157 24.0 - 169 24.0 - 185 21.0 - 178 26.0 - 152 26.0 - 123 28.0 - 136 29.0 - 147 28.0 - 138 17.0 - 157	Qual		A Iso sig B Ana C Ch D Pre DNQ Ana F Ana J Ana M Ma ND Ana NP No P Pre S Sau X Ma * Re	topic Labeled Stan nal to noise ratio is alyte is present in emical Interference asence of Dipheny alyte concentration alyte concentration alyte concentration alyte concentration ximum possible concentration ximum possible concentration ximum possible concentration alyte Not Detected the Provided e-filtered through a mple acceptance of trix interferences sult taken from dil	ndard outsic s >10:1 Method Bla e I Ethers n is below c on seconda n is below c on seconda n is below c oncentration d at Detectic a Whatman (criteria not n ution or rein	de QC range nk alibration ra alibration ra alibration ra n Limit Lev 0.7um GF/F net jection	e but ange ange el filter

Analyst: Date: 5/1/2018

 $\overline{\bigtriangledown}$ Reviewed By: Date: 5/1/2018

FAL ID: 11455-002-SA Client ID: SP3-2 Matrix: Solid Batch No: X4492	Date Date Amo % So	Extracted: 04- Received: 04- unt: 5.01 g blids: 94.99	27-2018 12-2018	ICal: PCDDFAL4-12-20-17 GC Column: DB5MS Units: pg/g			Acquired: 04-30-2018 2005 WHO TEQ: 1.62 Basis: Dry Weight			
Compound	Cor	nc DL	Qual	2005 WHO Tox	MDL	Compound	Conc	DL	Qual	
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD 0CDD	N N 0.70 1.5 0.87 24. 17	D 0.202 D 0.456 07 - 66 - 73 - 73 - 73 -	J J J	0.0707 0.156 0.0878 0.246 0.0519	0.0273 0.0570 0.0793 0.0940 0.0823 0.0842 0.172	Total TCDD Total PeCDD Total HxCDD Total HxCDD	ND ND 11.8 47.0	0.202 0.456 -		
2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF 1,2,3,4,7,8,9-HpCDF	1.8 N 1.3 1.3 0.72 0.85 0.51 7.8 0.67 15	30 - D 0.264 33 - 32 - 35 - 35 - 37 - 78 - 2 -	J J J J	0.180 0.399 0.132 0.0729 0.0855 0.0513 0.0787 0.00678 0.00456	0.0269 0.0449 0.0468 0.0437 0.0417 0.0574 0.0574 0.0657 0.0747 0.0883 0.170	Total TCDF Total PeCDF Total HxCDF Total HpCDF	10.2 8.81 11.6 18.8	- - -		
Internal Standards 13C-2,3,7,8-PCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HxCDD 13C-2,3,7,8-PCDF 13C-1,2,3,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF140 14C+1,2,3,4,7,8-HxCDF140 14C+1,2,3,4,7,8-HxCDF140 14C+1,2	% Rec 82.8 84.0 88.2 85.4 80.3 71.8 85.0 78.1 79.4 80.8 80.2 78.4 77.3 79.1 79.5 71.2	QC Limits 25.0 - 164 25.0 - 181 32.0 - 141 28.0 - 130 23.0 - 140 17.0 - 157 24.0 - 169 24.0 - 169 24.0 - 185 21.0 - 178 26.0 - 152 26.0 - 123 28.0 - 136 29.0 - 147 28.0 - 138 17.0 - 157	Qual		A IS B A C C D P DNQ A E A F A F A M N P P S S X M * R	sotopic Labeled St ignal to noise ratic inalyte is present i chemical Interferer resence of Dipher inalyte concentrationalyte concentrationalyte concentrationalyte concentrationalyte concentrationalyte concentrationalyte Not Detectuationalyte Not Detectuationalyte Not Detectuationalyte Not Detectuationalyte Not Detectuationalyte acceptance cample acceptances that interferences that interferences	andard outsi is >10:1 n Method Bl. note nyl Ethers on is below on is above n on second on is below concentratic ed at Detecti a Whatman e criteria not s	ide QC range l ank calibration ran calibration ran ary column calibration ran n on Limit Level 0.7um GF/F f met njection	but ge ge l filter	
37CI-2,3,7,8-TCDD	79.3	35.0 - 197								

Analyst:_____ Date:__<u>5/1/2018</u>_____

 $\overline{\bigtriangledown}$ Reviewed By: Date: 5/1/2018

Compound Conc DL Qual WHO Tox MDL Compound Conc DL 2.3,7,8-TCDD ND 0.149 - 0.0273 - - 0.0570 1.2,3,7,8-TeCDD ND 0.331 - 0.0670 - - 0.0793 1.2,3,7,8-TeCDD 190 - J 0.0190 0.0940 Total TCDD 0.697 - 1.2,3,6,7,8-HxCDD 0.732 - J 0.0732 Total PeCDD 0.448 - 1.2,3,4,6,7,8-HxCDD 3.43 - 0.0431 0.0823 Total PcCDD 1.2,3 - 2,3,7,8-TCDF 0.431 - J 0.0431 0.0269 - - - 0.0448 - - 0.0448 - - 0.0448 - - 0.0457 - - 0.0657 Total TCDF 2.97 - - - 0.0657 Total TCDF 2.97 - - 0.00531 0.0438 0.0437	FAL ID: 11455-003-SA Client ID: SP3-3 Matrix: Solid Batch No: X4492	Date Extracted: 04-27 Date Received: 04-12 Amount: 5.02 g % Solids: 92.65	ate Extracted: 04-27-2018ICal: PCDDFAL4-12-20-17Acquired: 04-1ate Received: 04-12-2018GC Column: DB5MS2005 WHO TImount: 5.02 gUnits: pg/gBasis: Dry WeSolids: 92.65Solids: 92.65Solids: 92.65			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Compound	Conc DL (2005 Qual WHO Tox	MDL Compour	nd Conc DL Qual	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD 0CDD	ND 0.149 ND 0.331 ND 0.230 1.90 - 0.732 - 34.3 - 302 -	J 0.190 J 0.0732 0.343 0.0906	0.0273 0.0570 0.0793 0.0940 Total TCD 0.0823 Total PeCD 0.0842 Total HxCD 0.172 Total HpCD	D 0.697 - J D 0.448 - J D 12.3 - D 60.9 -	
Internal Standards % Rec QC Limits Qual 13C-2,3,7,8-TCDD 95.1 25.0 - 164 Isotopic Labeled Standard outside QC range signal to noise ratio is >10:1 13C-1,2,3,7,8-PeCDD 95.4 25.0 - 181 B Analyte is present in Method Blank 13C-1,2,3,6,7,8-HxCDD 98.9 32.0 - 141 B Analyte is present in Method Blank 13C-1,2,3,6,7,8-HxCDD 98.6 23.0 - 140 D Presence of Diphenyl Ethers 13C-2,3,7,8-TCDF 101 24.0 - 169 E Analyte concentration is below calibration ran 13C-1,2,3,7,8-PeCDF 93.3 24.0 - 185 F Analyte concentration is below calibration ran 13C-2,3,7,8-PeCDF 95.4 21.0 - 178 F Analyte concentration is below calibration ran 13C-1,2,3,4,7,8-HxCDF 89.6 26.0 - 152 J Analyte concentration is below calibration ran 13C-1,2,3,4,7,8-HxCDF 88.0 26.0 - 123 M Maximum possible concentration	2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF 0CDF	0.431 - ND 0.197 ND 0.204 0.531 - 0.440 - 0.389 - ND 0.150 4.89 - 0.534 - 10.5 -	J 0.0431 - J 0.0531 J 0.0440 J 0.0389 - J 0.0489 J 0.0489 J 0.00534 0.00315	0.0269 0.0449 0.0468 0.0437 0.0417 0.0574 0.0657 Total TCE 0.0747 Total PeCE 0.0883 Total HxCE 0.170 Total HpCE	IF 2.97 - IF 2.01 - J IF 7.73 - IF 13.0 -	
13C-2,3,4,6,7,8-HxCDF 85.9 28.0 - 136 13C-1,2,3,7,8,9-HxCDF 84.6 29.0 - 147 13C-1,2,3,4,6,7,8-HpCDF 87.5 28.0 - 143 13C-1,2,3,4,6,7,8-HpCDF 87.5 28.0 - 138 13C-1,2,3,4,7,8,9-HpCDF 88.5 26.0 - 138 13C-0CDF 79.0 17.0 - 157 Sample acceptance criteria not met X Matrix interferences * Cleanup Surrogate * Cleanup Surrogate 95.0	Internal Standards 13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,6,7,8-HpCDD 13C-2,3,7,8-PeCDF 13C-2,3,7,8-PeCDF 13C-2,3,4,7,8-PeCDF 13C-1,2,3,7,8-PeCDF 13C-1,2,3,6,7,8-HxCDF 13C-1,2,3,6,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF	% Rec QC Limits QC 95.1 25.0 - 164 95.4 25.0 - 181 98.9 32.0 - 141 94.5 28.0 - 130 88.6 23.0 - 140 79.4 17.0 - 157 101 24.0 - 169 93.3 24.0 - 185 95.4 21.0 - 178 89.6 26.0 - 152 88.0 26.0 - 152 88.0 26.0 - 123 85.9 28.0 - 136 84.6 29.0 - 147 87.5 28.0 - 138 79.0 17.0 - 157	Qual	AIsotopic Labeled signal to noise raBAnalyte is preserCChemical InterferDPresence of DiphDNQAnalyte concentrEAnalyte concentrFAnalyte concentrJAnalyte concentrMaximum possibNDAnalyte Not DeteNPNot ProvidedPPre-filtered throuSSample acceptarXMatrix interference*Result taken from	Standard outside QC range but tio is >10:1 t in Method Blank ence enyl Ethers ation is below calibration range ation is above calibration range tion on secondary column ation is below calibration range le concentration cted at Detection Limit Level gh a Whatman 0.7um GF/F filter nee criteria not met tes in dilution or reinjection	

Analyst: Date: 5/1/2018

 $\overline{\bigtriangledown}$ Reviewed By: Date: 5/1/2018

FAL ID: 11455-004-SA Client ID: SP3-4 Matrix: Solid Batch No: X4492	Date Date Amo % So	Extracted: 04- Received: 04- unt: 5.02 g blids: 93.88	27-2018 12-2018	ICal: PCE GC Colun Units: pg/	DFAL4-12-2 nn: DB5MS g	20-17	Acquired: 04-30-2018 2005 WHO TEQ: 0.522 Basis: Dry Weight			
Compound	Con	ic DL	Qual	2005 WHO Tox	MDL	Compound	Conc	DL	Qual	
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD OCDD	N N 0.82 0.70 13. 10	D 0.189 D 0.314 D 0.222 0 - 77 - 9 - 4 -	J	0.0820 0.0707 0.139 0.0312	0.0273 0.0570 0.0793 0.0940 0.0823 0.0842 0.172	Total TCDD Total PeCDD Total HxCDD Total HxCDD Total HpCDD	ND ND 6.13 26.4	0.189 0.314 -		
2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF 0,2DF	0.63 N 0.39 0.30 0.30 0.30 2.9 0.32 8.1	iii - D 0.230 D 0.239 ii - iii - D 0.128 iii - D 0.128 iii - iii - iii - iiii - iiiiiiii - iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii	ך ר ר ר ר	0.0634 - 0.0397 0.0301 0.0308 - 0.0293 0.00326 0.00245	0.0269 0.0449 0.0468 0.0437 0.0417 0.0574 0.0657 0.0747 0.0883 0.170	Total TCDF Total PeCDF Total HxCDF Total HpCDF	3.03 1.77 4.20 8.09		L L	
Internal Standards 13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,4,7,8-HpCDD 13C-2,3,7,8-TCDF 13C-2,3,4,7,8-PeCDF 13C-2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,7,8,9-HxCDF 13C-1,2,3,4,7,8,	% Rec 95.0 97.7 99.5 96.3 91.3 82.7 95.9 91.4 92.5 88.7 87.4 86.3 86.7 88.8 89.7 81.7	QC Limits 25.0 - 164 25.0 - 181 32.0 - 141 28.0 - 130 23.0 - 140 17.0 - 157 24.0 - 169 24.0 - 185 21.0 - 178 26.0 - 152 26.0 - 123 28.0 - 136 29.0 - 147 28.0 - 138 17.0 - 157	Qual		A Is B AI C C D PI DNQ AI F AI J AI ND AI NP N P PI S S X M * R	otopic Labeled Si gnal to noise ratio nalyte is present i hemical Interferer resence of Dipher nalyte concentrationalyte concentrationalyte concentrationalyte concentrationalyte concentrationalyte Not Detect of Provided re-filtered through ample acceptance atrix interferences esult taken from content of the second content of the	tandard outsin b is >10:1 n Method Bla nce nyl Ethers ion is below of ion is above of on on secondation ion is below of concentration ed at Detection n a Whatman e criteria not n s dilution or reir	de QC range ank calibration ra calibration ra ary column calibration ra n on Limit Lev 0.7um GF/F met	e but ange ange ange rel F filter	
37CI-2,3,7,8-TCDD	88.5	35.0 - 197								

Analyst: Date: 5/1/2018

 $\overline{\bigtriangledown}$ Reviewed By: Date: 5/1/2018

FAL ID: 11455-005-SA Client ID: SP3-5 Matrix: Solid Batch No: X4492	Date Date Amou % Sol	Extracted: 04-2 Received: 04-2 Int: 5.04 g lids: 90.61	27-2018 12-2018	ICal: PCE GC Colur Units: pg/	ICal: PCDDFAL4-12-20-17 GC Column: DB5MS Units: pg/g			Acquired: 04-30-2018 2005 WHO TEQ: 2.76 Basis: Dry Weight		
Compound	Cond	c DL	Qual	2005 WHO Tox	MDL	Compound	Conc	DL Qual		
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD 0CDD	NE 0.870 2.0 ⁷ 1.50 29.9 195	0 0.204 0 - 4 - 1 - 5 - 5 - 5 -	Մ Մ Մ	0.870 0.0714 0.201 0.156 0.299 0.0585	0.0273 0.0570 0.0793 0.0940 0.0823 0.0842 0.172	Total TCDD Total PeCDD Total HxCDD Total HxCDD	2.30 7.61 22.3 65.0	- - -		
2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF 0CDF	2.4 0.52 1.00 1.17 1.44 0.968 0.495 11.1 1.63 16.6	1 - 3 - 7 - 7 - 7 - 5 - 1 - 3 - 6 -	F J J J J J J	0.241 0.0157 0.300 0.117 0.147 0.0968 0.0495 0.111 0.0163 0.00498	0.0269 0.0449 0.0468 0.0437 0.0417 0.0574 0.0574 0.0657 0.0747 0.0883 0.170	Total TCDF Total PeCDF Total HxCDF Total HpCDF	11.3 8.69 12.1 20.9	- - - -		
Internal Standards 13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,4,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HxCDF 13C-2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-PxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,7,8,9-HyCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF14D	% Rec 90.8 98.5 96.6 90.3 80.2 95.9 94.0 94.5 89.5 88.0 86.7 87.4 87.4 87.4 87.6 78.4	QC Limits 25.0 - 164 25.0 - 181 32.0 - 141 28.0 - 130 23.0 - 140 17.0 - 157 24.0 - 169 24.0 - 169 24.0 - 185 21.0 - 178 26.0 - 123 28.0 - 123 28.0 - 136 29.0 - 147 28.0 - 143 26.0 - 138 17.0 - 157	Qual		A S B A C C D P DNQ A E A F A M M ND A N P F S S X M * R	sotopic Labeled St ignal to noise ratic malyte is present i Chemical Interferer Presence of Dipher malyte concentrati malyte concentrati malyte concentrati Maximum possible malyte Not Detect Not Provided Pre-filtered through Sample acceptance Matrix interferences Result taken from c	andard outsi b is >10:1 n Method Bla nce on is below o on is below o on is below o concentratio ed at Detecti a Whatman e criteria not s lilution or reii	de QC range but ank calibration range calibration range ary column calibration range n on Limit Level 0.7um GF/F filter met		
37CI-2,3,7,8-TCDD	88.5	35.0 - 197								

Analyst:_____ Date:__<u>5/1/2018</u>_____

 $\overline{\triangleleft}$ Reviewed By: Date: 5/1/2018

FAL ID: 11455-006-SA Client ID: SP3-6 Matrix: Solid Batch No: X4492	Date Date Amo % So	Extracted: 04- Received: 04- unt: 5.01 g blids: 94.32	27-2018 12-2018	ICal: PCD GC Colun Units: pg/	DFAL4-12-2 nn: DB5MS g	20-17	Acquired: 04-30-2018 2005 WHO TEQ: 0.995 Basis: Dry Weight		
Compound	Cor	ic DL	Qual	2005 WHO Tox	MDL	Compound	Conc	DL	Qual
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD OCDD	N N 1.5 0.59 30. 26	D 0.187 D 0.334 D 0.245 61 - 77 - 55 - 55 -	J J	0.151 0.0597 0.305 0.0795	0.0273 0.0570 0.0793 0.0940 0.0823 0.0842 0.172	Total TCDD Total PeCDD Total HxCDD Total HxCDD Total HpCDD	ND ND 11.1 57.0	0.187 0.334 -	
2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF 0,CDF	0.55 N 0.41 0.57 0.56 0.47 N 5.0 0.64 11	22 - D 0.177 1 - 22 - 77 - D 0.133 14 - 1 - 1 -	ן ר ר ר	0.0552 0.123 0.0572 0.0567 0.0476 0.0504 0.00646 0.00333	0.0269 0.0449 0.0468 0.0437 0.0417 0.0574 0.0657 0.0747 0.0883 0.170	Total TCDF Total PeCDF Total HxCDF Total HpCDF	3.25 2.10 5.48 12.0		J
Internal Standards 13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PcCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-2,3,7,8-PCDF 13C-1,2,3,7,8-PeCDF 13C-1,2,3,4,7,8-PaCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-2,2,3,4,6,7,8-HxCDF 13C-2,2,3,4,6,7,8-HxCDF 13C-2,2,3,4,6,7,8-HxCDF 13C-2,2,3,4,6,7,8-HxCDF 13C-2,2,3,4,6,7,8-HxCDF 13C-2,2,3,4,6,7,8-HxCDF 13C-2,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-0,2,4,7,8,9-HpCDF	% Rec 92.7 93.9 99.4 96.0 90.2 79.5 96.3 91.7 90.6 89.4 87.6 89.0 87.2 87.2 90.7 83.1	QC Limits 25.0 - 164 25.0 - 181 32.0 - 141 28.0 - 130 23.0 - 140 17.0 - 157 24.0 - 169 24.0 - 169 24.0 - 185 21.0 - 178 26.0 - 152 26.0 - 123 28.0 - 136 29.0 - 147 28.0 - 138 17.0 - 157	Qual		A Iss B Ar C CI D Pr DNQ Ar F Ar J Ar M M ND Ar NP No P Pr S Sa X M X M	otopic Labeled Si gnal to noise ratio nalyte is present i hemical Interferer resence of Diphen nalyte concentratio nalyte concentrationalyte concentrationalyte concentrationalyte concentrationalyte Not Detect on Provided re-filtered through ample acceptance atrix interferences esult taken from content of the concentrational taken from content of the concentration of the concentration taken from content of the concentration taken from content of the concentrational taken from content of the concentration taken from content of the concentration taken from content of the concentration taken from content of taken from co	andard outsi is >10:1 n Method Bla nce nyl Ethers on is below o on is above o n on seconda on is below o concentratio ed at Detectio a Whatman e criteria not s	de QC rang ank calibration ra calibration ra ary column calibration ra n on Limit Lev 0.7um GF/f met njection	e but ange ange ange el ⁻ filter
37CI-2,3,7,8-TCDD	89.5	35.0 - 197							

Analyst: Date: 5/1/2018

Reviewed By:_____ Date: 5/1/2018

FAL ID: 11455-007-SA Client ID: SP3-7 Matrix: Solid Batch No: X4492	Date Date Amo % So	Extracted: 04- Received: 04- unt: 5.03 g blids: 93.06	27-2018 12-2018	ICal: PCE GC Colur Units: pg/	DFAL4-12-2 nn: DB5MS g	20-17	Acquired: 04-30-2018 2005 WHO TEQ: 0.823 Basis: Dry Weight		
Compound	Cor	nc DL	Qual	2005 WHO Tox	MDL	Compound	Conc	DL	Qual
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD OCDD	N N 1.6 0.75 28 23	D 0.180 D 0.299 D 0.210 34 - 59 - 88 - 32 -	J	0.164 0.0759 0.288 0.0696	0.0273 0.0570 0.0793 0.0940 0.0823 0.0842 0.172	Total TCDD Total PeCDD Total HxCDD Total HxCDD	0.811 ND 11.1 51.5	0.299	J
2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF 0,2DF	0.42 N 0.45 0.54 0.54 0.45 N 3.0 0.50 5.7	28 - D 0.246 D 0.252 i8 - i1 - i2 - i3 - i4 - D 0.141 i6 - i4 - i6 - i4 -	ן ר ר ר ר ו ר	0.0428 - 0.0458 0.0541 0.0454 - 0.0306 0.00506 0.00172	0.0269 0.0449 0.0468 0.0437 0.0417 0.0574 0.0657 0.0747 0.0883 0.170	Total TCDF Total PeCDF Total HxCDF Total HpCDF	3.89 1.90 4.59 7.36	-	M L J
Internal Standards 13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-2,3,7,8-PeCDF 13C-1,2,3,7,8-PeCDF 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF	% Rec 94.7 96.6 97.4 96.8 91.2 82.6 97.1 91.3 92.9 89.0 88.6 87.8 86.5 87.7 89.3 81.9	QC Limits 25.0 - 164 25.0 - 181 32.0 - 141 28.0 - 130 23.0 - 140 17.0 - 157 24.0 - 169 24.0 - 185 21.0 - 178 26.0 - 123 28.0 - 136 29.0 - 147 28.0 - 143 26.0 - 138 17.0 - 157	Qual		A Is B A C C D P DNQ A F A F A M M ND A NP N P S S X X M * R	otopic Labeled S gnal to noise ratio nalyte is present hemical Interferen resence of Diphen nalyte concentrat nalyte concentrat nalyte concentrat laximum possible nalyte Not Detect ot Provided re-filtered through ample acceptance latrix interference esult taken from o	tandard outsi o is >10:1 in Method Bla nce nyl Ethers ion is below o ion is below o concentratio ed at Detecti n a Whatman e criteria not s dilution or rein	de QC range ank calibration ra calibration ra ary column calibration ra n on Limit Lev 0.7um GF/F met	e but ange ange el F filter
37CI-2,3,7,8-TCDD	88.3	35.0 - 197							

Analyst: Date: 5/1/2018

 $\overline{\bigtriangledown}$ Reviewed By: Date: 5/1/2018

FAL ID: 11455-008-SA Client ID: SP3-8 Matrix: Solid Batch No: X4492	Date Date Amo % So	Extracted: 04-2 Received: 04-7 unt: 5.01 g blids: 93.69	27-2018 12-2018	ICal: PCE GC Colur Units: pg/	DFAL4-12-2 nn: DB5MS ′g	20-17	Acquired: 04-30-2018 2005 WHO TEQ: 1.34 Basis: Dry Weight			
Compound	Cor	nc DL	Qual	2005 WHO Tox	MDL	Compound	Conc	DL	Qual	
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD 0CDD	N 0.42 1.2 1.0 32. 26	D 0.243 D 0.352 22 - 29 - 33 - 57 -	J J J	0.0422 0.129 0.100 0.323 0.0801	0.0273 0.0570 0.0793 0.0940 0.0823 0.0842 0.172	Total TCDD Total PeCDD Total HxCDD Total HxCDD	ND ND 9.74 56.5	0.243 0.352 -		
2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF 1,2,3,4,7,8,9-HpCDF 0CDF	1.0 N 0.65 1.1 0.61 0.72 N 10. 0.79 32.	04 - D 0.232 04 - 05 - 05 - 00 0.154 2 - 11 -	Մ Մ Մ	0.104 0.196 0.110 0.0615 0.0724 0.102 0.00794 0.00963	0.0269 0.0449 0.0468 0.0437 0.0417 0.0574 0.0657 0.0747 0.0883 0.170	Total TCDF Total PeCDF Total HxCDF Total HpCDF	5.68 6.52 11.3 29.1		М	
Internal Standards 13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,7,8-HpCDD 13C-2,3,7,8-PeCDF 13C-1,2,3,7,8-PeCDF 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF	% Rec 87.6 88.4 92.9 88.5 84.8 74.9 90.6 83.7 84.4 83.3 81.9 82.3 82.4 82.4 84.6 78.1	QC Limits 25.0 - 164 25.0 - 181 32.0 - 141 28.0 - 130 23.0 - 140 17.0 - 157 24.0 - 169 24.0 - 185 21.0 - 178 26.0 - 123 28.0 - 136 29.0 - 147 28.0 - 138 17.0 - 157	Qual		A Isi B A C C D P DNQ A E A F A J A M M ND A NP N P S S X M * R	sotopic Labeled Si ignal to noise ratio nalyte is present i chemical Interferer resence of Dipher nalyte concentrationalyte concentrationalyte concentrationalyte concentrationalyte concentrationalyte concentrationalyte Not Detect Inalyte Not Detect lot Provided re-filtered through ample acceptance latrix interferences result taken from concentrational	andard outs b is >10:1 n Method Blance nyl Ethers ion is below ion is above in on second ion is below ic concentratic ed at Detecti a a Whatman e criteria not s iilution or rei	ide QC range ank calibration rar calibration rar ary column calibration rar n on Limit Leve 0.7um GF/F met njection	but nge nge al filter	
37CI-2,3,7,8-TCDD	84.5	35.0 - 197								

Analyst: Date: 5/1/2018

Reviewed By:_____ Date: 5/1/2018

FAL ID: 11455-009-SA Client ID: SP3-9 Matrix: Solid Batch No: X4492	Date Date Amo % Sc	Extracted: 04-2 Received: 04-7 unt: 5.03 g blids: 92.21	27-2018 12-2018	ICal: PCE GC Colun Units: pg/	0-17 / 2 E	Acquired: 05-01-2018 2005 WHO TEQ: 0.731 Basis: Dry Weight			
Compound	Con	ic DL	Qual	2005 WHO Tox	MDL	Compound	Conc	DL	Qual
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD 0CDD	0.47 Ni 0.52 0.35 8.0 57.	0 - D 0.223 D 0.170 6 - 4 - 5 - 1 -	J J J	0.470 - 0.0526 0.0354 0.0805 0.0171	0.0273 0.0570 0.0793 0.0940 0.0823 0.0842 0.172	Total TCDD Total PeCDD Total HxCDD Total HpCDD	0.470 1.69 3.49 14.6	- - -	L L L
2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF 0,00000000000000000000000000000000000	0.54 N N N N N 1.8 N 7.0	6 - D 0.179 D 0.180 D 0.203 D 0.212 D 0.220 D 0.235 2 - D 0.173 4 -	J	0.0546 - - - - 0.0182 - - - - - - - - - - - - - - - - - - -	0.0269 0.0449 0.0468 0.0437 0.0417 0.0574 0.0657 0.0747 0.0883 0.170	Total TCDF Total PeCDF Total HxCDF Total HpCDF	1.29 1.00 1.77 5.65	- - -	J
Internal Standards 13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,4,6,7,8-HxCDD 13C-2,3,7,8-PeCDF 13C-2,3,4,7,8-PeCDF 13C-2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF	% Rec 91.9 94.3 97.8 95.7 91.1 81.5 95.6 91.5 91.8 88.0 85.7 87.3 86.4 88.1 90.2 82.4	QC Limits 25.0 - 164 25.0 - 181 32.0 - 141 28.0 - 130 23.0 - 140 17.0 - 157 24.0 - 169 24.0 - 185 21.0 - 178 26.0 - 152 26.0 - 123 28.0 - 136 29.0 - 147 28.0 - 143 26.0 - 138 17.0 - 157	Qual		A lsc sig B An C Cr D Prr DNQ An E An F An J An M Ma ND An NP Nc P Prr S Sa X Ma * Re	btopic Labeled St gnal to noise ratio halyte is present in hemical Interferen esence of Dipher halyte concentration halyte concentration halyte concentration halyte concentration halyte concentration halyte concentration halyte Not Detected by Provided e-filtered through maple acceptances halt taken from d	andard outside is >10:1 n Method Blan ice ayl Ethers on is below ca on is above ca n on secondar on is below ca concentration ed at Detectior a Whatman 0 e criteria not m s ilution or reinje	e QC range k libration ra libration ra y column libration ra Limit Lev 7um GF/F et ection	⇒ but inge inge el
37CI-2,3,7,8-TCDD	85.7	35.0 - 197							

Analyst: Date: 5/1/2018

Reviewed By:____ Date: <u>5/1/2018</u>

FAL ID: 11455-010-SA Client ID: SP3-10 Matrix: Solid Batch No: X4492	Date Date Amou % Sc	Extracted: 04- Received: 04- unt: 5.01 g lids: 90.08	27-2018 12-2018	ICal: PCD GC Colun Units: pg/	DFAL4-12-2 nn: DB5MS g	0-17	Acquired: 05-01-2018 2005 WHO TEQ: 0.492 Basis: Dry Weight		
Compound	Con	c DL	Qual	2005 WHO Tox	MDL	Compound	Conc	DL	Qual
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD 0CDD	NI NI 0.83 0.58 11. 72.	D 0.159 D 0.282 D 0.237 8 - 9 - 2 - 6 -	J	0.0838 0.0589 0.112 0.0218	0.0273 0.0570 0.0793 0.0940 0.0823 0.0842 0.172	Total TCDD Total PeCDD Total HxCDD Total HxCDD Total HpCDD	0.436 ND 6.24 20.4	0.282	J
2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF 0,2DF	0.88 NI 0.36 0.38 0.26 NI 2.1 0.36 3.3	5 - 0 0.186 0 0.198 6 - 1 - 2 - 0 0.109 7 - 7 - 3 - 3 -	ך ר ר ר ר	0.0885 - 0.0366 0.0381 0.0262 - 0.0217 0.00367 0.000999	0.0269 0.0449 0.0468 0.0437 0.0417 0.0574 0.0657 0.0747 0.0883 0.170	Total TCDF Total PeCDF Total HxCDF Total HpCDF	3.32 1.37 2.68 4.31	-	J,M J J
Internal Standards 13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-2,3,7,8-PeCDF 13C-1,2,3,7,8-PeCDF 13C-1,2,3,4,7,8-PaCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-0,2,4,7,8,9-HpCDF 13C-0,2,4	% Rec 93.6 95.3 101 96.9 91.3 81.7 98.0 90.6 92.2 90.1 91.5 89.8 87.3 86.8 89.5 79.8	QC Limits 25.0 - 164 25.0 - 181 32.0 - 141 28.0 - 130 23.0 - 140 17.0 - 157 24.0 - 169 24.0 - 169 24.0 - 185 21.0 - 178 26.0 - 123 28.0 - 136 29.0 - 147 28.0 - 143 26.0 - 138 17.0 - 157	Qual		A Ise B Ar C CI D Pr DNQ Ar F Ar J Ar M M ND Ar NP Nc P Pr S Sa X M * Re	btopic Labeled St gnal to noise ratio halyte is present in hemical Interferen- resence of Diphen- halyte concentrationalyte concentrationalyte concentrationalyte concentrationalyte concentrationalyte Not Detect halyte Not Detect of Provided re-filtered through ample acceptance atrix interferences esult taken from content of the second content of the second second second second second second second second second second second second second second second	andard outsio is >10:1 n Method Bla nce nyl Ethers on is below c on is above c in on seconda on is below c concentration ed at Detection a Whatman e criteria not n s s	de QC range ink calibration ra calibration ra ary column calibration ra n on Limit Lev 0.7um GF/F met nect	e but ange ange ange el ⁻ filter
37CI-2,3,7,8-TCDD	91.0	35.0 - 197			L				

Analyst: Date: 5/1/2018

Reviewed By:_____ Date: 5/1/2018

FAL ID: 11455-011-SA Client ID: SP3-11 Matrix: Solid Batch No: X4492	Date Date Amo % So	Extracted: 04- Received: 04- unt: 5.02 g blids: 92.68	-27-2018 ICal: PCDDFAL4-12-20-17 -12-2018 GC Column: DB5MS Units: pg/g				Acquired: 05-01-2018 2005 WHO TEQ: 0.616 Basis: Dry Weight			
Compound	Con	ic DL	Qual	2005 WHO Tox	MDL	Compound	Conc	DL	Qual	
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD OCDD	NI NI 0.96 0.67 16. 13	D 0.221 D 0.283 D 0.254 3 - 6 - 7 - 9 -	J J	0.0963 0.0676 0.167 0.0417	0.0273 0.0570 0.0793 0.0940 0.0823 0.0842 0.172	Total TCDD Total PeCDD Total HxCDD Total HpCDD	ND ND 5.96 31.3	0.221 0.283 -		
2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF 1,2,3,4,7,8,9-HpCDF	0.51 NI 0.37 0.37 0.33 3.88 0.46 11.	6 - D 0.247 D 0.264 2 - 4 - 7 - 4 - 7 - 7 - 7 - 7 -	ן ר ר ר ר	0.0516 - 0.0372 0.0374 0.0374 0.0337 0.0384 0.00460 0.00351	0.0269 0.0449 0.0468 0.0437 0.0417 0.0574 0.0657 0.0747 0.0883 0.170	Total TCDF Total PeCDF Total HxCDF Total HpCDF	1.88 1.73 5.04 11.1	-	J	
Internal Standards 13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,7,8-HxCDD 13C-2,3,7,8-TCDF 13C-2,3,7,8-PeCDF 13C-2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,7,8,9-HxCDF 13C-1,2,3,4,7,	% Rec 90.6 96.3 101 96.8 92.4 85.1 96.9 88.6 89.6 90.9 88.4 89.2 87.7 88.4 89.2 87.7 88.4 89.8 83.0	QC Limits 25.0 - 164 25.0 - 181 32.0 - 141 28.0 - 130 23.0 - 140 17.0 - 157 24.0 - 169 24.0 - 185 21.0 - 178 26.0 - 152 26.0 - 123 28.0 - 136 29.0 - 147 28.0 - 138 17.0 - 157	Qual		A Iss B Ar C CI D Pr DNQ Ar F Ar J Ar ND Ar NP No P Pr S Sa X M * Ro	otopic Labeled Si gnal to noise ratio halyte is present i hemical Interferer resence of Dipher halyte concentrationalyte concentrationalyte concentrationalyte concentrationalyte concentrationalyte concentrationalyte Not Detect to Provided re-filtered through ample acceptance atrix interferences	andard outsi is >10:1 n Method Bla nce hyl Ethers on is below c on is below c on is above c n on seconda on is below c concentration ed at Detection a Whatman e criteria not n s lilution or reir	de QC range ank calibration ra calibration ra ary column calibration ra n on Limit Lev 0.7um GF/F met	e but ange ange ange rel F filter	
37CI-2,3,7,8-TCDD	87.9	35.0 - 197								

Analyst: Date: 5/1/2018

 $\overline{\triangleleft}$ Reviewed By: Date: 5/1/2018

FAL ID: 11455-012-SA Client ID: SP3-12 Matrix: Solid Batch No: X4492	Date Date Amou % Sc	Extracted: 04- Received: 04- unt: 5.03 g lids: 94.10	27-2018 12-2018	ICal: PCI GC Colu Units: pg	DDFAL4-12 mn: DB5MS /g	-20-17	Acquired: 05-01-2018 2005 WHO TEQ: 1.79 Basis: Dry Weight		
Compound	Con	c DL	Qual	2005 WHO Tox	MDL	Compound	I Conc	DL	Qual
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD 0CDD	NI NI 2.3 1.1 46. 39	D 0.229 D 0.384 D 0.267 0 - 1 - 8 - 5 -	J J	0.230 0.111 0.468 0.119	0.0273 0.0570 0.0793 0.0940 0.0823 0.0842 0.172	Total TCDE Total PeCDE Total HxCDE Total HxCDE	0.432 ND 16.3 82.1	0.384	J
2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF 0,000 F	1.1 NI 0.89 1.2 0.90 0.42 8.0 1.5 14.	2 - D 0.271 6 - 4 - 2 - 4 - 2 - 9 - 4 - 9 - 4 - 6 -	ן ר ר ר	0.112 0.269 0.124 0.0904 0.0422 0.0809 0.0154 0.00438	0.0269 0.0449 0.0468 0.0437 0.0417 0.0574 0.0657 0.0747 0.0883 0.170	Total TCDF Total PeCDF Total HxCDF Total HxCDF	6.85 4.91 9.17 17.9	- - -	ſ
Internal Standards 13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,7,8-HpCDD 13C-2,3,7,8-PeCDF 13C-2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-0,2,3,4,7,8,9-HpCDF	% Rec 78.4 86.6 88.3 84.9 80.1 73.7 79.7 81.9 83.1 78.6 77.3 77.8 75.6 77.0 78.5 71.7	QC Limits 25.0 - 164 25.0 - 181 32.0 - 141 28.0 - 130 23.0 - 140 17.0 - 157 24.0 - 169 24.0 - 185 21.0 - 178 26.0 - 152 26.0 - 123 28.0 - 136 29.0 - 147 28.0 - 143 26.0 - 138 17.0 - 157	Qual		A B C DNQ E F J M NP P S X *	Isotopic Labeled S signal to noise rati Analyte is present Chemical Interfere Presence of Diphe Analyte concentrat Analyte concentrat Analyte concentrat Maximum possible Analyte Not Detec Not Provided Pre-filtered throug Sample acceptance Matrix interference Result taken from	tandard outs o is >10:1 in Method Bl nce nyl Ethers ion is below ion is above on on second ion is below concentration ted at Detect n a Whatmar e criteria not s dilution or rei	ide QC range ank calibration ra calibration ra dary column calibration ra on ion Limit Lev n 0.7um GF/F met njection	e but ange ange el F filter
37CI-2,3,7,8-TCDD	74.4	35.0 - 197							

Analyst: Date: 5/1/2018

Reviewed By:_____ Date: 5/1/2018

FAL ID: 11455-013-SA Client ID: SP4-1 Matrix: Solid Batch No: X4492	Date Date Amo % Se	e Extracted: 04- e Received: 04- ount: 5.04 g olids: 96.08	27-2018 12-2018	ICal: PCDDFAL4-12-20-17 GC Column: DB5MS Units: pg/g			Acquired: 05-01-2018 2005 WHO TEQ: 2.91 Basis: Dry Weight			
Compound	Cor	nc DL	Qual	2005 WHO Tox	MDL	Compound	Conc	DL	Qual	
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD 0CDD	N 0.47 4.2 1.8 79 68	ID 0.184 ID 0.309 71 - 20 - 38 - .8 - 33 -	J J J	0.0471 0.420 0.188 0.798 0.205	0.0273 0.0570 0.0793 0.0940 0.0823 0.0842 0.172	Total TCDD Total PeCDD Total HxCDD Total HxCDD	0.754 1.40 32.4 150	- - -	J	
2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF 0,00000000000000000000000000000000000	1.7 0.46 1.0 1.8 1.9 1.9 0.61 13 2.3 24	73 - 51 - 52 - 31 - 53 - 15 - 31 - 31 - .5 -	J J J J J	0.173 0.0138 0.306 0.181 0.198 0.153 0.0615 0.138 0.0231 0.00735	0.0269 0.0449 0.0468 0.0437 0.0417 0.0574 0.0574 0.0747 0.0883 0.170	Total TCDF Total PeCDF Total HxCDF Total HpCDF	12.4 7.70 16.5 31.6			
Internal Standards 13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDF 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-0CDF	% Rec 88.8 92.7 92.9 89.9 86.4 78.9 94.0 89.8 92.5 81.9 81.2 80.1 82.0 82.5 86.5 78.1	QC Limits 25.0 - 164 25.0 - 181 32.0 - 141 28.0 - 130 23.0 - 140 17.0 - 157 24.0 - 169 24.0 - 185 21.0 - 178 26.0 - 152 26.0 - 123 28.0 - 136 29.0 - 147 28.0 - 138 17.0 - 157	Qual		A Is B AI C CI D PI DNQ AI E AI J AI M M ND AI NP NI S Si X M * R	otopic Labeled Si gnal to noise ratio nalyte is present i hemical Interferent resence of Diphen nalyte concentrat nalyte concentrat nalyte concentrat aximum possible nalyte Not Detect ot Provided re-filtered through ample acceptance atrix interference esult taken from o	tandard outsic o is >10:1 in Method Bla nce nyl Ethers ion is below c ion is above c on on seconda ion is below c concentratior ed at Detection n a Whatman e criteria not r s dilution or rein	de QC range nk alibration ra alibration ra alibration ra b n Limit Lev 0.7um GF/F net jection	e but ange ange el F filter	
37Cl-2,3,7,8-TCDD	85.3	35.0 - 197			R	esuit taken from (allution or rein	jection		

Analyst: Date: 5/1/2018

 $\overline{\bigtriangledown}$ Reviewed By: Date: 5/1/2018

ANAL DICAL LARDRATORY	Frontier Analy 5172 Hillsdale El Dorado Hill Tel: 916-934-0 Fax: 916-934-1	tical Laborator Circle ls, CA 95762 0900 0999	y 	<i>FAL US</i> Laborato Tempera	E ON ry Pr ture:	<i>ILY</i> oject	Nо.: О	<u> </u>	14	F	5			Cł www Plea	1ai .fron se Pi	n of Custody tieranalytical.com rint in Pen Page of
CLIENT INFORMATIC	DN		INV	OICE IN	FOR	MAT	ION	(if diff	erent fi	om cli	ent inf	<u>()</u>	PROJ	ECT	<u>INF</u>	ORMATION 210
Company Name: Brusca A	ASSOCIATES, INC.	agyan nonanan pinanan siya ang ang ang ang ang ang ang ang ang an	Cont	act Name:		ne			ten et for fan <mark>detten en en en e</mark> n weken			Ē	2.0, #	i Suore	<i>H</i> . U	
Address: PO Box 332, Ros	seville, CA 95661	an de canada en	Add	ress:								F	Projec	t #:	13	7-002
Phone: <u>916-677-1470</u>	Fax:		Phor	ne:			Fax	;			No.	I.	Projec	t Nar	ne: <u>[</u>	ATHROP 48-AC MOPUTY
Email: jbrusca@bruscaass	ociates.com	ananationariinaninahariinthariintaningin	I Eina		and a subsection of the subsection of t	ti norta ya Khingkon ni		********	cularioodaa kaalaase			-	FAL	mus	t agre	ee with price and RUSH TAT in writing.
DEDODT INCODMATE				FDODT D	ICTU	IDIT	FION	1 Zaina	1.00	in io i		(bou	T	00000000000000000000000000000000000000	AD	DITIONAL INSTRUCTIONS
Report Level: 1/II				Hardcopy	/	abu		(em		1 <u>y</u> 18 j	Jerer	ieu)	\vdash		AD.	
		i a]									$ \mathcal{L} $	OC	+	o Kathy 15-TAT
EDD: FAL	Basic Ge	otracker stom: Contact F		JCD (.pdf	incluc	ting E	DDs	if rec	lueste	d)					í	4(12)18
	· 0.0	storm, contacet]Email (.p	df inc	luding	g EDI	Ds if i	reque	sted)			OWNER			ort
California State Drinki	ing Water Form			an a	1	r		1				r	L		COMPACTO MUNICIPA	MCONCENTERS ANTES
System #:	Source #	<i>‡</i> :			STS						A	21				**CONGENERS **TEQ
Sampler:	Employe	31':	u décembra que a presentation de la companya de la		taine	3**	**00	9	\$0**	X IX	6/6-	23A	-86			2,3,7,8-TCDD only
					Con	161	825	A 02	828	endi	TO	. 23/	16(. 15	12	2,3,7,8-TCDD/F only 2005 WHO
Sample	ID. States in the second second	Date	Time	Matrix	# 0	EPA	EPA	DLA	EPA	App	EPA	EPA	EPA	FAL	Othe	PCDD/F (Cl ₄ -Cl ₈) Uther
1 007-1	ne in early care of the transition of the transi	A 17 110	na In∙≪l	Citar	4			<u> </u>		CINESCO CONTRACTO						Remarks
2 SP3-7		41410	0:55	2060		K						ingging in spiritorning		eleve)mentume	enscenarisetti vestasilme	
3 SP3-3			1(:00			X										ator
4 SP3-4			11:02		-	X								Scipacific Parame		ν.
5 SP3-5			11:05			X			ļ			Statute State			ancasa na manakinga	
6 SP3-6	na na star se	Construction Transform	11:09		1253	X	-	ļ							-	
7 543-4	and the second		11:14			8	annen	 			-			un dector de la company	newstanetti wysekter	
0 007-9			1:18		-	X									alicite acquiri	Sector se
10 SP3-10			1:21			X		-							nia tamo magair	
11 SP3-11			11:23	1		X								naning John Hold and The	destantonanoins	C
12 SP3-12			11:26			\mathbf{X}										Ś
13 SP4-1			11:35			X				-	-			aniona a companya a com	and the subsection of	ator
14							 	-	-							
	Came	les will be disnosed	of 90 days	: after cample	receip	t unles	tother	arrano	ements	have l	heen r	ade an	d agree	d uno	n în w	rifine.
Relinquished by: (Signa	ture and Printed	Name)	1 01 70 uays	Date	receip	Tim	e l	Rece	ived	by: (S	Signa	ture a	nd Pri	inted	Nam	ne) Date Time
1/42				4/12/	103:	3:07	PZ		Ca	Ú		2	ÉP		67	WR 4/12/18 1503
	and the second	27/2010/01/01/01/01/01/01/01/01/01/01/01/01/							L		ر				•	
L			an substantia a sub	L		un de la companya de		and the second		Termenokinsise	محجز فالمحتم	and the second	-	manazinometakon		

Client understands that all terms described in the proposals, quotations, and/or the general terms provided in the current FAL price schedules with block of the proposals of the project have been broken.

Frontier Analytical Laboratory

Sample Login Form

FAL Project ID: 11455

Client:	Brusca Associates, Inc.
Client Project ID:	137-002
Date Received:	04/12/2018
Time Received:	03:03 pm
Received By:	KZ
Logged In By:	KZ
# of Samples Received:	13
Duplicates:	0
Storage Location:	R-4

Method of Delivery:	Courier
Tracking Number:	NA
Shipping Container Received Intact	Yes
Custody seals(s) present?	No
Custody seals(s) intact?	No
Sample Arrival Temperature (C)	0
Cooling Method	Ice
Chain Of Custody Present?	Yes
Return Shipping Container To Client	Yes
Test aqueous sample for residual Chlorine	No
Sodium Thiosulfate Added	No
Adequate Sample Volume	Yes
Appropriate Sample Container	Yes
pH Range of Aqueous Sample	N/A
Anomalies or additional comments:	

PROVIDING QUALITY ANALYTICAL SERVICES NATIONWIDE

20 April 2018

Joe Brusca Brusca Associates Inc. PO Box 332 Roseville, CA 95661 RE: Lathrop 48-Ac Property

Enclosed are the results of analyses for samples received by the laboratory on 04/13/18 09:30. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Mike Jaroudi Project Manager

Brusca Associates Inc.	Project: Lathrop 48-Ac Property	
PO Box 332	Project Number: 137-002	Reported:
Roseville CA, 95661	Project Manager: Joe Brusca	04/20/18 11:17

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
SP3-1	T181249-01	Soil	04/12/18 10:51	04/13/18 09:30
SP3-2	T181249-02	Soil	04/12/18 10:55	04/13/18 09:30
SP3-3	T181249-03	Soil	04/12/18 11:00	04/13/18 09:30
SP3-4	T181249-04	Soil	04/12/18 11:02	04/13/18 09:30
SP3-5	T181249-05	Soil	04/12/18 11:05	04/13/18 09:30
SP3-6	T181249-06	Soil	04/12/18 11:09	04/13/18 09:30
SP3-7	T181249-07	Soil	04/12/18 11:14	04/13/18 09:30
SP3-8	T181249-08	Soil	04/12/18 11:16	04/13/18 09:30
SP3-9	T181249-09	Soil	04/12/18 11:19	04/13/18 09:30
SP3-10	T181249-10	Soil	04/12/18 11:21	04/13/18 09:30
SP3-11	T181249-11	Soil	04/12/18 11:23	04/13/18 09:30
SP3-12	T181249-12	Soil	04/12/18 11:26	04/13/18 09:30
SP4-1	T181249-13	Soil	04/12/18 11:35	04/13/18 09:30

SunStar Laboratories, Inc.

Brusca Associates Inc.	Project: Lathrop 48-Ac Property	
PO Box 332	Project Number: 137-002	Reported:
Roseville CA, 95661	Project Manager: Joe Brusca	04/20/18 11:17

DETECTIONS SUMMARY

Sample ID: SP3-1	Laborat	ory ID:	T181249-01		
		Reporting			
Analyte	Result	Limit	Units	Method	Notes
C13-C28 (DRO)	29	10	mg/kg	EPA 8015B	
C29-C40 (MORO)	29	10	mg/kg	EPA 8015B	
Barium	61	1.0	mg/kg	EPA 6010B	
Chromium	5.8	2.0	mg/kg	EPA 6010B	
Cobalt	4.5	2.0	mg/kg	EPA 6010B	
Copper	4.5	1.0	mg/kg	EPA 6010B	
Nickel	6.0	2.0	mg/kg	EPA 6010B	
Vanadium	17	5.0	mg/kg	EPA 6010B	
Zinc	30	1.0	mg/kg	EPA 6010B	
Pyrene	650	300	ug/kg	EPA 8270C	
Benzo (a) anthracene	300	300	ug/kg	EPA 8270C	
Benzo (b) fluoranthene	300	300	ug/kg	EPA 8270C	
Chrysene	340	300	ug/kg	EPA 8270C	
Fluoranthene	730	300	ug/kg	EPA 8270C	
Phenanthrene	460	300	ug/kg	EPA 8270C	
Sample ID: SP3-2	Laborat	ory ID:	T181249-02		
		Reporting			
Analyte	Result	Limit	Units	Method	Notes
C13-C28 (DRO)	150	10	mg/kg	EPA 8015B	
C29-C40 (MORO)	160	10	mg/kg	EPA 8015B	
Barium	72	1.0	mg/kg	EPA 6010B	
Chromium	5.6	2.0	mg/kg	EPA 6010B	
Cobalt	4.7	2.0	mg/kg	EPA 6010B	
Copper	8.0	1.0	mg/kg	EPA 6010B	
Nickel	6.6	2.0	mg/kg	EPA 6010B	
Vanadium	17	5.0	mg/kg	EPA 6010B	
Zinc	33	1.0	mg/kg	EPA 6010B	

20

SunStar Laboratories, Inc.

PCB-1254

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

EPA 8082

mg/kg

ug/kg

10

SunStar Laboratories, Inc. Providing Quality Analytical Services Nationwide

25712 Commercentre Drive Lake Forest, California 92630 949.297.5020 Phone 949.297.5027 Fax

Brusca Associates Inc.	a Associates Inc. Project: Lathrop 48-Ac Property				
PO Box 332	Project Number: 137-002				Reported:
Roseville CA, 95661	Project Manager: Joe Brusca			04/20/18 11:17	
Sample ID: SP3-3	Laborato	ory ID:	T181249-03		
		Reporting			
Analyte	Result	Limit	Units	Method	Notes
C13-C28 (DRO)	51	10	mg/kg	EPA 8015B	
C29-C40 (MORO)	37	10	mg/kg	EPA 8015B	
Barium	41	1.0	mg/kg	EPA 6010B	
Chromium	4.4	2.0	mg/kg	EPA 6010B	
Cobalt	3.5	2.0	mg/kg	EPA 6010B	
Copper	5.0	1.0	mg/kg	EPA 6010B	
Lead	20	3.0	mg/kg	EPA 6010B	
Nickel	4.1	2.0	mg/kg	EPA 6010B	
Vanadium	10	5.0	mg/kg	EPA 6010B	
Zinc	24	1.0	mg/kg	EPA 6010B	
PCB-1254	17	10	ug/kg	EPA 8082	
Sample ID: SP3-4	Laborato	ory ID:	T181249-04		
		Reporting			

		Reporting			
Analyte	Result	Limit	Units	Method	Notes
C13-C28 (DRO)	100	10	mg/kg	EPA 8015B	
C29-C40 (MORO)	96	10	mg/kg	EPA 8015B	
Barium	53	1.0	mg/kg	EPA 6010B	
Chromium	5.1	2.0	mg/kg	EPA 6010B	
Cobalt	4.4	2.0	mg/kg	EPA 6010B	
Copper	4.3	1.0	mg/kg	EPA 6010B	
Nickel	5.7	2.0	mg/kg	EPA 6010B	
Vanadium	15	5.0	mg/kg	EPA 6010B	
Zinc	26	1.0	mg/kg	EPA 6010B	
PCB-1254	15	10	ug/kg	EPA 8082	

Sa	mple ID: SP3-5	Laboratory ID:		T181249-05		
	Reporting					
	Analyte	Result	Limit	Units	Method	Notes
	C13-C28 (DRO)	32	10	mg/kg	EPA 8015B	
	C29-C40 (MORO)	15	10	mg/kg	EPA 8015B	
	Barium	64	1.0	mg/kg	EPA 6010B	
	Chromium	4.9	2.0	mg/kg	EPA 6010B	
	Cobalt	4.2	2.0	mg/kg	EPA 6010B	
	Copper	5.2	1.0	mg/kg	EPA 6010B	

SunStar Laboratories, Inc.
SunStar Laboratories, Inc. Providing Quality Analytical Services Nationwide

25712 Commercentre Drive Lake Forest, California 92630 949.297.5020 Phone 949.297.5027 Fax

Brusca Associates Inc.	Project: Lathrop 48-A						
PO Box 332	Project Number: 137-002				Reported:		
Roseville CA, 95661	Project Manager: Joe Brusca	Project Manager: Joe Brusca					
Sample ID: SP3-5	Laboratory ID:		T181249-05				
	Report	ing					
Analyte	Result Lin	mit	Units	Method	Notes		
Nickel	5.1	2.0	mg/kg	EPA 6010B			
Vanadium	15	5.0	mg/kg	EPA 6010B			
Zinc	29	1.0	mg/kg	EPA 6010B			
Sample ID: SP3-6	Laboratory ID:		T181249-06				
	Report	ing					
Analyte	Result Lin	mit	Units	Method	Notes		
C13-C28 (DRO)	56	10	mg/kg	EPA 8015B			
C29-C40 (MORO)	32	10	mg/kg	EPA 8015B			
Barium	43	1.0	mg/kg	EPA 6010B			
Chromium	5.1	2.0	mg/kg	EPA 6010B			
Cobalt	3.8	2.0	mg/kg	EPA 6010B			
Copper	4.4	1.0	mg/kg	EPA 6010B			
Lead	14	3.0	mg/kg	EPA 6010B			
Nickel	4.5	2.0	mg/kg	EPA 6010B			
Vanadium	11	5.0	mg/kg	EPA 6010B			
Zinc	23	1.0	mg/kg	EPA 6010B			
PCB-1254	12	10	ug/kg	EPA 8082			
Samela ID: OD2 7			T101040.07				
Sample ID: SP3-7	Laboratory ID:		1181249-07				
Analyte	Report Docult I :-	mg mit	Units	Mathad	Notos		
C12 C28 (DPO)		10	Units ma/ka		Notes		
C13-C28 (DRO)	39	10	mg/kg	EPA 8015D			
Dorium	19	10	mg/kg	EFA 6015B			
Chromium	43	2.0	mg/kg	EPA 6010B			
Cabalt	4.0	2.0	mg/kg	EPA 6010B			
Coppor	3.8	2.0 1.0	mg/kg	EPA 6010D			
Lond	3.3	2.0	mg/kg				
Leau	10	3.U 2.0	mg/Kg	EPA 6010D			
Wendium	4.1	2.0 5.0	mg/Kg	EPA 6010D			
Zine	11	J.U	mg/Kg	EPA 6010D			
	25	1.0	mg/kg	EFA 0010B			
PCB-1254	12	10	ug/kg	EPA 8082			

SunStar Laboratories, Inc.

SunStar Laboratories, Inc. Providing Quality Analytical Services Nationwide

25712 Commercentre Drive Lake Forest, California 92630 949.297.5020 Phone 949.297.5027 Fax

Isca Associates Inc.Project:Lathrop 48-Ac PropertyBox 332Project Number:137-002seville CA, 95661Project Manager:Joe Brusca					Reported: 04/20/18 11:17
Sample ID: SP3-8	Labor	atory ID:	T181249-08		
		Reporting			
Analyte	Result	Limit	Units	Method	Notes
C13-C28 (DRO)	29	10	mg/kg	EPA 8015B	
C29-C40 (MORO)	17	10	mg/kg	EPA 8015B	
Barium	67	1.0	mg/kg	EPA 6010B	
Chromium	5.7	2.0	mg/kg	EPA 6010B	
Cobalt	4.9	2.0	mg/kg	EPA 6010B	
Copper	4.6	1.0	mg/kg	EPA 6010B	
Lead	17	3.0	mg/kg	EPA 6010B	
Nickel	6.6	2.0	mg/kg	EPA 6010B	
Vanadium	17	5.0	mg/kg	EPA 6010B	
Zinc	26	1.0	mg/kg	EPA 6010B	
PCB-1254	19	10	ug/kg	EPA 8082	

Sample ID: SP3-9	Laboratory ID:		T181249-09		
		Reporting			
Analyte	Result	Limit	Units	Method	Notes
C13-C28 (DRO)	85	10	mg/kg	EPA 8015B	
C29-C40 (MORO)	82	10	mg/kg	EPA 8015B	
Barium	59	1.0	mg/kg	EPA 6010B	
Chromium	5.9	2.0	mg/kg	EPA 6010B	
Cobalt	5.6	2.0	mg/kg	EPA 6010B	
Copper	4.8	1.0	mg/kg	EPA 6010B	
Nickel	6.6	2.0	mg/kg	EPA 6010B	
Vanadium	18	5.0	mg/kg	EPA 6010B	
Zinc	29	1.0	mg/kg	EPA 6010B	
PCB-1254	16	10	ug/kg	EPA 8082	

S	ample ID: SP3-10	Laboratory ID:		T181249-10		
			Reporting			
	Analyte	Result	Limit	Units	Method	Notes
	C13-C28 (DRO)	360	10	mg/kg	EPA 8015B	
	C29-C40 (MORO)	380	10	mg/kg	EPA 8015B	
	Barium	57	1.0	mg/kg	EPA 6010B	
	Chromium	5.7	2.0	mg/kg	EPA 6010B	
	Cobalt	4.9	2.0	mg/kg	EPA 6010B	
	Copper	4.6	1.0	mg/kg	EPA 6010B	

SunStar Laboratories, Inc.

SunStar Laboratories, Inc. PROVIDING QUALITY ANALYTICAL SERVICES NATIONWIDE

25712 Commercentre Drive Lake Forest, California 92630 949.297.5020 Phone 949.297.5027 Fax

Brusca Associates Inc.	Project: Lathrop 48-Ac Property	
PO Box 332	Project Number: 137-002	Reported:
Roseville CA, 95661	Project Manager: Joe Brusca	04/20/18 11:17

Sample ID:	SP3-10	Labo	ratory ID:	T181249-10		
			Reporting			
Analyte		Result	Limit	Units	Method	Notes
Nickel		5.7	2.0	mg/kg	EPA 6010B	
Vanadium		14	5.0	mg/kg	EPA 6010B	
Zinc		28	1.0	mg/kg	EPA 6010B	
PCB-1254		18	10	ug/kg	EPA 8082	

Sample ID: SP3-11	Laborat	ory ID:	T181249-11		
		Reporting			
Analyte	Result	Limit	Units	Method	Notes
C13-C28 (DRO)	26	10	mg/kg	EPA 8015B	
C29-C40 (MORO)	33	10	mg/kg	EPA 8015B	
Barium	56	1.0	mg/kg	EPA 6010B	
Chromium	5.0	2.0	mg/kg	EPA 6010B	
Cobalt	4.4	2.0	mg/kg	EPA 6010B	
Copper	4.0	1.0	mg/kg	EPA 6010B	
Nickel	5.7	2.0	mg/kg	EPA 6010B	
Vanadium	15	5.0	mg/kg	EPA 6010B	
Zinc	28	1.0	mg/kg	EPA 6010B	

Sample ID: SP3-12	Laborat	Laboratory ID: T181249-12			
		Reporting			
Analyte	Result	Limit	Units	Method	Notes
C13-C28 (DRO)	140	10	mg/kg	EPA 8015B	
C29-C40 (MORO)	130	10	mg/kg	EPA 8015B	
Barium	38	1.0	mg/kg	EPA 6010B	
Chromium	3.8	2.0	mg/kg	EPA 6010B	
Cobalt	3.9	2.0	mg/kg	EPA 6010B	
Copper	7.6	1.0	mg/kg	EPA 6010B	
Lead	38	3.0	mg/kg	EPA 6010B	
Nickel	3.6	2.0	mg/kg	EPA 6010B	
Vanadium	8.3	5.0	mg/kg	EPA 6010B	
Zinc	22	1.0	mg/kg	EPA 6010B	
PCB-1254	34	10	ug/kg	EPA 8082	

SunStar Laboratories, Inc.

Brusca Associates Inc.	Project: Lathrop 48-Ac Property	
PO Box 332	Project Number: 137-002	Reported:
Roseville CA, 95661	Project Manager: Joe Brusca	04/20/18 11:17

Sample ID: SP4-1	Laborato	Laboratory ID:			
	H	Reporting			
Analyte	Result	Limit	Units	Method	Notes
C13-C28 (DRO)	170	10	mg/kg	EPA 8015B	
C29-C40 (MORO)	220	10	mg/kg	EPA 8015B	
Barium	31	1.0	mg/kg	EPA 6010B	
Chromium	3.5	2.0	mg/kg	EPA 6010B	
Cobalt	3.2	2.0	mg/kg	EPA 6010B	
Copper	7.0	1.0	mg/kg	EPA 6010B	
Lead	25	3.0	mg/kg	EPA 6010B	
Nickel	2.9	2.0	mg/kg	EPA 6010B	
Vanadium	7.8	5.0	mg/kg	EPA 6010B	
Zinc	21	1.0	mg/kg	EPA 6010B	
PCB-1016	170	10	ug/kg	EPA 8082	
PCB-1254	110	10	ug/kg	EPA 8082	

SunStar Laboratories, Inc.

Mike Jaroudi, Project Manager

Brusca Associates Inc. PO Box 332 Roseville CA, 95661	Project: Lathrop 48-Ac Property Project Number: 137-002 Project Manager: Joe Brusca						Reported: 04/20/18 11:17		
		T181	SP3-1 249-01 (So	oil)					
		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	ies, Inc.					
Extractable Petroleum Hydrocarb	ons by 8015B with Silica	Gel Cleanu	p						
C6-C12 (GRO)	ND	10	mg/kg	1	8041323	04/13/18	04/14/18	EPA 8015B	
C13-C28 (DRO)	29	10	"	"	"	"		"	
C29-C40 (MORO)	29	10	"	"	"	"	"	"	
Surrogate: p-Terphenyl		88.9 %	65-	135	"	"	"	"	
Metals by EPA 6010B									
Antimony	ND	3.0	mg/kg	1	8041326	04/13/18	04/16/18	EPA 6010B	
Silver	ND	2.0	"	"	"	"		"	
Arsenic	ND	5.0	"	"	"	"		"	
Barium	61	1.0	"	"	"	"		"	
Beryllium	ND	1.0	"	"	"	"	"	"	
Cadmium	ND	2.0	"	"	"	"	"	"	
Chromium	5.8	2.0	"	"	"	"		"	
Cobalt	4.5	2.0	"	"	"	"	"	"	
Copper	4.5	1.0	"	"	"	"	"	"	
Lead	ND	3.0	"	"	"	"	"	"	
Molybdenum	ND	5.0	"	"	"	"	"	"	
Nickel	6.0	2.0	"	"	"	"	"	"	
Selenium	ND	5.0	"	"	"	"	"	"	
Thallium	ND	2.0	"	"	"	"	"	"	
Vanadium	17	5.0	"	"	"	"	"	"	
Zinc	30	1.0	"	"	"	"	"	"	
Cold Vapor Extraction EPA 7470/	7471								
Mercury	ND	0.10	mg/kg	1	8041325	04/13/18	04/16/18	EPA 7471A Soil	

SunStar Laboratories, Inc.

Brusca Associates Inc.		Project Numb	ect: Lathro	op 48-Ac Pro	operty			Renorted	
Roseville CA, 95661		Project Manag	ger: Joe Br	usca				04/20/18 11	:17
			SP3-1						
		T1812	249-01 (So	oil)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	ies, Inc.					
Polychlorinated Biphenyls by EPA M	ethod 8082								
PCB-1016	ND	10	ug/kg	1	8041319	04/13/18	04/17/18	EPA 8082	
PCB-1221	ND	10	"	"	"	"		"	
PCB-1232	ND	10	"	"	"	"	"	"	
PCB-1242	ND	10	"	"	"	"	"	"	
PCB-1248	ND	10	"	"	"	"	"	"	
PCB-1254	ND	10	"	"	"	"	"	"	
PCB-1260	ND	10	"	"	"	"		"	
Surrogate: Tetrachloro-meta-xylene		78.9 %	35-	140	"	"	"	"	
Surrogate: Decachlorobiphenyl		76.1 %	35-	140	"	"	"	"	
Semivalatile Organic Compounds by	FPA Method 8270C								
Carbazole	ND	300	11g/kg	1	8041321	04/13/18	04/17/18	EPA 8270C	
Phenol	ND	1000	"	"	"	"	"	"	
Aniline	ND	300	"		"	"		"	
2-Chlorophenol	ND	1000	"		"	"		"	
1.4-Dichlorobenzene	ND	300	"	"	"	"		"	
N-Nitrosodi-n-propylamine	ND	300	"	"	"	"		"	
1.2.4-Trichlorobenzene	ND	300	"	"	"	"			
4-Chloro-3-methylphenol	ND	1000	"	"	"	"			
2-Methylnaphthalene	ND	300	"		"	"			
1-Methylnaphthalene	ND	300	"	"	"	"		"	
Acenaphthene	ND	300	"	"	"	"			
4-Nitrophenol	ND	1000	"	"	"	"		"	
2,4-Dinitrotoluene	ND	300	"	"	"	"		"	
Pentachlorophenol	ND	1000	"	"	"	"		"	
Pyrene	650	300	"	"	"	"	"	"	
Acenaphthylene	ND	300	"	"	"	"		"	
Anthracene	ND	300	"	"	"	"		"	
Benzo (a) anthracene	300	300	"	"	"	"	"	"	
Benzo (b) fluoranthene	300	300	"	"	"	"	"	"	
Benzo (k) fluoranthene	ND	300	"	"	"	"	"	"	
Benzo (g,h,i) perylene	ND	1000	"	"	"	"	"	"	
Benzo (a) pyrene	ND	300	"	"	"	"	"	"	

SunStar Laboratories, Inc.

SunStar Laboratories, Inc. PROVIDING QUALITY ANALYTICAL SERVICES NATIONWIDE

25712 Commercentre Drive Lake Forest, California 92630 949.297.5020 Phone 949.297.5027 Fax

Brusca Associates Inc.	iates Inc. Project: Lathrop 48-Ac Property									
PO Box 332		Project Numb	er: 137-00)2				Reported	:	
Roseville CA, 95661		Project Manag	er: Joe Br	usca				04/20/18 11	:17	
		!	SP3-1							
		T1812	249-01 (So	oil)						
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes	
		SunStar L	aboratori	ies, Inc.						
Semivolatile Organic Compounds by EPA	Method 8270C									
Benzyl alcohol	ND	300	ug/kg	1	8041321	04/13/18	04/17/18	EPA 8270C		
Bis(2-chloroethoxy)methane	ND	300	"	"	"	"	"	"		
Bis(2-chloroethyl)ether	ND	300	"	"	"	"	"	"		
Bis(2-chloroisopropyl)ether	ND	300	"	"	"	"	"	"		
Bis(2-ethylhexyl)phthalate	ND	300	"	"	"	"	"	"		
4-Bromophenyl phenyl ether	ND	300	"	"	"	"	"	"		
Butyl benzyl phthalate	ND	300	"	"	"	"	"	"		
4-Chloroaniline	ND	300	"	"	"	"	"	"		
2-Chloronaphthalene	ND	300	"	"	"	"	"	"		
4-Chlorophenyl phenyl ether	ND	300	"	"	"	"	"	"		
Chrysene	340	300	"	"	"	"	"	"		
Dibenz (a,h) anthracene	ND	300	"	"	"	"	"	"		
Dibenzofuran	ND	300	"	"	"	"	"	"		
Di-n-butyl phthalate	ND	300	"	"	"	"	"	"		
1,2-Dichlorobenzene	ND	300	"	"	"	"	"	"		
1,3-Dichlorobenzene	ND	300	"	"	"	"	"	"		
2,4-Dichlorophenol	ND	1000	"	"	"	"	"	"		
Diethyl phthalate	ND	300	"	"	"	"	"	"		
2,4-Dimethylphenol	ND	1000	"	"	"	"	"	"		
Dimethyl phthalate	ND	300	"	"	"	"	"	"		
4,6-Dinitro-2-methylphenol	ND	1000	"	"	"	"	"	"		
2,4-Dinitrophenol	ND	1000	"	"	"	"	"	"		
2,6-Dinitrotoluene	ND	1000	"	"	"	"	"	"		
Di-n-octyl phthalate	ND	300	"	"	"	"	"	"		
Fluoranthene	730	300	"	"	"	"	"	"		
Fluorene	ND	300	"	"	"	"	"	"		
Hexachlorobenzene	ND	1500	"	"	"	"	"	"		
Hexachlorobutadiene	ND	300	"	"	"	"	"	"		
Hexachlorocyclopentadiene	ND	1000	"	"	"	"	"	"		
Hexachloroethane	ND	300	"	"	"	"	"	"		
Indeno (1,2,3-cd) pyrene	ND	300	"	"	"	"	"	"		
Isophorone	ND	300	"	"	"	"	"	"		

SunStar Laboratories, Inc.

Brusca Associates Inc. PO Box 332 Roseville CA, 95661	Reported : 04/20/18 11	: :17							
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	ies, Inc.					
Semivolatile Organic Compounds by	EPA Method 8270C								
2-Methylphenol	ND	1000	ug/kg	1	8041321	04/13/18	04/17/18	EPA 8270C	
4-Methylphenol	ND	1000	"	"	"	"	"	"	
Naphthalene	ND	300	"	"	"	"	"	"	
2-Nitroaniline	ND	300	"	"	"	"	"	"	
3-Nitroaniline	ND	300	"	"	"	"	"	"	
4-Nitroaniline	ND	300	"	"	"	"	"	"	
Nitrobenzene	ND	1000	"	"	"	"	"	"	
2-Nitrophenol	ND	1000	"	"	"	"	"	"	
N-Nitrosodimethylamine	ND	300	"	"	"	"	"	"	
N-Nitrosodiphenylamine	ND	300	"	"	"	"	"	"	
2,3,5,6-Tetrachlorophenol	ND	300	"	"	"	"	"	"	
2,3,4,6-Tetrachlorophenol	ND	300	"	"	"	"	"	"	
Phenanthrene	460	300	"	"	"	"	"	"	
Azobenzene	ND	300	"	"	"	"	"	"	
Pyridine	ND	300	"	"	"	"	"	"	
2,4,5-Trichlorophenol	ND	1000	"	"	"	"	"	"	
2,4,6-Trichlorophenol	ND	1000	"	"	"	"	"	"	
Surrogate: 2-Fluorophenol		44.2 %	15-	121	"	"	"	"	
Surrogate: Phenol-d6		53.9 %	24-	113	"	"	"	"	
Surrogate: Nitrobenzene-d5		54.1 %	21.3	-119	"	"	"	"	
Surrogate: 2-Fluorobiphenyl		68.9 %	32.4	-102	"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		88.8 %	18.1	-105	"	"	"	"	
Surrogate: Terphenyl-dl4		73.1 %	29.1	-130	"	"	"	"	

SunStar Laboratories, Inc.

Brusca Associates Inc.											
PO Box 332		Project Number: 137-002									
Roseville CA, 95661		Project Manag	ger: Joe Br	usca				04/20/18 11	:17		
			SP3-2								
		T1812	249-02 (So	oil)							
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes		
		SunStar L	aboratori	ies, Inc.							
Extractable Petroleum Hydrocarl	oons by 8015B with Sili	ca Gel Cleanu	p								
C6-C12 (GRO)	ND	10	mg/kg	1	8041323	04/13/18	04/14/18	EPA 8015B			
C13-C28 (DRO)	150	10	"	"	"	"	"	"			
C29-C40 (MORO)	160	10	"	"	"	"	"	"			
Surrogate: p-Terphenyl		79.5 %	65-	135	"	"	"	"			
Metals by EPA 6010B											
Antimony	ND	3.0	mg/kg	1	8041326	04/13/18	04/16/18	EPA 6010B			
Silver	ND	2.0	"	"	"	"	"	"			
Arsenic	ND	5.0	"	"	"	"	"	"			
Barium	72	1.0	"	"	"	"	"	"			
Beryllium	ND	1.0	"	"	"	"	"	"			
Cadmium	ND	2.0	"	"	"	"	"	"			
Chromium	5.6	2.0	"	"	"	"	"	"			
Cobalt	4.7	2.0	"	"	"	"	"	"			
Copper	8.0	1.0	"	"	"	"	"	"			
Lead	ND	3.0	"	"	"	"	"	"			
Molybdenum	ND	5.0	"	"	"	"	"	"			
Nickel	6.6	2.0	"	"	"	"	"	"			
Selenium	ND	5.0	"	"	"	"	"	"			
Thallium	ND	2.0	"	"	"	"	"	"			
Vanadium	17	5.0	"	"	"	"	"	"			
Zinc	33	1.0	"	"	"	"	"	"			
Cold Vapor Extraction EPA 7470/	7471										
Mercury	ND	0.10	mg/kg	1	8041325	04/13/18	04/16/18	EPA 7471A Soil			

SunStar Laboratories, Inc.

Brusca Associates Inc.Project:Lathrop 48-Ac PropertyPO Box 332Project Number:137-002Roseville CA, 95661Project Manager:Joe Brusca									
		5 T1812	SP3-2 249-02 (So	oil)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	ies, Inc.		-			
Polychlorinated Biphenyls by EPA Method 8	082								
PCB-1016	ND	10	ug/kg	1	8041319	04/13/18	04/17/18	EPA 8082	
PCB-1221	ND	10	"	"		"		"	
PCB-1232	ND	10	"	"		"		"	
PCB-1242	ND	10	"	"		"		"	
PCB-1248	ND	10	"	"		"	"	"	
PCB-1254	20	10	"	"	"	"	"	"	
PCB-1260	ND	10	"	"	"	"	"	"	
Surrogate: Tetrachloro-meta-xylene		91.4 %	35-	140	"	"	"	"	
Surrogate: Decachlorobiphenyl		90.7 %	35-	140	"	"	"	"	
	4 192500								
Semivolatile Organic Compounds by EPA Mi	ethod 8270C	200							
Carbazole	ND	300	ug/kg	1	8041321	04/13/18	04/17/18	EPA 8270C	
Phenol	ND	1000							
Aniline	ND	300							
2-Chlorophenol	ND	1000							
I,4-Dichlorobenzene	ND	300		"				"	
N-Nitrosodi-n-propylamine	ND	300		"				"	
1,2,4-Trichlorobenzene	ND	300		"				"	
4-Chloro-3-methylphenol	ND	1000		"	"	"	"	"	
2-Methylnaphthalene	ND	300		"	"	"	"	"	
1-Methylnaphthalene	ND	300		"	"	"	"	"	
Acenaphthene	ND	300		"	"	"	"	"	
4-Nitrophenol	ND	1000		"	"	"	"	"	
2,4-Dinitrotoluene	ND	300		"	"	"	"	"	
Pentachlorophenol	ND	1000	"	"	"	"	"	"	
Pyrene	ND	300	"	"		"	"	"	
Acenaphthylene	ND	300	"	"		"	"	"	
Anthracene	ND	300	"	"	"	"	"	"	
Benzo (a) anthracene	ND	300	"	"	"	"	"	"	
Benzo (b) fluoranthene	ND	300	"	"		"	"	"	
Benzo (k) fluoranthene	ND	300	"	"		"	"	"	
Benzo (g,h,i) perylene	ND	1000	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Brusca Associates Inc. PO Box 332 Roseville CA, 95661	Proje Project Numb Project Manag	Reported: 04/20/18 11:17						
, ,		SD2 1						
	T1812	5P 5-2 (49-02 (So	oil)					
Analyte Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	SunStar L	aboratori	ies. Inc.					
Semivolatile Organic Compounds by EPA Method 8270	C		,					
Benzo (a) pyrene ND	300	110/kg	1	8041321	04/13/18	04/17/18	FPA 8270C	
Benzyl alcohol ND	300	" "	"	"	"	"	"	
Bis(2-chloroethoxy)methane ND	300	"	"		"			
Bis(2-chloroethyl)ether ND	300	"	"		"			
Bis(2-chloroisopropyl)ether ND	300	"	"		"		"	
Bis(2-ethylhexyl)phthalate ND	300	"	"		"	"	"	
4-Bromophenyl phenyl ether ND	300	"	"		"	"	"	
Butyl benzyl phthalate ND	300	"	"		"		"	
4-Chloroaniline ND	300	"	"		"		"	
2-Chloronaphthalene ND	300	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether ND	300	"	"		"		"	
Chrysene ND	300	"	"	"	"		"	
Dibenz (a,h) anthracene ND	300	"	"	"	"	"	"	
Dibenzofuran ND	300	"	"	"	"	"	"	
Di-n-butyl phthalate ND	300	"	"	"	"	"	"	
1,2-Dichlorobenzene ND	300	"	"	"	"	"	"	
1,3-Dichlorobenzene ND	300	"	"	"	"	"	"	
2,4-Dichlorophenol ND	1000	"	"	"	"	"	"	
Diethyl phthalate ND	300	"	"	"	"	"	"	
2,4-Dimethylphenol ND	1000	"	"	"	"	"	"	
Dimethyl phthalate ND	300	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol ND	1000	"	"	"	"	"	"	
2,4-Dinitrophenol ND	1000	"	"	"	"	"	"	
2,6-Dinitrotoluene ND	1000	"	"	"	"	"	"	
Di-n-octyl phthalate ND	300	"	"	"	"	"	"	
Fluoranthene ND	300	"	"	"	"	"	"	
Fluorene ND	300	"	"	"	"	"	"	
Hexachlorobenzene ND	1500	"	"	"	"	"	"	
Hexachlorobutadiene ND	300	"	"	"	"	"	"	
Hexachlorocyclopentadiene ND	1000	"	"	"	"	"	"	
Hexachloroethane ND	300	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene ND	300	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Brusca Associates Inc. PO Box 332 Roseville CA, 95661	Project: Lathrop 48-Ac Property Project Number: 137-002 Project Manager: Joe Brusca									
		T1812	SP3-2 49-02 (So	oil)						
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes	
		SunStar L	aboratori	ies, Inc.						
Semivolatile Organic Compounds by EPA Metho	od 8270C	3								
Isophorone	ND	300	ug/kg	1	8041321	04/13/18	04/17/18	EPA 8270C		
2-Methylphenol	ND	1000	"	"	"	"	"	"		
4-Methylphenol	ND	1000	"	"	"	"	"	"		
Naphthalene	ND	300	"	"	"	"	"	"		
2-Nitroaniline	ND	300	"	"	"	"	"	"		
3-Nitroaniline	ND	300	"	"	"	"	"	"		
4-Nitroaniline	ND	300	"	"	"	"	"	"		
Nitrobenzene	ND	1000	"	"	"	"	"	"		
2-Nitrophenol	ND	1000	"	"	"	"	"	"		
N-Nitrosodimethylamine	ND	300	"	"	"	"	"	"		
N-Nitrosodiphenylamine	ND	300	"	"	"	"	"	"		
2,3,5,6-Tetrachlorophenol	ND	300	"	"	"	"	"	"		
2,3,4,6-Tetrachlorophenol	ND	300	"	"	"	"	"	"		
Phenanthrene	ND	300	"	"	"	"	"	"		
Azobenzene	ND	300	"	"	"	"	"	"		
Pyridine	ND	300	"	"	"	"	"	"		
2,4,5-Trichlorophenol	ND	1000	"	"	"	"	"	"		
2,4,6-Trichlorophenol	ND	1000	"	"	"	"	"	"		
Surrogate: 2-Fluorophenol		45.7 %	15-	121	"	"	"	"		
Surrogate: Phenol-d6		58.5 %	24-	113	"	"	"	"		
Surrogate: Nitrobenzene-d5		57.5 %	21.3	8-119	"	"	"	"		
Surrogate: 2-Fluorobiphenyl		69.0 %	32.4	-102	"	"	"	"		
Surrogate: 2,4,6-Tribromophenol		83.8 %	18.1	-105	"	"	"	"		
Surrogate: Terphenyl-dl4		75.7 %	29.1	-130	"	"	"	"		

SunStar Laboratories, Inc.

Brusca Associates Inc. PO Box 332 Roseville CA, 95661		Reported: 04/20/18 11:17							
		T1812	249-03 (So	oil)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Extractable Petroleum Hydrocarl	oons by 8015B with Silic	a Gel Cleanu	D						
C6-C12 (GRO)	ND	10	mg/kg	1	8041323	04/13/18	04/14/18	EPA 8015B	
C13-C28 (DRO)	51	10	"	"	"	"		"	
C29-C40 (MORO)	37	10	"	"	"	"	"	"	
Surrogate: p-Terphenyl		84.4 %	65-	135	"	"	"	"	
Metals by EPA 6010B									
Antimony	ND	3.0	mg/kg	1	8041326	04/13/18	04/16/18	EPA 6010B	
Silver	ND	2.0	"	"	"	"	"	"	
Arsenic	ND	5.0	"	"	"	"		"	
Barium	41	1.0	"	"	"	"		"	
Beryllium	ND	1.0	"	"	"	"		"	
Cadmium	ND	2.0	"	"	"	"		"	
Chromium	4.4	2.0	"	"	"	"		"	
Cobalt	3.5	2.0	"	"	"	"	"	"	
Copper	5.0	1.0	"	"	"	"	"	"	
Lead	20	3.0	"	"	"	"	"	"	
Molybdenum	ND	5.0	"	"	"	"	"	"	
Nickel	4.1	2.0	"	"	"	"	"	"	
Selenium	ND	5.0	"	"	"	"	"	"	
Thallium	ND	2.0	"	"	"	"	"	"	
Vanadium	10	5.0	"	"	"	"	"	"	
Zinc	24	1.0	"	"		"	"	"	
Cold Vapor Extraction EPA 7470/	7471								
Mercury	ND	0.10	mg/kg	1	8041325	04/13/18	04/16/18	EPA 7471A Soil	

SunStar Laboratories, Inc.

Brusca Associates Inc. PO Box 332 Roseville CA, 95661	Reported: 04/20/18 11:17								
		T1812	SP3-3 249-03 (So	oil)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Polychlorinated Biphenyls by EPA M	lethod 8082								
PCB-1016	ND	10	ug/kg	1	8041319	04/13/18	04/17/18	EPA 8082	
PCB-1221	ND	10	"	"	"	"	"	"	
PCB-1232	ND	10	"	"	"	"	"	"	
PCB-1242	ND	10	"	"	"	"	"	"	
PCB-1248	ND	10	"	"	"	"	"	"	
PCB-1254	17	10	"	"	"	"	"	"	
PCB-1260	ND	10	"	"	"	"	"	"	
Surrogate: Tetrachloro-meta-xylene		96.1 %	35-	140	"	"	"	"	
Surrogate: Decachlorobiphenyl		94.5 %	35-	140	"	"	"	"	
Somivolatile Organia Compounds by	EDA Mothod 9270C								
Semivolatile Organic Compounds by	EFA Method 8270C	200	wa/ka	1	8041221	04/12/19	04/17/19	EDA 8270C	
Dhamal	ND	1000	ug/kg "	1	8041321	04/15/18	04/1//18	EPA 8270C	
Aniline	ND	200		"					
2 Chlorophonol	ND	1000		"				"	
1.4 Dishlorohanzana	ND	200		"					
N Nitrosodi p propulamina	ND	300		"					
1.2.4 Trichlorobenzene	ND	300		"	"	"		"	
4-Chloro-3-methylphenol	ND	1000	"	"		"			
2-Methylpanhthalene	ND	300		"	"	"			
1-Methylnaphthalene	ND	300	"	"			"		
Acenanhthene	ND	300		"			"		
4-Nitrophenol	ND	1000		"			"		
2 4-Dinitrotoluene	ND	300		"			"		
Pentachlorophenol	ND	1000		"				"	
Pyrene	ND	300		"				"	
Acenaphthylene	ND	300		"	"	"		"	
Anthracene	ND	300	"	"	"	"	"		
Benzo (a) anthracene	ND	300	"	"	"	"	"		
Benzo (b) fluoranthene	ND	300	"	"	"	"	"		
Benzo (k) fluoranthene	ND	300	"	"			"	"	
Benzo (g h i) pervlene	ND	1000	"	"			"	"	
Senice (B,ii,i) perficie		1000							

SunStar Laboratories, Inc.

Brusca Associates Inc. PO Box 332 Roseville CA 95661		Proje Project Numb Project Manag	Reported:						
								0 1/20/10 11	,
		T1812	SP3-3 (80-03 (80	oil)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	1.65410	SunStanL	aborator	ing Ing	Dutth	Trepared			1101005
Somivolatila Organia Compounds by	FDA Mothod 8270C	Sunstar L	aborator	ies, mc.					
Benzo (a) pyrene	ND	300	110/kg	1	8041321	04/13/18	04/17/18	EPA 8270C	
Benzyl alcohol	ND	300	" "	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	300	"	"	"	"		"	
Bis(2-chloroethyl)ether	ND	300	"	"	"	"		"	
Bis(2-chloroisopropyl)ether	ND	300	"	"	"	"		"	
Bis(2-ethylhexyl)phthalate	ND	300	"	"	"	"		"	
4-Bromophenyl phenyl ether	ND	300	"	"	"	"		"	
Butvl benzvl phthalate	ND	300	"	"	"	"			
4-Chloroaniline	ND	300	"	"	"	"			
2-Chloronaphthalene	ND	300	"	"	"	"			
4-Chlorophenyl phenyl ether	ND	300	"	"	"	"			
Chrysene	ND	300	"	"	"	"			
Dibenz (a,h) anthracene	ND	300	"	"	"	"	"	"	
Dibenzofuran	ND	300	"	"	"	"		"	
Di-n-butyl phthalate	ND	300	"	"	"	"		"	
1,2-Dichlorobenzene	ND	300	"	"	"	"		"	
1,3-Dichlorobenzene	ND	300	"	"	"	"		"	
2,4-Dichlorophenol	ND	1000	"	"	"	"	"	"	
Diethyl phthalate	ND	300	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	1000	"	"	"	"	"	"	
Dimethyl phthalate	ND	300	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol	ND	1000	"	"	"	"	"	"	
2,4-Dinitrophenol	ND	1000	"	"	"	"	"	"	
2,6-Dinitrotoluene	ND	1000	"	"	"	"	"	"	
Di-n-octyl phthalate	ND	300	"	"	"	"	"	"	
Fluoranthene	ND	300	"	"	"	"	"	"	
Fluorene	ND	300	"	"	"	"	"	"	
Hexachlorobenzene	ND	1500	"	"	"	"	"	"	
Hexachlorobutadiene	ND	300	"	"	"	"	"	"	
Hexachlorocyclopentadiene	ND	1000	"	"	"	"	"	"	
Hexachloroethane	ND	300	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene	ND	300	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Brusca Associates Inc. PO Box 332 Roseville CA, 95661		Reported: 04/20/18 11:17							
		T1812	SP3-3 249-03 (So	oil)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	ies, Inc.					
Semivolatile Organic Compounds by EPA Me	thod 8270C	2							
Isophorone	ND	300	ug/kg	1	8041321	04/13/18	04/17/18	EPA 8270C	
2-Methylphenol	ND	1000	"	"	"	"	"	"	
4-Methylphenol	ND	1000	"	"	"	"	"	"	
Naphthalene	ND	300	"	"	"	"	"	"	
2-Nitroaniline	ND	300	"	"	"	"	"	"	
3-Nitroaniline	ND	300	"	"	"	"	"	"	
4-Nitroaniline	ND	300	"	"	"	"	"	"	
Nitrobenzene	ND	1000	"	"	"	"	"	"	
2-Nitrophenol	ND	1000	"	"	"	"	"	"	
N-Nitrosodimethylamine	ND	300	"	"	"	"	"	"	
N-Nitrosodiphenylamine	ND	300	"	"	"	"	"	"	
2,3,5,6-Tetrachlorophenol	ND	300	"	"	"	"	"	"	
2,3,4,6-Tetrachlorophenol	ND	300	"	"	"	"	"	"	
Phenanthrene	ND	300	"	"	"	"	"	"	
Azobenzene	ND	300	"	"	"	"	"	"	
Pyridine	ND	300	"	"	"	"	"	"	
2,4,5-Trichlorophenol	ND	1000	"	"	"	"	"	"	
2,4,6-Trichlorophenol	ND	1000	"	"	"	"	"	"	
Surrogate: 2-Fluorophenol		51.2 %	15-	121	"	"	"	"	
Surrogate: Phenol-d6		59.0 %	24-	113	"	"	"	"	
Surrogate: Nitrobenzene-d5		59.2 %	21.3	-119	"	"	"	"	
Surrogate: 2-Fluorobiphenyl		69.2 %	32.4	-102	"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		85.0 %	18.1	-105	"	"	"	"	
Surrogate: Terphenyl-dl4		73.2 %	29.1	-130	"	"	"	"	

SunStar Laboratories, Inc.

Brusca Associates Inc.									
PO Box 332		Project Numb	per: 137-00)2				Reported:	:
Roseville CA, 95661		Project Manag	ger: Joe Bri	usca				04/20/18 11:17	
			SP3-4						
		T1812	249-04 (So	oil)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Extractable Petroleum Hydrocar	bons by 8015B with Silica	Gel Cleanu	p						
C6-C12 (GRO)	ND	10	mg/kg	1	8041323	04/13/18	04/14/18	EPA 8015B	
C13-C28 (DRO)	100	10	"	"	"	"		"	
C29-C40 (MORO)	96	10	"	"	"	"	"	"	
Surrogate: p-Terphenyl		88.1 %	65-1	135	"	"	"	"	
Metals by EPA 6010B									
Antimony	ND	3.0	mg/kg	1	8041326	04/13/18	04/16/18	EPA 6010B	
Silver	ND	2.0	"	"	"	"		"	
Arsenic	ND	5.0	"	"	"	"		"	
Barium	53	1.0	"	"	"	"		"	
Beryllium	ND	1.0	"	"	"	"		"	
Cadmium	ND	2.0	"	"	"	"	"	"	
Chromium	5.1	2.0	"	"	"	"		"	
Cobalt	4.4	2.0	"	"	"	"	"	"	
Copper	4.3	1.0	"	"	"	"	"	"	
Lead	ND	3.0	"	"	"	"	"	"	
Molybdenum	ND	5.0	"	"	"	"	"	"	
Nickel	5.7	2.0	"	"	"	"	"	"	
Selenium	ND	5.0	"	"	"	"	"	"	
Thallium	ND	2.0	"	"	"	"	"	"	
Vanadium	15	5.0	"	"	"	"		"	
Zinc	26	1.0	"	"	"	"	"	"	
Cold Vapor Extraction EPA 7470	/7471								
Mercury	ND	0.10	mg/kg	1	8041325	04/13/18	04/16/18	EPA 7471A Soil	

SunStar Laboratories, Inc.

Brusca Associates Inc.Project:Lathrop 48-Ac PropertyPO Box 332Project Number:137-002Roseville CA, 95661Project Manager:Joe Brusca									
		T1812	SP3-4 249-04 (So	oil)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	ies, Inc.					
Polychlorinated Biphenyls by EPA N	1ethod 8082								
PCB-1016	ND	10	ug/kg	1	8041319	04/13/18	04/17/18	EPA 8082	
PCB-1221	ND	10	"	"	"	"	"	"	
PCB-1232	ND	10	"	"	"	"	"	"	
PCB-1242	ND	10	"	"	"	"	"	"	
PCB-1248	ND	10	"	"	"	"	"	"	
PCB-1254	15	10	"	"		"	"	"	
PCB-1260	ND	10	"	"		"	"		
Surrogate: Tetrachloro-meta-xylene		81.2 %	35-	140	"	"	"	"	
Surrogate: Decachlorobiphenyl		67.1 %	35-	140	"	"	"	"	
	EDA M (1 19270/								
Semivolatile Organic Compounds by	<u>/ EPA Method 82/0C</u>	200	л	1	0041221	04/12/10	04/17/10	ED4 92700	
Carbazole	ND	300	ug/kg	1	8041321	04/13/18	04/1//18	EPA 8270C	
Phenol	ND	1000							
	ND	300							
	ND	1000							
I,4-Dichlorobenzene	ND	300							
N-Nitrosodi-n-propylamine	ND	300							
1,2,4-1richlorobenzene	ND	300							
4-Chioro-3-methylphenol	ND	1000							
	ND	300							
1-Methylnaphthalene	ND	300	"						
Acenaphtnene	ND	300							
4-INtrophenoi	ND	1000	"						
2,4-Dinitrotoluene	ND	300	"						
Pentachiorophenoi	ND	1000							
Pyrene	ND	300							
Acenaphthylene	ND	300							
Anthracene	ND	300							
Benzo (a) anthracene	ND	300							
Benzo (b) fluoranthene	ND	300			"				
Benzo (k) fluoranthene	ND	300			"		"		
Benzo (g,h,1) perylene	ND	1000	**	"	"	"	"	"	

SunStar Laboratories, Inc.

Brusca Associates Inc. PO Box 332		Proje Project Numb	ect: Lathro ber: 137-00	op 48-Ac Pro 02	perty			Reported:	17
Roseville CA, 95661		Project Manag	er: Joe Br	usca				04/20/18 11:17	
		:	SP3-4						
		T1812	249-04 (So	oil)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	ies, Inc.					
Semivolatile Organic Compounds by	EPA Method 8270C								
Benzo (a) pyrene	ND	300	ug/kg	1	8041321	04/13/18	04/17/18	EPA 8270C	
Benzyl alcohol	ND	300	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	300	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	300	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	300	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	300	"	"	"	"	"	"	
4-Bromophenyl phenyl ether	ND	300	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	300	"	"	"	"	"	"	
4-Chloroaniline	ND	300	"	"	"	"	"	"	
2-Chloronaphthalene	ND	300	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether	ND	300	"	"	"	"	"	"	
Chrysene	ND	300	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	300	"	"	"	"	"	"	
Dibenzofuran	ND	300	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	300	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	300	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	300	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	1000	"	"	"	"	"	"	
Diethyl phthalate	ND	300	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	1000	"	"	"	"	"	"	
Dimethyl phthalate	ND	300	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol	ND	1000	"	"	"	"	"	"	
2,4-Dinitrophenol	ND	1000	"	"	"	"	"	"	
2,6-Dinitrotoluene	ND	1000	"	"	"	"	"	"	
Di-n-octyl phthalate	ND	300	"	"	"	"	"	"	
Fluoranthene	ND	300	"	"	"	"	"	"	
Fluorene	ND	300	"	"	"	"	"	"	
Hexachlorobenzene	ND	1500	"	"	"	"	"	"	
Hexachlorobutadiene	ND	300	"	"	"	"	"	"	
Hexachlorocyclopentadiene	ND	1000	"	"	"	"	"	"	
Hexachloroethane	ND	300	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene	ND	300	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Brusca Associates Inc. PO Box 332 Roseville CA, 95661	Project: Lathrop 48-Ac Property Project Number: 137-002 Project Manager: Joe Brusca								
	T1812	SP3-4 249-04 (Sa	oil)						
Analyte Res	Reporting ult Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes	
	SunStar L	aboratori	es, Inc.						
Semivolatile Organic Compounds by EPA Method 8	270C								
Isophorone N	ND 300	ug/kg	1	8041321	04/13/18	04/17/18	EPA 8270C		
2-Methylphenol N	ID 1000	"	"	"	"	"	"		
4-Methylphenol N	ID 1000	"	"	"	"	"	"		
Naphthalene N	ID 300	"	"	"	"	"	"		
2-Nitroaniline N	ID 300	"	"	"	"	"	"		
3-Nitroaniline N	ID 300	"	"	"	"	"	"		
4-Nitroaniline N	ND 300	"	"	"	"	"	"		
Nitrobenzene N	ID 1000	"	"	"	"	"	"		
2-Nitrophenol N	ID 1000	"	"	"	"	"	"		
N-Nitrosodimethylamine N	ID 300	"	"	"	"	"	"		
N-Nitrosodiphenylamine N	ID 300	"	"	"	"	"	"		
2,3,5,6-Tetrachlorophenol N	ID 300	"	"	"	"	"	"		
2,3,4,6-Tetrachlorophenol N	ID 300	"	"	"	"	"	"		
Phenanthrene N	ID 300	"	"	"	"	"	"		
Azobenzene N	ID 300	"	"	"	"	"	"		
Pyridine N	ID 300	"	"	"	"	"	"		
2,4,5-Trichlorophenol N	ID 1000	"	"	"	"	"	"		
2,4,6-Trichlorophenol N	ID 1000	"	"	"	"	"	"		
Surrogate: 2-Fluorophenol	38.5 %	15-	121	"	"	"	"		
Surrogate: Phenol-d6	47.3 %	24-	113	"	"	"	"		
Surrogate: Nitrobenzene-d5	44.5 %	21.3	-119	"	"	"	"		
Surrogate: 2-Fluorobiphenyl	58.9 %	32.4	-102	"	"	"	"		
Surrogate: 2,4,6-Tribromophenol	81.1 %	18.1	-105	"	"	"	"		
Surrogate: Terphenyl-dl4	75.8 %	29.1	-130	"	"	"	"		

SunStar Laboratories, Inc.

Brusca Associates Inc. Project: Lathrop 48-Ac Property PO Box 332 Project Number: 137-002 Roseville CA, 95661 Project Manager: Joe Brusca SP3-5 T181249-05 (Soil)									:17
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Extractable Petroleum Hydrocar	bons by 8015B with Silic	a Gel Cleanu	D						
C6-C12 (GRO)	ND	10	mg/kg	1	8041323	04/13/18	04/14/18	EPA 8015B	
C13-C28 (DRO)	32	10	"	"	"	"		"	
C29-C40 (MORO)	15	10	"	"	"	"		"	
Surrogate: p-Terphenyl		91.0 %	65-	135	"	"	"	"	
Metals by EPA 6010B									
Antimony	ND	3.0	mg/kg	1	8041326	04/13/18	04/16/18	EPA 6010B	
Silver	ND	2.0	"	"	"	"	"	"	
Arsenic	ND	5.0	"	"	"	"	"	"	
Barium	64	1.0	"	"	"	"	"	"	
Beryllium	ND	1.0	"	"	"	"		"	
Cadmium	ND	2.0	"	"	"	"	"	"	
Chromium	4.9	2.0	"	"	"	"		"	
Cobalt	4.2	2.0	"	"	"	"		"	
Copper	5.2	1.0	"	"	"	"		"	
Lead	ND	3.0	"	"	"	"	"	"	
Molybdenum	ND	5.0	"	"	"	"		"	
Nickel	5.1	2.0	"	"	"	"		"	
Selenium	ND	5.0	"	"	"	"	"	"	
Thallium	ND	2.0	"	"	"	"	"	"	
Vanadium	15	5.0	"	"	"	"		"	
Zinc	29	1.0	"	"	"	"	"	"	
Cold Vapor Extraction EPA 7470	/7471								
Mercury	ND	0.10	mg/kg	1	8041325	04/13/18	04/16/18	EPA 7471A Soil	

SunStar Laboratories, Inc.

Mike Jaroudi, Project Manager

Brusca Associates Inc. PO Box 332 Roseville CA, 95661		Proje Project Numb Project Manag	ect: Lathro ber: 137-00 ger: Joe Br	p 48-Ac Pro)2 usca	perty			Reported 04/20/18 11	: :17
		T1812	SP3-5 249-05 (So	oil)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Polychlorinated Biphenyls by EPA M	ethod 8082								
PCB-1016	ND	10	ug/kg	1	8041319	04/13/18	04/17/18	EPA 8082	
PCB-1221	ND	10	"	"	"	"	"	"	
PCB-1232	ND	10	"	"	"	"	"	"	
PCB-1242	ND	10	"	"	"	"	"	"	
PCB-1248	ND	10	"	"	"	"	"	"	
PCB-1254	ND	10	"	"	"	"	"	"	
PCB-1260	ND	10	"	"	"	"	"	"	
Surrogate: Tetrachloro-meta-xylene		92.6 %	35-	140	"	"	"	"	
Surrogate: Decachlorobiphenyl		85.5 %	35-	140	"	"	"	"	
	EDA M.41 - J 9270C								
Semivolatile Organic Compounds by	EPA Method 82/0C	200	л		0041001	04/10/10	04/15/10	ED4 00500	
Dhamal	ND	1000	ug/kg	1	8041321	04/13/18	04/1//18	EPA 8270C	
	ND	200	"						
Anime 2 Chlorophonol	ND	1000	"						
1.4 Dishlarahangana	ND	200	"	"					
N. Nitrosodi n propulamina	ND	300	"	"				"	
1.2.4 Trichlarahangana	ND	200	"	"				"	
4 Chloro 2 methylphanol	ND	1000	"	"				"	
2 Mathylnanhthalana	ND	200	"	"	"	"		"	
1 Methylnaphthalene	ND	300	"	"		"			
A conceptible	ND	300	"	"	"	"		"	
4 Nitrophenol	ND	1000	"	"	"	"		"	
2.4 Dinitrotoluene	ND	300	"	"	"	"		"	
Pentachlorophenol	ND	1000	"	"	"	"			
Pyrene	ND	300	"	"	"	"			
Acenanhthylene	ND	300	"	"			"		
Anthracene	ND	300	"	"			"		
Benzo (a) anthracene	ND	300	"	"			"		
Benzo (b) fluoranthene	ND	300	"	"			"		
Benzo (k) fluoranthene	ND	300	"	"			"		
Benzo (g h i) nervlene	ND	1000	"	"			"		
Louizo (5,11,1) per yiene		1000							

SunStar Laboratories, Inc.

Brusca Associates Inc. PO Box 332		Proje Project Numb	ect: Lathro per: 137-00	op 48-Ac Pro 02	perty			Reported	:
Roseville CA, 95661		Project Manag	er: Joe Br	usca				04/20/18 11	:17
		;	SP3-5						
		T1812	249-05 (So	oil)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	ies, Inc.					
Semivolatile Organic Compounds by I	EPA Method 8270C								
Benzo (a) pyrene	ND	300	ug/kg	1	8041321	04/13/18	04/17/18	EPA 8270C	
Benzyl alcohol	ND	300	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	300	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	300	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	300	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	300	"	"	"	"	"	"	
4-Bromophenyl phenyl ether	ND	300	"	"		"	"	"	
Butyl benzyl phthalate	ND	300	"	"	"	"	"	"	
4-Chloroaniline	ND	300	"	"	"	"	"	"	
2-Chloronaphthalene	ND	300	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether	ND	300	"	"	"	"	"	"	
Chrysene	ND	300	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	300	"	"	"	"	"	"	
Dibenzofuran	ND	300	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	300	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	300	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	300	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	1000	"	"	"	"	"	"	
Diethyl phthalate	ND	300	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	1000	"	"	"	"	"	"	
Dimethyl phthalate	ND	300	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol	ND	1000	"	"	"	"	"	"	
2,4-Dinitrophenol	ND	1000	"	"	"	"	"	"	
2,6-Dinitrotoluene	ND	1000	"	"	"	"	"	"	
Di-n-octyl phthalate	ND	300	"	"	"	"	"	"	
Fluoranthene	ND	300	"	"	"	"	"	"	
Fluorene	ND	300	"	"	"	"	"	"	
Hexachlorobenzene	ND	1500	"	"	"	"	"	"	
Hexachlorobutadiene	ND	300	"	"	"	"	"	"	
Hexachlorocyclopentadiene	ND	1000	"	"	"	"	"	"	
Hexachloroethane	ND	300	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene	ND	300	"	"		"	"	"	

SunStar Laboratories, Inc.

Brusca Associates Inc. PO Box 332 Roseville CA, 95661	Project: Lathrop 48-Ac Property Project Number: 137-002 Project Manager: Joe Brusca								Reported: 04/20/18 11:17		
		T1812	SP3-5 249-05 (So	oil)							
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes		
		SunStar L	aboratori	ies, Inc.							
Semivolatile Organic Compounds by EPA M	ethod 8270C										
Isophorone	ND	300	ug/kg	1	8041321	04/13/18	04/17/18	EPA 8270C			
2-Methylphenol	ND	1000	"	"	"	"	"	"			
4-Methylphenol	ND	1000	"	"	"	"	"	"			
Naphthalene	ND	300	"	"	"	"	"	"			
2-Nitroaniline	ND	300	"	"	"	"	"	"			
3-Nitroaniline	ND	300	"	"	"	"	"	"			
4-Nitroaniline	ND	300	"	"	"	"	"	"			
Nitrobenzene	ND	1000	"	"	"	"	"	"			
2-Nitrophenol	ND	1000	"	"	"	"	"	"			
N-Nitrosodimethylamine	ND	300	"	"	"	"	"	"			
N-Nitrosodiphenylamine	ND	300	"	"	"	"	"	"			
2,3,5,6-Tetrachlorophenol	ND	300	"	"	"	"	"	"			
2,3,4,6-Tetrachlorophenol	ND	300	"	"	"	"	"	"			
Phenanthrene	ND	300	"	"	"	"	"	"			
Azobenzene	ND	300	"	"	"	"	"	"			
Pyridine	ND	300	"	"	"	"	"	"			
2,4,5-Trichlorophenol	ND	1000	"	"	"	"	"	"			
2,4,6-Trichlorophenol	ND	1000	"	"	"	"	"	"			
Surrogate: 2-Fluorophenol		43.6 %	15-	121	"	"	"	"			
Surrogate: Phenol-d6		51.4 %	24-	113	"	"	"	"			
Surrogate: Nitrobenzene-d5		50.5 %	21.3	-119	"	"	"	"			
Surrogate: 2-Fluorobiphenyl		57.7 %	32.4	-102	"	"	"	"			
Surrogate: 2,4,6-Tribromophenol		78.7 %	18.1	-105	"	"	"	"			
Surrogate: Terphenyl-dl4		64.3 %	29.1	-130	"	"	"	"			

SunStar Laboratories, Inc.

Brusca Associates Inc.		Proj	ect: Lathro	p 48-Ac Pro	perty			D (1	
Roseville CA. 95661		Project Manas	zer: Joe Br	usca				Reported: 04/20/18 11:17	
		T1812	SP3-6 249-06 (So	sil)					
				,ii)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Extractable Petroleum Hydrocarl	bons by 8015B with Silica	Gel Cleanu	p						
C6-C12 (GRO)	ND	10	mg/kg	1	8041323	04/13/18	04/14/18	EPA 8015B	
C13-C28 (DRO)	56	10	"	"	"	"	"	"	
C29-C40 (MORO)	32	10	"	"	"	"	"	"	
Surrogate: p-Terphenyl		84.0 %	65-	135	"	"	"	"	
Metals by EPA 6010B									
Antimony	ND	3.0	mg/kg	1	8041326	04/13/18	04/16/18	EPA 6010B	
Silver	ND	2.0	"	"	"	"	"	"	
Arsenic	ND	5.0	"	"	"	"	"	"	
Barium	43	1.0	"	"	"	"	"	"	
Beryllium	ND	1.0	"	"	"	"	"	"	
Cadmium	ND	2.0	"	"	"	"	"	"	
Chromium	5.1	2.0	"	"	"	"	"	"	
Cobalt	3.8	2.0	"	"	"	"	"	"	
Copper	4.4	1.0	"	"	"	"	"	"	
Lead	14	3.0	"	"	"	"	"	"	
Molybdenum	ND	5.0	"	"	"	"	"	"	
Nickel	4.5	2.0	"	"	"	"	"	"	
Selenium	ND	5.0	"	"	"	"	"	"	
Thallium	ND	2.0	"	"	"	"	"	"	
Vanadium	11	5.0	"	"	"	"	"	"	
Zinc	23	1.0	"	"	"	"	"	"	
Cold Vapor Extraction EPA 7470/	/7471								
Mercury	ND	0.10	mg/kg	1	8041325	04/13/18	04/16/18	EPA 7471A Soil	

SunStar Laboratories, Inc.

Brusca Associates Inc.		Proje	ect: Lathro	p 48-Ac Pro	perty				
PO Box 332			Reported						
Roseville CA, 95661		Project Manag	ger: Joe Br	usca				04/20/18 11:17	
		:	SP3-6						
		T1812	249-06 (So	oil)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	ies, Inc.					
Polychlorinated Biphenyls by EPA M	Iethod 8082								
PCB-1016	ND	10	ug/kg	1	8041319	04/13/18	04/17/18	EPA 8082	
PCB-1221	ND	10	"	"	"	"	"	"	
PCB-1232	ND	10	"	"	"	"	"	"	
PCB-1242	ND	10	"	"	"	"	"	"	
PCB-1248	ND	10	"	"	"	"	"	"	
PCB-1254	12	10	"	"	"	"	"	"	
PCB-1260	ND	10	"	"	"	"	"	"	
Surrogate: Tetrachloro-meta-xylene		81.4 %	35-	140	"	"	"	"	
Surrogate: Decachlorobiphenyl		92.4 %	35-	140	"	"	"	"	
Semivolatile Organic Compounds by	EPA Method 8270C								
Carbazole	ND	300	ug/kg	1	8041321	04/13/18	04/17/18	EPA 8270C	
Phenol	ND	1000	"	"	"	"	"	"	
Aniline	ND	300	"	"		"	"	"	
2-Chlorophenol	ND	1000	"	"		"		"	
1.4-Dichlorobenzene	ND	300	"	"		"		"	
N-Nitrosodi-n-propylamine	ND	300	"	"		"		"	
1,2,4-Trichlorobenzene	ND	300	"	"	"	"	"	"	
4-Chloro-3-methylphenol	ND	1000	"	"	"	"		"	
2-Methylnaphthalene	ND	300	"	"	"	"	"	"	
1-Methylnaphthalene	ND	300	"	"	"	"	"	"	
Acenaphthene	ND	300	"	"	"	"	"	"	
4-Nitrophenol	ND	1000	"	"	"	"	"	"	
2,4-Dinitrotoluene	ND	300	"	"	"	"	"	"	
Pentachlorophenol	ND	1000	"	"	"	"	"	"	
Pyrene	ND	300	"	"	"	"	"	"	
Acenaphthylene	ND	300	"	"	"	"	"	"	
Anthracene	ND	300	"	"	"	"	"	"	
Benzo (a) anthracene	ND	300	"	"	"	"	"	"	
Benzo (b) fluoranthene	ND	300	"	"	"	"	"	"	
Benzo (k) fluoranthene	ND	300	"	"		"	"		
Benzo (g,h,i) perylene	ND	1000	"	"		"	"	"	

SunStar Laboratories, Inc.

SunStar Laboratories, Inc. Providing Quality Analytical Services Nationwide

25712 Commercentre Drive Lake Forest, California 92630 949.297.5020 Phone 949.297.5027 Fax

Brusca Associates Inc.		Proje	ect: Lathro	p 48-Ac Pro	perty					
PO Box 332		Project Number: 137-002								
Roseville CA, 95661		Project Manag	ger: Joe Br	usca				04/20/18 11	:17	
		:	SP3-6							
		T1812	249-06 (So	oil)						
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes	
		SunStar L	aboratori	ies, Inc.						
Semivolatile Organic Compounds by	EPA Method 8270C									
Benzo (a) pyrene	ND	300	ug/kg	1	8041321	04/13/18	04/17/18	EPA 8270C		
Benzyl alcohol	ND	300	"	"	"	"	"	"		
Bis(2-chloroethoxy)methane	ND	300	"	"	"	"	"	"		
Bis(2-chloroethyl)ether	ND	300	"	"	"	"	"	"		
Bis(2-chloroisopropyl)ether	ND	300	"	"	"	"	"	"		
Bis(2-ethylhexyl)phthalate	ND	300	"	"	"	"	"	"		
4-Bromophenyl phenyl ether	ND	300	"	"	"	"	"	"		
Butyl benzyl phthalate	ND	300	"	"	"	"	"	"		
4-Chloroaniline	ND	300	"	"	"	"	"	"		
2-Chloronaphthalene	ND	300	"	"	"	"	"	"		
4-Chlorophenyl phenyl ether	ND	300	"	"	"	"	"	"		
Chrysene	ND	300	"	"	"	"	"	"		
Dibenz (a,h) anthracene	ND	300	"	"	"	"	"	"		
Dibenzofuran	ND	300	"	"	"	"	"	"		
Di-n-butyl phthalate	ND	300	"	"	"	"	"	"		
1,2-Dichlorobenzene	ND	300	"	"	"	"	"	"		
1,3-Dichlorobenzene	ND	300	"	"	"	"	"	"		
2,4-Dichlorophenol	ND	1000	"	"	"	"	"	"		
Diethyl phthalate	ND	300	"	"	"	"	"	"		
2,4-Dimethylphenol	ND	1000	"	"	"	"	"	"		
Dimethyl phthalate	ND	300	"	"	"	"	"	"		
4,6-Dinitro-2-methylphenol	ND	1000	"	"	"	"	"	"		
2,4-Dinitrophenol	ND	1000	"	"	"	"	"	"		
2,6-Dinitrotoluene	ND	1000	"	"	"	"	"	"		
Di-n-octyl phthalate	ND	300	"	"	"	"	"	"		
Fluoranthene	ND	300	"	"	"	"	"	"		
Fluorene	ND	300	"	"	"	"	"	"		
Hexachlorobenzene	ND	1500	"	"	"	"	"	"		
Hexachlorobutadiene	ND	300	"	"	"	"	"	"		
Hexachlorocyclopentadiene	ND	1000	"	"	"	"	"	"		
Hexachloroethane	ND	300	"	"	"	"	"	"		
Indeno (1,2,3-cd) pyrene	ND	300	"	"	"	"	"	"		

SunStar Laboratories, Inc.

Brusca Associates Inc. PO Box 332 Roseville CA, 95661		Reported: 04/20/18 11:17							
		T1812	SP3-6 49-06 (So	oil)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	ies, Inc.					
Semivolatile Organic Compounds by EPA	A Method 8270C								
Isophorone	ND	300	ug/kg	1	8041321	04/13/18	04/17/18	EPA 8270C	
2-Methylphenol	ND	1000	"	"	"	"	"	"	
4-Methylphenol	ND	1000	"	"	"	"	"	"	
Naphthalene	ND	300	"	"	"	"	"	"	
2-Nitroaniline	ND	300	"	"	"	"	"	"	
3-Nitroaniline	ND	300	"	"	"	"	"	"	
4-Nitroaniline	ND	300	"	"	"	"	"	"	
Nitrobenzene	ND	1000	"	"	"	"	"	"	
2-Nitrophenol	ND	1000	"	"	"	"	"	"	
N-Nitrosodimethylamine	ND	300	"	"	"	"	"	"	
N-Nitrosodiphenylamine	ND	300	"	"	"	"	"	"	
2,3,5,6-Tetrachlorophenol	ND	300	"	"	"	"	"	"	
2,3,4,6-Tetrachlorophenol	ND	300	"	"	"	"	"	"	
Phenanthrene	ND	300	"	"	"	"	"	"	
Azobenzene	ND	300	"	"	"	"	"	"	
Pyridine	ND	300	"	"	"	"	"	"	
2,4,5-Trichlorophenol	ND	1000	"	"	"	"	"	"	
2,4,6-Trichlorophenol	ND	1000	"	"	"	"	"	"	
Surrogate: 2-Fluorophenol		40.9 %	15-	121	"	"	"	"	
Surrogate: Phenol-d6		48.5 %	24-	113	"	"	"	"	
Surrogate: Nitrobenzene-d5		48.9 %	21.3	-119	"	"	"	"	
Surrogate: 2-Fluorobiphenyl		61.2 %	32.4	-102	"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		86.8 %	18.1	-105	"	"	"	"	
Surrogate: Terphenyl-dl4		76.3 %	29.1	-130	"	"	"	"	

SunStar Laboratories, Inc.

Brusca Associates Inc.		Proj	ect: Lathro	p 48-Ac Pro	operty				
PO Box 332		Project Numb	ber: 137-00)2				Reported:	
Roseville CA, 95661		Project Manag	ger: Joe Br	usca				04/20/18 11	:17
			SP3-7						
		T1812	249-07 (So	oil)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	ies, Inc.					
Extractable Petroleum Hydrocarl	oons by 8015B with Sili	ca Gel Cleanu	D						
C6-C12 (GRO)	ND	10	mg/kg	1	8041323	04/13/18	04/14/18	EPA 8015B	
C13-C28 (DRO)	39	10	"	"	"	"	"	"	
C29-C40 (MORO)	19	10	"	"	"	"	"	"	
Surrogate: p-Terphenyl		86.0 %	65-	135	"	"	"	"	
Metals by EPA 6010B									
Antimony	ND	3.0	mg/kg	1	8041326	04/13/18	04/16/18	EPA 6010B	
Silver	ND	2.0	"	"	"	"	"	"	
Arsenic	ND	5.0	"	"	"	"	"	"	
Barium	43	1.0	"	"	"	"	"	"	
Beryllium	ND	1.0	"	"	"	"	"	"	
Cadmium	ND	2.0	"	"	"	"	"	"	
Chromium	4.6	2.0	"	"	"	"	"	"	
Cobalt	3.8	2.0	"	"	"	"	"	"	
Copper	3.3	1.0	"	"	"	"	"	"	
Lead	10	3.0	"	"	"	"	"	"	
Molybdenum	ND	5.0	"	"	"	"	"	"	
Nickel	4.1	2.0	"	"	"	"	"	"	
Selenium	ND	5.0	"	"	"	"	"	"	
Thallium	ND	2.0	"	"	"	"	"	"	
Vanadium	11	5.0	"	"	"	"	"	"	
Zinc	25	1.0	"	"	"	"		"	
Cold Vapor Extraction EPA 7470/	7471								
Mercury	ND	0.10	mg/kg	1	8041325	04/13/18	04/16/18	EPA 7471A Soil	

SunStar Laboratories, Inc.

SP3-7 T181249-07 (Soil) Analyte Reporting Limit Dilution Batch Prepared Analyzed Method Notes SunStar Laboratories, Inc. POlychlorinated Biphenyls by EPA Method 8082 PCB-1016 ND 10 ug/kg 1 8041319 04/17/18 EPA 8082 PCB-1221 ND 10 "	Brusca Associates Inc. PO Box 332 Roseville CA, 95661		Proje Project Numb Project Manag	ect: Lathro ber: 137-00 ger: Joe Br	p 48-Ac Pro 02 usca	perty			Reported 04/20/18 11	: :17
AnalyteResultReporting LimitDilutionBatchPreparedAnalyzedMethodNotesSunStar Laboratories, Inc.POlychlorinated Biphenyls by EPA Method 8082PCB-1016ND10ug/kg1804131904/13/1804/17/18EPA 8082PCB-1221ND10"""""""PCB-1232ND10"""""""PCB-1242ND10"""""""PCB-1248ND10"""""""			T1812	SP3-7 249-07 (So	oil)					
SunStar Laboratories, Inc. Polychlorinated Biphenyls by EPA Method 8082 PCB-1016 ND 10 ug/kg 1 8041319 04/13/18 04/17/18 EPA 8082 PCB-1221 ND 10 " <	Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Polychlorinated Biphenyls by EPA Method 8082 PCB-1016 ND 10 ug/kg 1 8041319 04/13/18 64/17/18 EPA 8082 PCB-1221 ND 10 " " " " " " " PCB-1232 ND 10 " " " " " " " PCB-1242 ND 10 "			SunStar L	aboratori	es, Inc.					
PCB-1016 ND 10 ug/kg 1 8041319 04/13/18 04/17/18 EPA 8082 PCB-1221 ND 10 "	Polychlorinated Biphenyls by EPA Method 80	82								
PCB-1221 ND 10 "	PCB-1016	ND	10	ug/kg	1	8041319	04/13/18	04/17/18	EPA 8082	
PCB-1232 ND 10 " " " " " " " PCB-1242 ND 10 "	PCB-1221	ND	10	"	"		"			
PCB-1242 ND 10 "	PCB-1232	ND	10	"	"		"			
PCB-1248 ND 10 " " " " " " "	PCB-1242	ND	10	"	"	"	"	"	"	
	PCB-1248	ND	10	"	"	"	"	"	"	
PCB-1254 12 10 " " " " " "	PCB-1254	12	10	"	"	"	"	"	"	
PCB-1260 ND 10 " " " " " "	PCB-1260	ND	10	"	"	"	"	"	"	
Surrogate: Tetrachloro-meta-xylene 88.8 % 35-140 " " " "	Surrogate: Tetrachloro-meta-xylene		88.8 %	35-	140	"	"	"	"	
Surrogate: Decachlorobiphenyl 91.8 % 35-140 " " " " "	Surrogate: Decachlorobiphenyl		91.8 %	35-	140	"	"	"	"	
Samiyalatila Organia Compounds by EDA Mothod 9270C	Somivalatila Organia Compounds by EDA Ma	thad 9270C								
Semivolatile Organic Compounds by ETA Method $8270C$	Carbazola	ND	300	ug/kg	1	80/1321	04/13/18	04/17/18	EPA 8270C	
Calibration ND 500 ug/kg 1 004/15/10 04/17/10 EIA 82/00 Depol ND 1000 " <td< td=""><td>Dhenol</td><td>ND</td><td>1000</td><td>ug/kg "</td><td>"</td><td>"</td><td>"</td><td>"</td><td>"</td><td></td></td<>	Dhenol	ND	1000	ug/kg "	"	"	"	"	"	
Aniline ND 300 " " " " " "	Aniline	ND	300	"				"		
2-Chlorophenol ND 1000 " " " " " "	2-Chlorophenol	ND	1000						"	
14-Dichlorobenzene ND 300 " " " " " " "	1 4-Dichlorobenzene	ND	300					"		
N-Nitrosodi-n-propylamine ND 300 " " " " " "	N-Nitrosodi-n-propylamine	ND	300						"	
1.2.4-Trichlorobenzene ND 300 " " " " " " "	1 2 4-Trichlorobenzene	ND	300		"		"		"	
4-Chloro-3-methylphenol ND 1000 " " " " " " "	4-Chloro-3-methylphenol	ND	1000	"			"		"	
1-Methylnaphthalene ND 300 " " " " " " "	1-Methylnaphthalene	ND	300						"	
2-Methylnaphthalene ND 300 " " " " " "	2-Methylnaphthalene	ND	300	"				"	"	
Acenaphthene ND 300 " " " " " "	Acenaphthene	ND	300	"			"	"		
4-Nitrophenol ND 1000 " " " " " "	4-Nitrophenol	ND	1000	"						
2,4-Dinitrotoluene ND 300 " " " " " " "	2,4-Dinitrotoluene	ND	300	"			"			
Pentachlorophenol ND 1000 " " " " " "	Pentachlorophenol	ND	1000	"	"		"	"	"	
Pyrene ND 300 " " " " " "	Pyrene	ND	300	"	"		"		"	
Acenaphthylene ND 300 " " " " " "	Acenaphthylene	ND	300	"			"	"	"	
Anthracene ND 300 " " " " " "	Anthracene	ND	300	"		"	"	"	"	
Benzo (a) anthracene ND 300 " " " " " " "	Benzo (a) anthracene	ND	300	"			"	"	"	
Benzo (b) fluoranthene ND 300 " " " " " "	Benzo (b) fluoranthene	ND	300	"			"	"	"	
Benzo (k) fluoranthene ND 300 " " " " " " "	Benzo (k) fluoranthene	ND	300	"			"	"	"	
Benzo (g,h,i) perylene ND 1000 " " " " " " " "	Benzo (g,h,i) perylene	ND	1000	"		"	"	"	"	

SunStar Laboratories, Inc.

SunStar Laboratories, Inc. PROVIDING QUALITY ANALYTICAL SERVICES NATIONWIDE

25712 Commercentre Drive Lake Forest, California 92630 949.297.5020 Phone 949.297.5027 Fax

Brusca Associates Inc.	rusca Associates Inc. Project: Lathrop 48-Ac Property									
PO Box 332		Project Numb	er: 137-00	02				Reported:		
Roseville CA, 95661		Project Manag	ger: Joe Br	usca				04/20/18 11	:17	
		;	SP3-7							
T181249-07 (Soil)										
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes	
		SunStar L	aboratori	ies, Inc.						
Semivolatile Organic Compounds by	EPA Method 8270C									
Benzo (a) pyrene	ND	300	ug/kg	1	8041321	04/13/18	04/17/18	EPA 8270C		
Benzyl alcohol	ND	300	"	"	"	"	"	"		
Bis(2-chloroethoxy)methane	ND	300	"	"	"	"	"	"		
Bis(2-chloroethyl)ether	ND	300	"	"	"	"	"	"		
Bis(2-chloroisopropyl)ether	ND	300	"	"	"	"	"	"		
Bis(2-ethylhexyl)phthalate	ND	300	"	"	"	"	"	"		
4-Bromophenyl phenyl ether	ND	300	"	"	"	"	"	"		
Butyl benzyl phthalate	ND	300	"	"	"	"	"	"		
4-Chloroaniline	ND	300	"	"	"	"	"	"		
2-Chloronaphthalene	ND	300	"	"	"	"	"	"		
4-Chlorophenyl phenyl ether	ND	300	"	"	"	"	"	"		
Chrysene	ND	300	"	"	"	"	"	"		
Dibenz (a,h) anthracene	ND	300	"	"	"	"	"	"		
Dibenzofuran	ND	300	"	"	"	"	"	"		
Di-n-butyl phthalate	ND	300	"	"	"	"	"	"		
1,2-Dichlorobenzene	ND	300	"	"	"	"	"	"		
1,3-Dichlorobenzene	ND	300	"	"	"	"	"	"		
2,4-Dichlorophenol	ND	1000	"	"	"	"	"	"		
Diethyl phthalate	ND	300	"	"	"	"	"	"		
2,4-Dimethylphenol	ND	1000	"	"	"	"	"	"		
Dimethyl phthalate	ND	300	"	"	"	"	"	"		
4,6-Dinitro-2-methylphenol	ND	1000	"	"	"	"	"	"		
2,4-Dinitrophenol	ND	1000	"	"	"	"	"	"		
2,6-Dinitrotoluene	ND	1000	"	"	"	"	"	"		
Di-n-octyl phthalate	ND	300	"	"	"	"	"	"		
Fluoranthene	ND	300	"	"	"	"	"	"		
Fluorene	ND	300	"	"	"	"	"	"		
Hexachlorobenzene	ND	1500	"	"	"	"	"	"		
Hexachlorobutadiene	ND	300	"	"	"	"	"	"		
Hexachlorocyclopentadiene	ND	1000	"	"	"	"	"	"		
Hexachloroethane	ND	300	"	"	"	"	"	"		
Indeno (1,2,3-cd) pyrene	ND	300	"	"	"	"	"	"		

SunStar Laboratories, Inc.

Brusca Associates Inc. PO Box 332 Roseville CA, 95661	Project: Lathrop 48-Ac Property Project Number: 137-002 Project Manager: Joe Brusca							Reported: 04/20/18 11:17		
	T1812	31 3-7 249-07 (So	oil)							
Analyte Res	Reporting sult Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes		
	SunStar L	aboratori	es, Inc.							
Semivolatile Organic Compounds by EPA Method 8	270C									
Isophorone	ND 300	ug/kg	1	8041321	04/13/18	04/17/18	EPA 8270C			
2-Methylphenol	ND 1000	"	"	"	"	"	"			
4-Methylphenol	ND 1000	"	"	"	"	"	"			
Naphthalene	ND 300	"	"	"	"	"	"			
2-Nitroaniline	ND 300	"	"	"	"	"	"			
3-Nitroaniline	ND 300	"	"	"	"	"	"			
4-Nitroaniline	ND 300	"	"	"	"	"	"			
Nitrobenzene	ND 1000	"	"	"	"	"	"			
2-Nitrophenol	ND 1000	"	"	"	"	"	"			
N-Nitrosodimethylamine	ND 300	"	"	"	"	"	"			
N-Nitrosodiphenylamine	ND 300	"	"	"	"	"	"			
2,3,5,6-Tetrachlorophenol	ND 300	"	"	"	"	"	"			
2,3,4,6-Tetrachlorophenol	ND 300	"	"	"	"	"	"			
Phenanthrene M	ND 300	"	"	"	"	"	"			
Azobenzene	ND 300	"	"	"	"	"	"			
2,4,5-Trichlorophenol	ND 1000	"	"	"	"	"	"			
Pyridine N	ND 300	"	"	"	"	"	"			
2,4,6-Trichlorophenol	ND 1000	"	"	"	"	"	"			
Surrogate: 2-Fluorophenol	41.1 %	15-	121	"	"	"	"			
Surrogate: Phenol-d6	47.3 %	24-	113	"	"	"	"			
Surrogate: Nitrobenzene-d5	49.2 %	21.3	-119	"	"	"	"			
Surrogate: 2-Fluorobiphenyl	60.5 %	32.4	-102	"	"	"	"			
Surrogate: 2,4,6-Tribromophenol	74.5 %	18.1	-105	"	"	"	"			
Surrogate: Terphenyl-dl4	70.2 %	29.1	-130	"	"	"	"			

SunStar Laboratories, Inc.

Brusca Associates Inc. PO Box 332 Roseville CA, 95661		Proje Project Numł Project Manag			Reported: 04/20/18 11:17				
		T1812	249-08 (So	oil)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	ies, Inc.					
Extractable Petroleum Hydrocarl	oons by 8015B with Silic	a Gel Cleanu	р						
C6-C12 (GRO)	ND	10	mg/kg	1	8041323	04/13/18	04/14/18	EPA 8015B	
C13-C28 (DRO)	29	10	"	"	"	"	"	"	
C29-C40 (MORO)	17	10	"	"	"	"	"	"	
Surrogate: p-Terphenyl		88.7 %	8.7 % 65-135		"	"	"	"	
Metals by EPA 6010B									
Antimony	ND	3.0	mg/kg	1	8041326	04/13/18	04/16/18	EPA 6010B	
Silver	ND	2.0	"	"	"	"	"	"	
Arsenic	ND	5.0	"	"	"	"	"	"	
Barium	67	1.0	"	"	"	"	"	"	
Beryllium	ND	1.0	"	"	"	"	"	"	
Cadmium	ND	2.0	"	"	"	"	"	"	
Chromium	5.7	2.0	"	"	"	"	"	"	
Cobalt	4.9	2.0	"	"	"	"	"	"	
Copper	4.6	1.0	"	"	"	"	"	"	
Lead	17	3.0	"	"	"	"	"	"	
Molybdenum	ND	5.0	"	"	"	"	"	"	
Nickel	6.6	2.0	"	"	"	"	"	"	
Selenium	ND	5.0	"	"	"	"	"	"	
Thallium	ND	2.0	"	"	"	"	"	"	
Vanadium	17	5.0	"	"	"	"	"	"	
Zinc	26	1.0	"	"	"	"		"	
Cold Vapor Extraction EPA 7470/	7471								
Mercury	ND	0.10	mg/kg	1	8041325	04/13/18	04/16/18	EPA 7471A Soil	

SunStar Laboratories, Inc.

Brusca Associates Inc. PO Box 332 Roseville CA, 95661	c. Project: Lathrop 48-Ac Property Project Number: 137-002 Project Manager: Joe Brusca							Reported: 04/20/18 11:17		
		T1812	SP3-8 249-08 (So	oil)						
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes	
		SunStar L	aboratori	ies, Inc.						
Polychlorinated Biphenyls by EPA N	lethod 8082									
PCB-1016	ND	10	ug/kg	1	8041319	04/13/18	04/17/18	EPA 8082		
PCB-1221	ND	10	"	"	"	"	"	"		
PCB-1232	ND	10	"	"	"	"	"	"		
PCB-1242	ND	10	"	"	"	"	"	"		
PCB-1248	ND	10	"	"	"	"	"	"		
PCB-1254	19	10	"	"	"	"	"	"		
PCB-1260	ND	10	"	"	"	"	"			
Surrogate: Tetrachloro-meta-xylene		84.8 %	35-	140	"	"	"	"		
Surrogate: Decachlorobiphenyl		82.3 %	35-	140	"	"	"	"		
	EDA M (L. 10270C)									
Semivolatile Organic Compounds by	EPA Method 8270C	200	a		0041221	04/10/10	04/15/10		-	
Carbazole	ND	300	ug/kg	1	8041321	04/13/18	04/1//18	EPA 8270C		
Phenol	ND	1000								
	ND	300								
2-Chlorophenol	ND	1000								
I,4-Dichlorobenzene	ND	300								
N-Nitrosodi-n-propylamine	ND	300								
1,2,4-1richlorobenzene	ND	300								
2. Mathada and the laws	ND	1000								
	ND	300								
	ND	300								
4 Nitronhanal	ND	1000								
2.4 Dinitratelyana	ND	200								
Pantaghlaranhanal	ND	1000		"		"				
Purane	ND	200		"		"				
A compatibly long	ND	300		"		"				
Archaphthylene	ND	300		"		"				
Anunacene Panza (a) anthragana		200		"						
Denzo (a) anunacene		300								
Denzo (b) fluorantnene	ND	300								
Denzo (k) nuoraninene	ND	500								
Benzo (g,n,1) perylene	ND	1000								

SunStar Laboratories, Inc.

Brusca Associates Inc.Project: Lathrop 48-Ac PropertyPO Box 332Project Number: 137-002Roseville CA, 95661Project Manager: Joe Brusca								Reported: 04/20/18 11:17			
SP3-8 T181249-08 (Soil)											
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes		
		SunStar L	aborator	ies, Inc.							
Semivolatile Organic Compounds by	y EPA Method 8270C										
Benzo (a) pyrene	ND	300	ug/kg	1	8041321	04/13/18	04/17/18	EPA 8270C			
Benzyl alcohol	ND	300	"	"	"	"		"			
Bis(2-chloroethoxy)methane	ND	300	"	"	"	"	"	"			
Bis(2-chloroethyl)ether	ND	300	"	"	"	"	"	"			
Bis(2-chloroisopropyl)ether	ND	300	"	"	"	"	"	"			
Bis(2-ethylhexyl)phthalate	ND	300	"	"	"	"	"	"			
4-Bromophenyl phenyl ether	ND	300	"	"	"	"	"	"			
Butyl benzyl phthalate	ND	300	"	"	"	"	"	"			
4-Chloroaniline	ND	300	"	"	"	"	"	"			
2-Chloronaphthalene	ND	300	"	"	"	"	"	"			
4-Chlorophenyl phenyl ether	ND	300	"	"	"	"		"			
Chrysene	ND	300	"	"	"	"		"			
Dibenz (a,h) anthracene	ND	300	"	"	"	"		"			
Dibenzofuran	ND	300	"	"	"	"		"			
Di-n-butyl phthalate	ND	300	"	"	"	"		"			
1,2-Dichlorobenzene	ND	300	"	"	"	"		"			
1,3-Dichlorobenzene	ND	300	"	"	"	"		"			
2,4-Dichlorophenol	ND	1000	"	"	"	"		"			
Diethyl phthalate	ND	300	"	"	"	"		"			
2,4-Dimethylphenol	ND	1000	"	"	"	"		"			
Dimethyl phthalate	ND	300	"	"	"	"		"			
4,6-Dinitro-2-methylphenol	ND	1000	"	"	"	"		"			
2,4-Dinitrophenol	ND	1000	"	"	"	"		"			
2,6-Dinitrotoluene	ND	1000	"	"	"	"		"			
Di-n-octyl phthalate	ND	300	"	"	"	"		"			
Fluoranthene	ND	300	"	"	"	"	"	"			
Fluorene	ND	300	"	"	"	"		"			
Hexachlorobenzene	ND	1500	"	"	"	"	"	"			
Hexachlorobutadiene	ND	300	"	"	"	"	"	"			
Hexachlorocyclopentadiene	ND	1000	"	"	"	"	"	"			
Hexachloroethane	ND	300	"	"	"	"	"	"			
Indeno (1,2,3-cd) pyrene	ND	300	"	"	"	"	"	"			

SunStar Laboratories, Inc.

Brusca Associates Inc. PO Box 332 Roseville CA, 95661	Project: Lathrop 48-Ac Property Project Number: 137-002 Project Manager: Joe Brusca							Reported: 04/20/18 11:17		
		T1812	SP3-8 49-08 (So	oil)						
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes	
		SunStar L	aboratori	ies, Inc.						
Semivolatile Organic Compounds by EPA Metho	d 8270C									
Isophorone	ND	300	ug/kg	1	8041321	04/13/18	04/17/18	EPA 8270C		
2-Methylphenol	ND	1000	"	"	"	"	"	"		
4-Methylphenol	ND	1000	"	"	"	"	"	"		
Naphthalene	ND	300	"	"	"	"	"	"		
2-Nitroaniline	ND	300	"	"	"	"	"	"		
3-Nitroaniline	ND	300	"	"	"	"	"	"		
4-Nitroaniline	ND	300	"	"	"	"	"	"		
Nitrobenzene	ND	1000	"	"	"	"	"	"		
2-Nitrophenol	ND	1000	"	"	"	"	"	"		
N-Nitrosodimethylamine	ND	300	"	"	"	"	"	"		
N-Nitrosodiphenylamine	ND	300	"	"	"	"	"	"		
2,3,5,6-Tetrachlorophenol	ND	300	"	"	"	"	"	"		
2,3,4,6-Tetrachlorophenol	ND	300	"	"	"	"	"	"		
Phenanthrene	ND	300	"	"	"	"	"	"		
Azobenzene	ND	300	"	"	"	"	"	"		
Pyridine	ND	300	"	"	"	"	"	"		
2,4,5-Trichlorophenol	ND	1000	"	"	"	"	"	"		
2,4,6-Trichlorophenol	ND	1000	"	"	"	"	"	"		
Surrogate: 2-Fluorophenol		47.6 %	15-	121	"	"	"	"		
Surrogate: Phenol-d6		57.6 %	24-	113	"	"	"	"		
Surrogate: Nitrobenzene-d5		58.1 %	21.3	-119	"	"	"	"		
Surrogate: 2-Fluorobiphenyl		69.6 %	32.4	-102	"	"	"	"		
Surrogate: 2,4,6-Tribromophenol		91.0 %	18.1	-105	"	"	"	"		
Surrogate: Terphenyl-dl4		77.5 %	29.1	-130	"	"	"	"		

SunStar Laboratories, Inc.

Brusca Associates Inc.	Project: Lathrop 48-Ac Property										
Roseville CA. 95661	l	Project Numi	per: 137-00	usca				04/20/18 11:17			
		. rojeet munuş	Ser. voe Br					0 1/20/10 11			
		T101	SP3-9	•1							
		11812	249-09 (So	oil)							
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes		
		SunStar L	aboratori	es, Inc.							
Extractable Petroleum Hydrocarl	oons by 8015B with Silica	Gel Cleanu	р								
C6-C12 (GRO)	ND	10	mg/kg	1	8041323	04/13/18	04/14/18	EPA 8015B			
C13-C28 (DRO)	85	10	"	"	"	"	"	"			
C29-C40 (MORO)	82	10	"	"	"	"	"	"			
Surrogate: p-Terphenyl		80.0 %	65	135	"	"	"	"			
Metals by EPA 6010B											
Antimony	ND	3.0	mg/kg	1	8041326	04/13/18	04/16/18	EPA 6010B			
Silver	ND	2.0	"	"	"	"	"	"			
Arsenic	ND	5.0	"	"	"	"	"	"			
Barium	59	1.0	"	"	"	"	"	"			
Beryllium	ND	1.0	"	"	"	"	"	"			
Cadmium	ND	2.0	"	"	"	"	"	"			
Chromium	5.9	2.0	"	"	"	"	"	"			
Cobalt	5.6	2.0	"	"	"	"	"	"			
Copper	4.8	1.0	"	"	"	"	"	"			
Lead	ND	3.0	"	"	"	"	"	"			
Molybdenum	ND	5.0	"	"	"	"	"	"			
Nickel	6.6	2.0	"	"	"	"	"	"			
Selenium	ND	5.0	"	"	"	"	"	"			
Thallium	ND	2.0	"	"	"	"	"	"			
Vanadium	18	5.0	"	"	"	"	"	"			
Zinc	29	1.0	"	"	"	"		"			
Cold Vapor Extraction EPA 7470/	7471										
Mercury	ND	0.10	mg/kg	1	8041325	04/13/18	04/16/18	EPA 7471A Soil			

SunStar Laboratories, Inc.

Brusca Associates Inc. PO Box 332 Roseville CA, 95661		Proje Project Numb Project Manag	Reported: 04/20/18 11:17						
		T1812	SP3-9 249-09 (So	oil)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Polychlorinated Biphenyls by EPA M	lethod 8082								
PCB-1016	ND	10	ug/kg	1	8041319	04/13/18	04/17/18	EPA 8082	
PCB-1221	ND	10	"	"	"	"	"	"	
PCB-1232	ND	10	"	"	"	"	"	"	
PCB-1242	ND	10	"	"	"	"	"	"	
PCB-1248	ND	10	"	"	"	"	"	"	
PCB-1254	16	10	"	"	"	"	"	"	
PCB-1260	ND	10	"	"	"	"	"	"	
Surrogate: Tetrachloro-meta-xylene		89.7 %	35-	140	"	"	"	"	
Surrogate: Decachlorobiphenyl		69.3 %	35-	140	"	"	"	"	
Semivoletile Organia Compounds hu	EDA Mathad 9270C								
Carbazola	ND	300	ug/kg	1	80/1321	04/13/18	04/17/18	EPA 8270C	
Phonol	ND	1000	ug/kg	"	8041321	"	"	EFA 8270C	
Aniline	ND	300	"	"		"			
2 Chlorophenol	ND	1000	"	"	"	"			
1 4-Dichlorobenzene	ND	300	"	"		"			
N-Nitrosodi-n-propylamine	ND	300	"	"	"	"			
1.2.4-Trichlorobenzene	ND	300	"	"		"	"		
4-Chloro-3-methylphenol	ND	1000	"	"	"	"			
1-Methylnanhthalene	ND	300	"	"		"	"		
2-Methylnaphthalene	ND	300	"	"		"		"	
Acenaphthene	ND	300	"	"	"	"			
4-Nitrophenol	ND	1000	"	"	"	"		"	
2 4-Dinitrotoluene	ND	300	"	"	"	"		"	
Pentachlorophenol	ND	1000	"	"	"	"		"	
Pvrene	ND	300	"	"	"	"	"	"	
Acenaphthylene	ND	300	"	"	"	"			
Anthracene	ND	300	"	"	"	"	"		
Benzo (a) anthracene	ND	300	"	"	"	"	"		
Benzo (b) fluoranthene	ND	300	"	"	"	"	"		
Benzo (k) fluoranthene	ND	300	"	"	"	"			
Benzo (g,h,i) perylene	ND	1000	"	"	"	"	"		
(C,))I V									

SunStar Laboratories, Inc.

SunStar Laboratories, Inc. Providing Quality Analytical Services Nationwide

25712 Commercentre Drive Lake Forest, California 92630 949.297.5020 Phone 949.297.5027 Fax

Brusca Associates Inc.		Proje							
PO Box 332		Project Numb		Reported:					
Roseville CA, 95661		Project Manag	er: Joe Br	usca				04/20/18 11	:17
			SP3-9						
		T1812	49-09 (So	oil)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	ies, Inc.					
Semivolatile Organic Compounds by	EPA Method 8270C								
Benzo (a) pyrene	ND	300	ug/kg	1	8041321	04/13/18	04/17/18	EPA 8270C	
Benzyl alcohol	ND	300	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	300	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	300	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	300	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	300	"	"	"	"	"	"	
4-Bromophenyl phenyl ether	ND	300	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	300	"	"	"	"	"	"	
4-Chloroaniline	ND	300	"	"	"	"	"	"	
2-Chloronaphthalene	ND	300	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether	ND	300	"	"	"	"	"	"	
Chrysene	ND	300	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	300	"	"	"	"	"	"	
Dibenzofuran	ND	300	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	300	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	300	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	300	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	1000	"	"	"	"	"	"	
Diethyl phthalate	ND	300	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	1000	"	"	"	"	"	"	
Dimethyl phthalate	ND	300	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol	ND	1000	"	"	"	"	"	"	
2,4-Dinitrophenol	ND	1000	"	"	"	"	"	"	
2,6-Dinitrotoluene	ND	1000	"	"	"	"	"	"	
Di-n-octyl phthalate	ND	300	"	"	"	"	"	"	
Fluoranthene	ND	300	"	"	"	"	"	"	
Fluorene	ND	300	"	"	"	"	"	"	
Hexachlorobenzene	ND	1500	"	"	"	"	"	"	
Hexachlorobutadiene	ND	300	"	"	"	"	"	"	
Hexachlorocyclopentadiene	ND	1000	"	"	"	"	"	"	
Hexachloroethane	ND	300	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene	ND	300	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Brusca Associates Inc. PO Box 332 Roseville CA, 95661		Reported: 04/20/18 11:17							
		T1812	8P3-9 249-09 (So	oil)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	ies, Inc.					
Semivolatile Organic Compounds by EPA Method	1 8270C								
Isophorone	ND	300	ug/kg	1	8041321	04/13/18	04/17/18	EPA 8270C	
2-Methylphenol	ND	1000	"	"	"	"	"	"	
4-Methylphenol	ND	1000	"	"	"	"	"		
Naphthalene	ND	300	"	"	"	"	"		
2-Nitroaniline	ND	300	"	"	"	"	"		
3-Nitroaniline	ND	300	"	"	"	"	"	"	
4-Nitroaniline	ND	300	"	"	"	"	"		
Nitrobenzene	ND	1000	"	"	"	"	"		
2-Nitrophenol	ND	1000	"	"	"	"	"		
N-Nitrosodimethylamine	ND	300	"	"	"	"	"		
N-Nitrosodiphenylamine	ND	300	"	"	"	"	"	"	
2,3,5,6-Tetrachlorophenol	ND	300	"	"	"	"	"	"	
2,3,4,6-Tetrachlorophenol	ND	300	"	"	"	"	"	"	
Phenanthrene	ND	300	"	"	"	"	"	"	
Azobenzene	ND	300	"	"	"	"	"	"	
Pyridine	ND	300	"	"	"	"	"		
2,4,5-Trichlorophenol	ND	1000	"	"	"	"	"		
2,4,6-Trichlorophenol	ND	1000	"	"	"	"	"	"	
Surrogate: 2-Fluorophenol		52.2 %	15-	121	"	"	"	"	
Surrogate: Phenol-d6		61.8 %	24-	113	"	"	"	"	
Surrogate: Nitrobenzene-d5		60.1 %	21.3	-119	"	"	"	"	
Surrogate: 2-Fluorobiphenyl		73.5 %	32.4	-102	"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		90.8 %	18.1	-105	"	"	"	"	
Surrogate: Terphenyl-dl4		75.3 %	29.1	-130	"	"	"	"	

SunStar Laboratories, Inc.

Brusca Associates Inc. PO Box 332 Roseville CA, 95661		Reported : 04/20/18 11	:17						
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Extractable Petroleum Hydrocarl	bons by 8015B with Silic	a Gel Cleanu	р						
C6-C12 (GRO)	ND	10	mg/kg	1	8041323	04/13/18	04/14/18	EPA 8015B	
C13-C28 (DRO)	360	10	"	"	"	"	"	"	
C29-C40 (MORO)	380	10	"	"	"	"		"	
Surrogate: p-Terphenyl		80.0 %	65-	135	"	"	"	"	
Metals by EPA 6010B									
Antimony	ND	3.0	mg/kg	1	8041326	04/13/18	04/16/18	EPA 6010B	
Silver	ND	2.0	"	"	"	"		"	
Arsenic	ND	5.0	"	"	"	"	"	"	
Barium	57	1.0	"	"	"	"		"	
Beryllium	ND	1.0	"	"	"	"	"	"	
Cadmium	ND	2.0	"	"	"	"		"	
Chromium	5.7	2.0	"	"	"	"		"	
Cobalt	4.9	2.0	"	"	"	"	"	"	
Copper	4.6	1.0	"	"	"	"	"	"	
Lead	ND	3.0	"	"	"	"	"	"	
Molybdenum	ND	5.0	"	"	"	"	"	"	
Nickel	5.7	2.0	"	"	"	"	"	"	
Selenium	ND	5.0	"	"	"	"	"	"	
Thallium	ND	2.0	"	"	"	"	"	"	
Vanadium	14	5.0	"	"	"	"		"	
Zinc	28	1.0	"	"		"	"	"	
Cold Vapor Extraction EPA 7470/	7471								
Mercury	ND	0.10	mg/kg	1	8041325	04/13/18	04/16/18	EPA 7471A Soil	

SunStar Laboratories, Inc.

Brusca Associates Inc. Project: Lathrop 48-Ac Property PO Box 332 Project Number: 137-002										
Roseville CA, 95661		Project Manag	er: Joe Br	rusca				04/20/18 11:17		
		S	5P3-10							
		T1812	49-10 (So	oil)						
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes	
		SunStar L	aboratori	ies, Inc.						
Polychlorinated Biphenyls by EPA Method 8082										
PCB-1016	ND	10	ug/kg	1	8041319	04/13/18	04/17/18	EPA 8082		
PCB-1221	ND	10	"	"	"	"	"	"		
PCB-1232	ND	10	"	"	"	"	"	"		
PCB-1242	ND	10	"	"	"	"	"	"		
PCB-1248	ND	10	"	"	"	"	"	"		
PCB-1254	18	10	"	"	"	"	"	"		
PCB-1260	ND	10	"	"	"	"	"	"		
Surrogate: Tetrachloro-meta-xylene		81.2 %	35-	140	"	"	"	"		
Surrogate: Decachlorobiphenyl		61.2 %	35-	140	"	"	"	"		
Semivolatile Organic Compounds by EPA Metho	d 82700	r								
Carbazole	ND	300	ug/kg	1	8041321	04/13/18	04/17/18	EPA 8270C		
Phenol	ND	1000	"0"0	"		"				
Aniline	ND	300	"	"		"				
2-Chlorophenol	ND	1000	"	"		"				
1,4-Dichlorobenzene	ND	300	"	"		"	"	"		
N-Nitrosodi-n-propylamine	ND	300	"	"		"	"	"		
1,2,4-Trichlorobenzene	ND	300	"	"		"	"	"		
4-Chloro-3-methylphenol	ND	1000	"	"	"	"	"	"		
2-Methylnaphthalene	ND	300	"	"	"	"	"	"		
1-Methylnaphthalene	ND	300	"	"	"	"	"	"		
Acenaphthene	ND	300	"	"		"	"	"		
4-Nitrophenol	ND	1000	"	"		"	"	"		
2,4-Dinitrotoluene	ND	300	"	"	"	"	"	"		
Pentachlorophenol	ND	1000	"	"	"	"	"	"		
Pyrene	ND	300	"	"	"	"	"	"		
Acenaphthylene	ND	300	"	"	"	"	"	"		
Anthracene	ND	300	"	"		"	"	"		
Benzo (a) anthracene	ND	300	"	"		"	"	"		
Benzo (b) fluoranthene	ND	300	"	"		"	"	"		
Benzo (k) fluoranthene	ND	300	"	"		"	"			
Benzo (g,h,i) perylene	ND	1000	"	"		"	"	"		

SunStar Laboratories, Inc.

Brusca Associates Inc. PO Box 332 Roseville CA, 95661		Proje Project Numb Project Manag	Reported: 04/20/18 11:17						
		S T1812	SP3-10 249-10 (Se	oil)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aborator	ies, Inc.					
Semivolatile Organic Compounds b	v EPA Method 8270C								
Benzo (a) pyrene	ND	300	ug/kg	1	8041321	04/13/18	04/17/18	EPA 8270C	
Benzyl alcohol	ND	300	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	300	"	"	"	"		"	
Bis(2-chloroethyl)ether	ND	300	"	"	"	"		"	
Bis(2-chloroisopropyl)ether	ND	300	"	"	"	"		"	
Bis(2-ethylhexyl)phthalate	ND	300	"	"	"	"	"	"	
4-Bromophenyl phenyl ether	ND	300	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	300	"	"	"	"	"	"	
4-Chloroaniline	ND	300	"	"	"	"	"	"	
2-Chloronaphthalene	ND	300	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether	ND	300	"	"	"	"		"	
Chrysene	ND	300	"	"	"	"		"	
Dibenz (a,h) anthracene	ND	300	"	"	"	"		"	
Dibenzofuran	ND	300	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	300	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	300	"	"	"	"		"	
1,3-Dichlorobenzene	ND	300	"	"	"	"		"	
2,4-Dichlorophenol	ND	1000	"	"	"	"		"	
Diethyl phthalate	ND	300	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	1000	"	"	"	"	"	"	
Dimethyl phthalate	ND	300	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol	ND	1000	"	"	"	"	"	"	
2.4-Dinitrophenol	ND	1000	"	"	"	"	"	"	
2,6-Dinitrotoluene	ND	1000	"	"	"	"	"	"	
Di-n-octyl phthalate	ND	300	"	"	"	"	"	"	
Fluoranthene	ND	300	"	"	"	"			
Fluorene	ND	300	"	"	"	"			
Hexachlorobenzene	ND	1500	"	"	"	"			
Hexachlorobutadiene	ND	300	"	"	"	"	"		
Hexachlorocyclopentadiene	ND	1000	"	"	"	"	"		
Hexachloroethane	ND	300	"	"	"	"	"		
Indeno (1,2,3-cd) pyrene	ND	300	"	"	"	"	"	"	
5 7 7 7 7 4 7									

SunStar Laboratories, Inc.

Brusca Associates Inc. PO Box 332 Roseville CA, 95661		Reported : 04/20/18 11	:17						
		T1812	249-10 (So	oil)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	ies, Inc.					
Semivolatile Organic Compounds by EPA	Method 8270C								
Isophorone	ND	300	ug/kg	1	8041321	04/13/18	04/17/18	EPA 8270C	
2-Methylphenol	ND	1000	"	"	"	"	"	"	
4-Methylphenol	ND	1000	"	"	"	"	"	"	
Naphthalene	ND	300	"	"	"	"	"	"	
2-Nitroaniline	ND	300	"	"	"	"	"	"	
3-Nitroaniline	ND	300	"	"	"	"	"	"	
4-Nitroaniline	ND	300	"	"	"	"	"	"	
Nitrobenzene	ND	1000	"	"	"	"	"	"	
2-Nitrophenol	ND	1000	"	"	"	"	"	"	
N-Nitrosodimethylamine	ND	300	"	"	"	"	"	"	
N-Nitrosodiphenylamine	ND	300	"	"	"	"	"	"	
2,3,5,6-Tetrachlorophenol	ND	300	"	"	"	"	"	"	
2,3,4,6-Tetrachlorophenol	ND	300	"	"	"	"	"	"	
Phenanthrene	ND	300	"	"	"	"	"	"	
Azobenzene	ND	300	"	"	"	"	"	"	
Pyridine	ND	300	"	"	"	"	"	"	
2,4,5-Trichlorophenol	ND	1000	"	"	"	"	"	"	
2,4,6-Trichlorophenol	ND	1000	"	"	"	"	"	"	
Surrogate: 2-Fluorophenol		54.0 %	15-	121	"	"	"	"	
Surrogate: Phenol-d6		65.2 %	24-	113	"	"	"	"	
Surrogate: Nitrobenzene-d5		62.5 %	21.3	-119	"	"	"	"	
Surrogate: 2-Fluorobiphenyl		73.1 %	32.4	-102	"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		87.8 % 18.1-105			"	"	"	"	
Surrogate: Terphenyl-dl4	80.1 % 29.1-130 " "							"	

SunStar Laboratories, Inc.

Brusca Associates Inc. PO Box 332 Roseville CA, 95661	Project: Lathrop 48-Ac Property Project Number: 137-002 Project Manager: Joe Brusca SP3-11 T181249-11 (Soil)									
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes	
		SunStar L	aboratori	ies, Inc.						
Extractable Petroleum Hydrocarl	oons by 8015B with Silic	a Gel Cleanuj	p							
C6-C12 (GRO)	ND	10	mg/kg	1	8041323	04/13/18	04/14/18	EPA 8015B		
C13-C28 (DRO)	26	10	"	"	"	"		"		
C29-C40 (MORO)	33	10	"	"	"	"		"		
Surrogate: p-Terphenyl		79.6 %	65-	135	"	"	"	"		
Metals by EPA 6010B										
Antimony	ND	3.0	mg/kg	1	8041326	04/13/18	04/16/18	EPA 6010B		
Silver	ND	2.0	"	"	"	"	"	"		
Arsenic	ND	5.0	"	"	"	"	"	"		
Barium	56	1.0	"	"	"	"	"	"		
Beryllium	ND	1.0	"	"	"	"	"	"		
Cadmium	ND	2.0	"	"	"	"	"	"		
Chromium	5.0	2.0	"	"	"	"	"	"		
Cobalt	4.4	2.0	"	"	"	"	"	"		
Copper	4.0	1.0	"	"	"	"	"	"		
Lead	ND	3.0	"	"	"	"		"		
Molybdenum	ND	5.0	"	"	"	"		"		
Nickel	5.7	2.0	"	"	"	"	"	"		
Selenium	ND	5.0	"	"	"	"		"		
Thallium	ND	2.0	"	"	"	"	"	"		
Vanadium	15	5.0	"	"	"	"	"	"		
Zinc	28	1.0	"	"	"	"	"	"		
Cold Vapor Extraction EPA 7470/	7471									
Mercury	ND	0.10	mg/kg	1	8041325	04/13/18	04/16/18	EPA 7471A Soil		

SunStar Laboratories, Inc.

Brusca Associates Inc. PO Box 332 Roseville CA, 95661		Proje Project Numb Project Manag	ect: Lathro per: 137-00 ger: Joe Br		Reported: 04/20/18 11:17				
		S T1812	SP3-11 249-11 (So	oil)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	ies, Inc.					
Polychlorinated Binhenyls by EPA M	lethod 8082								
PCB-1016	ND	10	ug/kg	1	8041319	04/13/18	04/17/18	EPA 8082	
PCB-1221	ND	10	"	"	"	"	"	"	
PCB-1232	ND	10	"	"	"	"	"	"	
PCB-1242	ND	10	"	"	"	"	"	"	
PCB-1248	ND	10	"	"	"	"	"	"	
PCB-1254	ND	10	"	"	"	"	"	"	
PCB-1260	ND	10	"	"		"	"	"	
Surrogate: Tetrachloro-meta-xylene		87.7 %	35-	140	"	"	"	"	
Surrogate: Decachlorobiphenvl		83.4 %	35-	140	"	"	"	"	
	EDA M.4L. 1 9270C								
Semivolatile Organic Compounds by	<u>PEPA Metnod 82/0C</u>	200			0041221	04/12/10	04/17/10	ED4 0270C	
Carbazole	ND	300	ug/kg	1	8041321	04/13/18	04/1//18	EPA 82/0C	
	ND	1000							
2 Chlorophonol	ND	1000		"					
1.4 Dishlarahanzana	ND	200		"					
N. Nitrosodi n propulamino	ND	300		"					
1.2.4 Trickland another	ND	300		"					
4 Chlore 2 mathylphanol	ND	1000				"			
2 Methylpophthelene	ND	200				"			
2-Methylnaphthalana	ND	300				"			
	ND	300		"					
4 Nitronhanal	ND	1000		"					
2.4 Dinitratelyana	ND	200		"					
2,4-Dimuotoluene	ND	1000		"					
Purane	ND	200				"			
Aconomhthylono	ND	300				"			
Archaphthylene	ND	300		"					
Renzo (a) anthracene		200					"		
Denzo (a) anunacene		200							
Benzo (k) fluoranthera		200							
Denzo (k) iluorantnene	ND	1000							
Benzo (g,n,1) perylene	ND	1000							

SunStar Laboratories, Inc.

Brusca Associates Inc. PO Box 332 Roseville CA, 95661	Project: Lathrop 48-Ac Property Project Number: 137-002 Project Manager: Joe Brusca								
	S T1812	5 P3-11 249-11 (So	oil)						
Analyte Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes	
	SunStar L	aboratori	ies. Inc.						
Semivolatile Organic Compounds by EPA Method 8270C									
Benzo (a) nyrene ND	300	110/ko	1	8041321	04/13/18	04/17/18	FPA 8270C		
Benzyl alcohol ND	300	"	"	"	"	"	"		
Bis(2-chloroethoxy)methane ND	300	"	"	"	"				
Bis(2-chloroethyl)ether ND	300	"	"	"	"				
Bis(2-chloroisopropyl)ether ND	300	"	"	"	"	"	"		
Bis(2-ethylhexyl)phthalate ND	300	"	"	"	"	"	"		
4-Bromophenyl phenyl ether ND	300	"	"	"	"	"	"		
Butyl benzyl phthalate ND	300	"	"	"	"		"		
4-Chloroaniline ND	300	"	"	"	"		"		
2-Chloronaphthalene ND	300	"	"	"	"		"		
4-Chlorophenyl phenyl ether ND	300	"	"	"	"		"		
Chrysene ND	300	"	"	"	"		"		
Dibenz (a,h) anthracene ND	300	"	"	"	"	"	"		
Dibenzofuran ND	300	"	"	"	"		"		
Di-n-butyl phthalate ND	300	"	"	"	"		"		
1,2-Dichlorobenzene ND	300	"	"	"	"	"	"		
1,3-Dichlorobenzene ND	300	"	"	"	"	"	"		
2,4-Dichlorophenol ND	1000	"	"	"	"	"	"		
Diethyl phthalate ND	300	"	"	"	"	"	"		
2,4-Dimethylphenol ND	1000	"	"	"	"	"	"		
Dimethyl phthalate ND	300	"	"	"	"	"	"		
4,6-Dinitro-2-methylphenol ND	1000	"	"	"	"	"	"		
2,4-Dinitrophenol ND	1000	"	"	"	"	"	"		
2,6-Dinitrotoluene ND	1000	"	"	"	"	"	"		
Di-n-octyl phthalate ND	300	"	"	"	"	"	"		
Fluoranthene ND	300	"	"	"	"	"	"		
Fluorene ND	300	"	"	"	"	"	"		
Hexachlorobenzene ND	1500	"	"	"	"	"	"		
Hexachlorobutadiene ND	300	"	"	"	"	"	"		
Hexachlorocyclopentadiene ND	1000	"	"	"	"	"	"		
Hexachloroethane ND	300	"	"	"	"	"	"		
Indeno (1,2,3-cd) pyrene ND	300	"	"	"	"	"	"		

SunStar Laboratories, Inc.

Brusca Associates Inc. PO Box 332 Roseville CA, 95661		Reported: 04/20/18 11:17							
		T1812	249-11 (So	oil)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	ies, Inc.					
Semivolatile Organic Compounds by	EPA Method 8270C								
Isophorone	ND	300	ug/kg	1	8041321	04/13/18	04/17/18	EPA 8270C	
2-Methylphenol	ND	1000	"	"	"	"	"	"	
4-Methylphenol	ND	1000	"	"	"	"	"	"	
Naphthalene	ND	300	"	"	"	"	"	"	
2-Nitroaniline	ND	300	"	"	"	"	"	"	
3-Nitroaniline	ND	300	"	"	"	"	"	"	
4-Nitroaniline	ND	300	"	"	"	"	"	"	
Nitrobenzene	ND	1000	"	"	"	"	"	"	
2-Nitrophenol	ND	1000	"	"	"	"	"	"	
N-Nitrosodimethylamine	ND	300	"	"	"	"	"	"	
N-Nitrosodiphenylamine	ND	300	"	"	"	"	"	"	
2,3,5,6-Tetrachlorophenol	ND	300	"	"	"	"	"	"	
2,3,4,6-Tetrachlorophenol	ND	300	"	"	"	"	"	"	
Phenanthrene	ND	300	"	"	"	"	"	"	
Azobenzene	ND	300	"	"	"	"	"	"	
Pyridine	ND	300	"	"	"	"	"	"	
2,4,5-Trichlorophenol	ND	1000	"	"	"	"	"	"	
2,4,6-Trichlorophenol	ND	1000	"	"	"	"	"	"	
Surrogate: 2-Fluorophenol		48.4 %	15-	121	"	"	"	"	
Surrogate: Phenol-d6		59.2 %	24-	113	"	"	"	"	
Surrogate: Nitrobenzene-d5		55.9 % 21.3-119		"	"	"	"		
Surrogate: 2-Fluorobiphenyl		68.4 %	32.4	-102	"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		<i>95.9 % 18.1-105</i>				"	"	"	
Surrogate: Terphenyl-dl4		69.3 %	29.1	-130	"	"	"	"	

SunStar Laboratories, Inc.

Brusca Associates Inc. PO Box 332 Roseville CA, 95661		Proje Project Numl Project Manag	ect: Lathro ber: 137-00 ger: Joe Bri SP3-12	p 48-Ac Pro)2 usca	operty	:17			
		T1812	249-12 (So	oil)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Extractable Petroleum Hydrocarb	oons by 8015B with Silic	a Gel Cleanu	D						
C6-C12 (GRO)	ND	10	mg/kg	1	8041323	04/13/18	04/14/18	EPA 8015B	
C13-C28 (DRO)	140	10	"	"	"	"		"	
C29-C40 (MORO)	130	10	"	"	"	"	"	"	
Surrogate: p-Terphenyl		84.7 %	65-	135	"	"	"	"	
Metals by EPA 6010B									
Antimony	ND	3.0	mg/kg	1	8041326	04/13/18	04/16/18	EPA 6010B	
Silver	ND	2.0	"	"	"	"		"	
Arsenic	ND	5.0	"	"	"	"	"	"	
Barium	38	1.0	"	"	"	"	"	"	
Beryllium	ND	1.0	"	"	"	"		"	
Cadmium	ND	2.0	"	"	"	"	"	"	
Chromium	3.8	2.0	"	"	"	"	"	"	
Cobalt	3.9	2.0	"	"	"	"		"	
Copper	7.6	1.0	"	"	"	"		"	
Lead	38	3.0	"	"	"	"		"	
Molybdenum	ND	5.0	"	"	"	"		"	
Nickel	3.6	2.0	"	"	"	"		"	
Selenium	ND	5.0	"	"	"	"		"	
Thallium	ND	2.0	"	"	"	"	"	"	
Vanadium	8.3	5.0	"	"	"	"	"	"	
Zinc	22	1.0	"	"		"	"	"	
Cold Vapor Extraction EPA 7470/	7471								
Mercury	ND	0.10	mg/kg	1	8041325	04/13/18	04/16/18	EPA 7471A Soil	

SunStar Laboratories, Inc.

Brusca Associates Inc. PO Box 332 Roseville CA, 95661		Project: Lathrop 48-Ac Property Project Number: 137-002 Project Manager: Joe Brusca								
		S T1812	SP3-12 249-12 (So	oil)						
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes	
		SunStar L	aboratori	ies, Inc.						
Polychlorinated Biphenyls by EPA M	lethod 8082									
PCB-1016	ND	10	ug/kg	1	8041319	04/13/18	04/17/18	EPA 8082		
PCB-1221	ND	10	"	"		"	"	"		
PCB-1232	ND	10	"	"		"	"	"		
PCB-1242	ND	10	"	"		"	"	"		
PCB-1248	ND	10	"	"	"	"	"	"		
PCB-1254	34	10	"	"	"	"	"	"		
PCB-1260	ND	10	"	"	"	"	"	"		
Surrogate: Tetrachloro-meta-xylene		94.7 %	35-	140	"	"	"	"		
Surrogate: Decachlorobiphenyl		74.2 %	35-	140	"	"	"	"		
Semivoletile Organia Compounde by	EDA Mathad 9270C									
Semivolatile Organic Compounds by	EPA Method 82/0C	200		1	9041221	04/12/19	04/17/19	EDA 9270C		
Dhamal	ND	1000	ug/kg "	1	8041321	04/15/18	04/1//18	EPA 8270C		
Aniline	ND	200	"	"		"				
2 Chlorophonol	ND	1000	"	"		"		"		
1.4 Dishlorohanzana	ND	200	"	"		"				
N Nitrosodi p propulamina	ND	300	"	"		"				
1.2.4 Trichlorobenzene	ND	300	"	"		"		"		
4-Chloro-3-methylphenol	ND	1000	"	"		"				
1-Methylnanhthalene	ND	300	"	"		"				
2-Methylnaphthalene	ND	300	"	"		"	"			
Acenaphthene	ND	300	"	"		"	"			
4-Nitrophenol	ND	1000	"	"		"	"			
2 4-Dinitrotoluene	ND	300	"	"		"	"			
Pentachlorophenol	ND	1000	"	"		"		"		
Pyrene	ND	300	"	"		"		"		
Acenaphthylene	ND	300	"	"		"		"		
Anthracene	ND	300	"	"		"				
Benzo (a) anthracene	ND	300	"	"		"				
Benzo (b) fluoranthene	ND	300	"	"		"				
Benzo (k) fluoranthene	ND	300	"	"			"	"		
Benzo (g h i) pervlene	ND	1000	"	"			"	"		
Series (5,ii,i) perficie		1000								

SunStar Laboratories, Inc.

Brusca Associates Inc. PO Box 332 Roseville CA, 95661		Reported 04/20/18 11	: :17						
		S T1812	5P3-12 49-12 (Se	oil)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	ies, Inc.					
Semivolatile Organic Compounds by EPA	Method 8270C								
Benzo (a) pyrene	ND	300	ug/kg	1	8041321	04/13/18	04/17/18	EPA 8270C	
Benzyl alcohol	ND	300	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	300	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	300	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	300	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	300	"	"	"	"	"	"	
4-Bromophenyl phenyl ether	ND	300	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	300	"	"	"	"	"	"	
4-Chloroaniline	ND	300	"	"	"	"	"	"	
2-Chloronaphthalene	ND	300	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether	ND	300	"	"	"	"	"	"	
Chrysene	ND	300	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	300	"	"	"	"	"	"	
Dibenzofuran	ND	300	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	300	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	300	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	300	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	1000	"	"	"	"	"	"	
Diethyl phthalate	ND	300	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	1000	"	"	"	"	"	"	
Dimethyl phthalate	ND	300	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol	ND	1000	"	"	"	"	"	"	
2,4-Dinitrophenol	ND	1000	"	"	"	"	"	"	
2,6-Dinitrotoluene	ND	1000	"	"	"	"	"	"	
Di-n-octyl phthalate	ND	300	"	"	"	"	"	"	
Fluoranthene	ND	300	"	"	"	"	"	"	
Fluorene	ND	300	"	"	"	"	"	"	
Hexachlorobenzene	ND	1500	"	"	"	"	"	"	
Hexachlorobutadiene	ND	300	"	"	"	"	"	"	
Hexachlorocyclopentadiene	ND	1000	"	"	"	"	"	"	
Hexachloroethane	ND	300	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene	ND	300	"	"		"	"	"	

SunStar Laboratories, Inc.

Brusca Associates Inc. PO Box 332 Roseville CA, 95661		Proje Project Numb Project Manag	Reported: 04/20/18 11:17						
		T1812	249-12 (So	oil)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	ies, Inc.					
Semivolatile Organic Compounds by EPA M	lethod 8270C	2							
Isophorone	ND	300	ug/kg	1	8041321	04/13/18	04/17/18	EPA 8270C	
2-Methylphenol	ND	1000	"	"	"	"	"	"	
4-Methylphenol	ND	1000	"	"	"	"	"	"	
Naphthalene	ND	300	"	"	"	"	"	"	
2-Nitroaniline	ND	300	"	"	"	"	"	"	
3-Nitroaniline	ND	300	"	"	"	"	"	"	
4-Nitroaniline	ND	300	"	"	"	"	"	"	
Nitrobenzene	ND	1000	"	"	"	"	"	"	
2-Nitrophenol	ND	1000	"	"	"	"	"	"	
N-Nitrosodimethylamine	ND	300	"	"	"	"	"	"	
N-Nitrosodiphenylamine	ND	300	"	"	"	"	"	"	
2,3,5,6-Tetrachlorophenol	ND	300	"	"	"	"	"	"	
2,3,4,6-Tetrachlorophenol	ND	300	"	"	"	"	"	"	
Phenanthrene	ND	300	"	"	"	"	"	"	
Azobenzene	ND	300	"	"	"	"	"	"	
Pyridine	ND	300	"	"	"	"	"	"	
2,4,5-Trichlorophenol	ND	1000	"	"	"	"	"	"	
2,4,6-Trichlorophenol	ND	1000	"	"	"	"	"	"	
Surrogate: 2-Fluorophenol		45.2 %	15-	121	"	"	"	"	
Surrogate: Phenol-d6		53.8 %	24-	113	"	"	"	"	
Surrogate: Nitrobenzene-d5		53.0 %	21.3	-119	"	"	"	"	
Surrogate: 2-Fluorobiphenyl		63.8 %	32.4	-102	"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		82.6 %	18.1	-105	"	"	"	"	
Surrogate: Terphenyl-dl4		68.3 %	29.1	-130	"	"	"	"	

SunStar Laboratories, Inc.

Brusca Associates Inc. PO Box 332 Roseville CA, 95661		Proj Project Numl Project Manaş	ect: Lathro ber: 137-00 ger: Joe Br SP4-1	p 48-Ac Pro)2 usca	operty		Reported: 04/20/18 11:17		
		T1812	249-13 (So	oil)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	ies, Inc.					
Extractable Petroleum Hydrocarl	oons by 8015B with Silic	a Gel Cleanu	р						
C6-C12 (GRO)	ND	10	mg/kg	1	8041323	04/13/18	04/14/18	EPA 8015B	
C13-C28 (DRO)	170	10	"	"	"	"	"	"	
C29-C40 (MORO)	220	10	"	"	"	"	"	"	
Surrogate: p-Terphenyl		84.7 %	65-	135	"	"	"	"	
Metals by EPA 6010B									
Antimony	ND	3.0	mg/kg	1	8041326	04/13/18	04/16/18	EPA 6010B	
Silver	ND	2.0	"	"	"	"	"	"	
Arsenic	ND	5.0	"	"	"	"	"	"	
Barium	31	1.0	"	"	"	"	"	"	
Beryllium	ND	1.0	"	"	"	"	"	"	
Cadmium	ND	2.0	"	"	"	"	"	"	
Chromium	3.5	2.0	"	"	"	"	"	"	
Cobalt	3.2	2.0	"	"	"	"	"	"	
Copper	7.0	1.0	"	"	"	"	"	"	
Lead	25	3.0	"	"	"	"	"	"	
Molybdenum	ND	5.0	"	"	"	"	"	"	
Nickel	2.9	2.0	"	"	"	"	"	"	
Selenium	ND	5.0	"	"	"	"	"	"	
Thallium	ND	2.0	"	"	"	"	"	"	
Vanadium	7.8	5.0	"	"	"	"	"	"	
Zinc	21	1.0	"	"	"	"	"	"	
Cold Vapor Extraction EPA 7470/	7471								
Mercury	ND	0.10	mg/kg	1	8041325	04/13/18	04/16/18	EPA 7471A Soil	

SunStar Laboratories, Inc.

Brusca Associates Inc. PO Box 332 Roseville CA, 95661		Project: Lathrop 48-Ac Property Project Number: 137-002 Project Manager: Joe Brusca								
		T1812	SP4-1 249-13 (So	oil)						
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes	
		SunStar L	aboratori	es, Inc.						
Polychlorinated Biphenyls by EPA Met	thod 8082									
PCB-1016	170	10	ug/kg	1	8041319	04/13/18	04/17/18	EPA 8082		
PCB-1221	ND	10	"	"	"	"	"	"		
PCB-1232	ND	10	"	"	"	"	"	"		
PCB-1242	ND	10	"	"	"	"	"	"		
PCB-1248	ND	10	"	"	"	"	"	"		
PCB-1254	110	10	"	"	"	"	"	"		
PCB-1260	ND	10	"	"	"	"	"	"		
Surrogate: Tetrachloro-meta-xylene		88.1 %	35-	140	"	"	"	"		
Surrogate: Decachlorobiphenyl		69.7 %	35-	140	"	"	"	"		
Semivolatile Organic Compounds by F	PA Method 8270C									
Carbazole	ND	300	119/kg	1	8041321	04/13/18	04/17/18	EPA 8270C		
Phenol	ND	1000	"	"	"	"	"	"		
Aniline	ND	300		"	"	"	"	"		
2-Chlorophenol	ND	1000	"	"	"	"	"	"		
1.4-Dichlorobenzene	ND	300	"	"	"	"	"	"		
N-Nitrosodi-n-propylamine	ND	300	"	"	"	"	"			
1.2.4-Trichlorobenzene	ND	300	"	"	"	"	"			
4-Chloro-3-methylphenol	ND	1000	"	"	"	"	"			
2-Methylnaphthalene	ND	300	"	"	"	"	"			
1-Methylnaphthalene	ND	300	"	"	"	"	"	"		
Acenaphthene	ND	300	"	"	"	"	"	"		
4-Nitrophenol	ND	1000	"	"	"	"	"	"		
2,4-Dinitrotoluene	ND	300	"	"	"	"	"	"		
Pentachlorophenol	ND	1000	"	"	"	"	"	"		
Pyrene	ND	300	"	"	"	"	"	"		
Acenaphthylene	ND	300	"	"	"	"	"	"		
Anthracene	ND	300	"	"	"	"	"	"		
Benzo (a) anthracene	ND	300	"	"	"	"	"	"		
Benzo (b) fluoranthene	ND	300	"	"	"	"	"	"		
Benzo (k) fluoranthene	ND	300	"	"	"	"	"	"		
Benzo (g,h,i) perylene	ND	1000	"	"	"		"	"		

SunStar Laboratories, Inc.

Brusca Associates Inc. PO Box 332 Roseville CA, 95661		Proje Project Numb Project Manag	ect: Lathro ber: 137-00 ger: Joe Br	op 48-Ac Pro 02 usca	perty			Reported : 04/20/18 11	Reported: 04/20/18 11:17	
			SP4-1							
		T1812	249-13 (So	oil)						
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes	
		SunStar L	aboratori	ies, Inc.						
Semivolatile Organic Compounds by	EPA Method 8270C									
Benzo (a) pyrene	ND	300	ug/kg	1	8041321	04/13/18	04/17/18	EPA 8270C		
Benzyl alcohol	ND	300	"	"	"	"	"	"		
Bis(2-chloroethoxy)methane	ND	300	"	"	"	"	"	"		
Bis(2-chloroethyl)ether	ND	300	"	"	"	"	"	"		
Bis(2-chloroisopropyl)ether	ND	300	"	"	"	"	"	"		
Bis(2-ethylhexyl)phthalate	ND	300	"	"	"	"	"	"		
4-Bromophenyl phenyl ether	ND	300	"	"	"	"	"	"		
Butyl benzyl phthalate	ND	300	"	"	"	"	"	"		
4-Chloroaniline	ND	300	"	"	"	"	"	"		
2-Chloronaphthalene	ND	300	"	"	"	"	"	"		
4-Chlorophenyl phenyl ether	ND	300	"	"	"	"	"	"		
Chrysene	ND	300	"	"	"	"	"	"		
Dibenz (a,h) anthracene	ND	300	"	"	"	"	"	"		
Dibenzofuran	ND	300	"	"	"	"	"	"		
Di-n-butyl phthalate	ND	300	"	"	"	"	"	"		
1,2-Dichlorobenzene	ND	300	"	"	"	"	"	"		
1,3-Dichlorobenzene	ND	300	"	"	"	"	"	"		
2,4-Dichlorophenol	ND	1000	"	"	"	"	"	"		
Diethyl phthalate	ND	300	"	"	"	"	"	"		
2,4-Dimethylphenol	ND	1000	"	"	"	"	"	"		
Dimethyl phthalate	ND	300	"	"	"	"	"	"		
4,6-Dinitro-2-methylphenol	ND	1000	"	"	"	"	"	"		
2,4-Dinitrophenol	ND	1000	"	"	"	"	"	"		
2,6-Dinitrotoluene	ND	1000	"	"	"	"	"	"		
Di-n-octyl phthalate	ND	300	"	"	"	"	"	"		
Fluoranthene	ND	300	"	"	"	"	"	"		
Fluorene	ND	300	"	"	"	"	"	"		
Hexachlorobenzene	ND	1500	"	"	"	"	"	"		
Hexachlorobutadiene	ND	300	"	"	"	"	"	"		
Hexachlorocyclopentadiene	ND	1000	"	"	"	"	"	"		
Hexachloroethane	ND	300	"	"	"	"	"	"		
Indeno (1,2,3-cd) pyrene	ND	300	"	"		"	"	"		

SunStar Laboratories, Inc.

Brusca Associates Inc. PO Box 332 Roseville CA, 95661	Project: Lathrop 48-Ac Property Project Number: 137-002 Project Manager: Joe Brusca								Reported: 04/20/18 11:17	
		T1812	51 4-1 (49-13 (So	oil)						
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes	
		SunStar L	aboratori	ies, Inc.						
Semivolatile Organic Compounds by EPA Meth	od 8270C	2								
Isophorone	ND	300	ug/kg	1	8041321	04/13/18	04/17/18	EPA 8270C		
2-Methylphenol	ND	1000	"	"	"	"	"	"		
4-Methylphenol	ND	1000	"	"	"	"	"	"		
Naphthalene	ND	300	"	"	"	"	"	"		
2-Nitroaniline	ND	300	"	"	"	"	"	"		
3-Nitroaniline	ND	300	"	"	"	"	"	"		
4-Nitroaniline	ND	300	"	"	"	"	"	"		
Nitrobenzene	ND	1000	"	"	"	"	"	"		
2-Nitrophenol	ND	1000	"	"	"	"	"	"		
N-Nitrosodimethylamine	ND	300	"	"	"	"	"	"		
N-Nitrosodiphenylamine	ND	300	"	"	"	"	"	"		
2,3,5,6-Tetrachlorophenol	ND	300	"	"	"	"	"	"		
2,3,4,6-Tetrachlorophenol	ND	300	"	"	"	"	"	"		
Phenanthrene	ND	300	"	"	"	"	"	"		
Azobenzene	ND	300	"	"	"	"	"	"		
Pyridine	ND	300	"	"	"	"	"	"		
2,4,5-Trichlorophenol	ND	1000	"	"	"	"	"	"		
2,4,6-Trichlorophenol	ND	1000	"	"	"	"	"	"		
Surrogate: 2-Fluorophenol		48.0 %	15-	121	"	"	"	"		
Surrogate: Phenol-d6		56.9 %	24-	113	"	"	"	"		
Surrogate: Nitrobenzene-d5		58.0 %	21.3	-119	"	"	"	"		
Surrogate: 2-Fluorobiphenyl		71.7 %	32.4	-102	"	"	"	"		
Surrogate: 2,4,6-Tribromophenol		84.5 %	18.1	-105	"	"	"	"		
Surrogate: Terphenyl-dl4		76.6 %	29.1	-130	"	"	"	"		

SunStar Laboratories, Inc.

Brusca Associates Inc.	Project: Lathrop 48-Ac Property	
PO Box 332	Project Number: 137-002	Reported:
Roseville CA, 95661	Project Manager: Joe Brusca	04/20/18 11:17

Extractable Petroleum Hydrocarbons by 8015B with Silica Gel Cleanup - Quality Control

SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 8041323 - EPA 3550B GC										
Blank (8041323-BLK1)				Prepared: (04/13/18 A	nalyzed: 04	/14/18			
C6-C12 (GRO)	ND	10	mg/kg							
C13-C28 (DRO)	ND	10	"							
C29-C40 (MORO)	ND	10	"							
Surrogate: p-Terphenyl	90.7		"	102		88.9	65-135			
LCS (8041323-BS1)				Prepared: (04/13/18 A	nalyzed: 04	/14/18			
C13-C28 (DRO)	410	10	mg/kg	490		83.7	75-125			
Surrogate: p-Terphenyl	79.2		"	98.0		80.8	65-135			
LCS Dup (8041323-BSD1)				Prepared: (04/13/18 A	nalyzed: 04	/14/18			
C13-C28 (DRO)	490	10	mg/kg	510		95.4	75-125	17.0	20	
Surrogate: p-Terphenyl	85.0		"	102		83.3	65-135			

SunStar Laboratories, Inc.

SunStar Laboratories, Inc. Providing Quality Analytical Services Nationwide

25712 Commercentre Drive Lake Forest, California 92630 949.297.5020 Phone 949.297.5027 Fax

Brusca Associates Inc.	Project: Lathrop 48-Ac Property	
PO Box 332	Project Number: 137-002	Reported:
Roseville CA, 95661	Project Manager: Joe Brusca	04/20/18 11:17

Metals by EPA 6010B - Quality Control

SunStar Laboratories, Inc.

	I	Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch 8041326 - EPA 3050B

Blank (8041326-BLK1)				Prepared:	04/13/18 A	analyzed: 0	4/16/18	
Antimony	ND	3.0	mg/kg					
Silver	ND	2.0	"					
Arsenic	ND	5.0	"					
Barium	ND	1.0	"					
Beryllium	ND	1.0	"					
Cadmium	ND	2.0	"					
Chromium	ND	2.0						
Cobalt	ND	2.0						
Copper	ND	1.0	"					
Lead	ND	3.0	"					
Molybdenum	ND	5.0	"					
Nickel	ND	2.0	"					
Selenium	ND	5.0	"					
Thallium	ND	2.0	"					
Vanadium	ND	5.0						
Zinc	ND	1.0						
LCS (8041326-BS1)				Prepared:	04/13/18 A	analyzed: 0	4/16/18	
Arsenic	96.4	5.0	mg/kg	100		96.4	75-125	
Barium	97.6	1.0		100		97.6	75-125	
Cadmium	97.8	2.0		100		97.8	75-125	
Chromium	97.4	2.0	"	100		97.4	75-125	
Lead	105	3.0	"	100		105	75-125	
Matrix Spike (8041326-MS1)	S	ource: T181248	-01	Prepared:	04/13/18 A	analyzed: 0	4/16/18	
Arsenic	82.6	5.0	mg/kg	96.2	1.96	83.9	75-125	
Barium	195	1.0		96.2	125	72.2	75-125	QM-05
Cadmium	84.0	2.0	"	96.2	0.911	86.4	75-125	
Chromium	109	2.0	"	96.2	29.8	82.6	75-125	
Lead	96.6	3.0	"	96.2	ND	100	75-125	

SunStar Laboratories, Inc.

SunStar Laboratories, Inc. Providing Quality Analytical Services Nationwide

25712 Commercentre Drive Lake Forest, California 92630 949.297.5020 Phone 949.297.5027 Fax

Brusca Associates Inc.	Project: Lathrop 48-Ac Property	
PO Box 332	Project Number: 137-002	Reported:
Roseville CA, 95661	Project Manager: Joe Brusca	04/20/18 11:17

Metals by EPA 6010B - Quality Control

SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 8041326 - EPA 3050B										
Matrix Spike Dup (8041326-MSD1)	Source: T181248-01			Prepared: (04/13/18 A	nalyzed: 04	/16/18			
Arsenic	86.4	5.0	mg/kg	94.3	1.96	89.6	75-125	4.51	20	
Barium	187	1.0	"	94.3	125	65.2	75-125	4.15	20	QM-05
Cadmium	82.3	2.0	"	94.3	0.911	86.3	75-125	2.00	20	
Chromium	111	2.0	"	94.3	29.8	86.3	75-125	1.80	20	

"

94.3

ND

101

75-125

1.02

20

3.0

95.6

SunStar Laboratories, Inc.

Lead

Mike Jaroudi, Project Manager

Brusca Associates Inc.	Project: Lathrop 48-Ac Property	
PO Box 332	Project Number: 137-002	Reported:
Roseville CA, 95661	Project Manager: Joe Brusca	04/20/18 11:17

Cold Vapor Extraction EPA 7470/7471 - Quality Control

SunStar Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD		
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes	
Batch 8041325 - EPA 7471A Soil											
Blank (8041325-BLK1)				Prepared: 04/13/18 Analyzed: 04/16/18							
Mercury	ND	0.10	mg/kg								
LCS (8041325-BS1)				Prepared: 04/13/18 Analyzed: 04/16/18							
Mercury	0.413	0.10	mg/kg	0.397		104	80-120				
Matrix Spike (8041325-MS1)	Sourc	e: T181248-	01	Prepared: 04/13/18 Analyzed: 04/16/18							
Mercury	0.460	0.10	mg/kg	0.403	0.0498	102	75-125				
Matrix Spike Dup (8041325-MSD1)	Sourc	e: T181248-	01	Prepared: (04/13/18 Ai	nalyzed: 04	/16/18				
Mercury	0.470	0.10	mg/kg	0.410	0.0498	103	75-125	2.10	20		

SunStar Laboratories, Inc.

Brusca Associates Inc.	Project: Lathrop 48-Ac Property	
PO Box 332	Project Number: 137-002	Reported:
Roseville CA, 95661	Project Manager: Joe Brusca	04/20/18 11:17

Polychlorinated Biphenyls by EPA Method 8082 - Quality Control

SunStar Laboratories, Inc.

Apoluto	Popult	Reporting	Unite	Spike	Source	%PEC	%REC	PPD	RPD Limit	Notos
Апатую	Kesuit	Limit	Units	Level	Kesuit	%KEU	Limits	KPD	Limit	INOLES
Batch 8041319 - EPA 3550 ECD/GCMS										
Blank (8041319-BLK1)	Prepared: 04/13/18 Analyzed: 04/17/18									
PCB-1016	ND	10	ug/kg							
PCB-1221	ND	10	"							
PCB-1232	ND	10	"							
PCB-1242	ND	10	"							
PCB-1248	ND	10	"							
PCB-1254	ND	10	"							
PCB-1260	ND	10								
Surrogate: Tetrachloro-meta-xylene	9.06		"	10.2		88.8	35-140			
Surrogate: Decachlorobiphenyl	10.6		"	10.2		104	35-140			
LCS (8041319-BS1)				Prepared: (04/13/18 Ai	nalyzed: 04	/17/18			
PCB-1016	59.6	10	ug/kg	100		59.6	40-130			
PCB-1260	64.4	10		100		64.4	40-130			
Surrogate: Tetrachloro-meta-xylene	9.02		"	10.0		90.2	35-140			
Surrogate: Decachlorobiphenyl	10.7		"	10.0		107	35-140			
Matrix Spike (8041319-MS1)	Sou	rce: T181249-	01	Prepared: (04/13/18 Ai	nalyzed: 04	/16/18			
PCB-1016	71.5	10	ug/kg	99.0	ND	72.2	40-130			
PCB-1260	62.3	10		99.0	ND	62.9	40-130			
Surrogate: Tetrachloro-meta-xylene	7.61		"	9.90		76.9	35-140			
Surrogate: Decachlorobiphenyl	8.74		"	9.90		88.2	35-140			
Matrix Spike Dup (8041319-MSD1)	Sou	rce: T181249-	01	Prepared: (04/13/18 Ai	nalyzed: 04	/16/18			
PCB-1016	68.7	10	ug/kg	102	ND	67.3	40-130	4.01	30	
PCB-1260	56.7	10	"	102	ND	55.6	40-130	9.31	30	
Surrogate: Tetrachloro-meta-xylene	7.48		"	10.2		73.3	35-140			
Surrogate: Decachlorobiphenyl	8.06		"	10.2		79.0	35-140			

SunStar Laboratories, Inc.

Mike Jaroudi, Project Manager

Brusca Associates Inc.	Project: Lathrop 48-Ac Property	
PO Box 332	Project Number: 137-002	Reported:
Roseville CA, 95661	Project Manager: Joe Brusca	04/20/18 11:17

Semivolatile Organic Compounds by EPA Method 8270C - Quality Control

SunStar Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch 8041321 - EPA 3550 ECD/GCMS

Blank (8041321-BLK1)				Prepared: 04/13/18 Analyzed: 04/17/18
Carbazole	ND	300	ug/kg	
Phenol	ND	1000	"	
Aniline	ND	300	"	
2-Chlorophenol	ND	1000	"	
1,4-Dichlorobenzene	ND	300	"	
N-Nitrosodi-n-propylamine	ND	300	"	
1,2,4-Trichlorobenzene	ND	300	"	
4-Chloro-3-methylphenol	ND	1000	"	
2-Methylnaphthalene	ND	300	"	
1-Methylnaphthalene	ND	300	"	
Acenaphthene	ND	300	"	
4-Nitrophenol	ND	1000	"	
2,4-Dinitrotoluene	ND	300	"	
Pentachlorophenol	ND	1000	"	
Pyrene	ND	300	"	
Acenaphthylene	ND	300	"	
Anthracene	ND	300	"	
Benzo (a) anthracene	ND	300	"	
Benzo (b) fluoranthene	ND	300	"	
Benzo (k) fluoranthene	ND	300	"	
Benzo (g,h,i) perylene	ND	1000	"	
Benzo (a) pyrene	ND	300	"	
Benzyl alcohol	ND	300	"	
Bis(2-chloroethoxy)methane	ND	300	"	
Bis(2-chloroethyl)ether	ND	300	"	
Bis(2-chloroisopropyl)ether	ND	300	"	
Bis(2-ethylhexyl)phthalate	ND	300	"	
4-Bromophenyl phenyl ether	ND	300	"	
Butyl benzyl phthalate	ND	300	"	
4-Chloroaniline	ND	300	"	
2-Chloronaphthalene	ND	300	"	
4-Chlorophenyl phenyl ether	ND	300	"	
Chrysene	ND	300	"	
Dibenz (a,h) anthracene	ND	300	"	
Dibenzofuran	ND	300	"	
Di-n-butyl phthalate	ND	300	"	

SunStar Laboratories, Inc.

Brusca Associates Inc.	Project: Lathrop 48-Ac Property	
PO Box 332	Project Number: 137-002	Reported:
Roseville CA, 95661	Project Manager: Joe Brusca	04/20/18 11:17

Semivolatile Organic Compounds by EPA Method 8270C - Quality Control

SunStar Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch 8041321 - EPA 3550 ECD/GCMS

Blank (8041321-BLK1)				Prepared: 04/13/18 Analyzed: 04/17/18
1,2-Dichlorobenzene	ND	300	ug/kg	
1,3-Dichlorobenzene	ND	300	"	
2,4-Dichlorophenol	ND	1000	"	
Diethyl phthalate	ND	300		
2,4-Dimethylphenol	ND	1000		
Dimethyl phthalate	ND	300		
4,6-Dinitro-2-methylphenol	ND	1000	"	
2,4-Dinitrophenol	ND	1000		
2,6-Dinitrotoluene	ND	1000		
Di-n-octyl phthalate	ND	300		
Fluoranthene	ND	300		
Fluorene	ND	300		
Hexachlorobenzene	ND	1500	"	
Hexachlorobutadiene	ND	300		
Hexachlorocyclopentadiene	ND	1000	"	
Hexachloroethane	ND	300		
Indeno (1,2,3-cd) pyrene	ND	300		
Isophorone	ND	300		
2-Methylphenol	ND	1000		
4-Methylphenol	ND	1000		
Naphthalene	ND	300		
2-Nitroaniline	ND	300	"	
3-Nitroaniline	ND	300	"	
4-Nitroaniline	ND	300	"	
Nitrobenzene	ND	1000	"	
2-Nitrophenol	ND	1000	"	
N-Nitrosodimethylamine	ND	300	"	
N-Nitrosodiphenylamine	ND	300	"	
2,3,5,6-Tetrachlorophenol	ND	300	"	
2,3,4,6-Tetrachlorophenol	ND	300	"	
Phenanthrene	ND	300	"	
Azobenzene	ND	300	"	
Pyridine	ND	300		
2,4,5-Trichlorophenol	ND	1000		
2,4,6-Trichlorophenol	ND	1000	"	

SunStar Laboratories, Inc.

Brusca Associates Inc.	Project: Lathrop 48-Ac Property	
PO Box 332	Project Number: 137-002	Reported:
Roseville CA, 95661	Project Manager: Joe Brusca	04/20/18 11:17

Semivolatile Organic Compounds by EPA Method 8270C - Quality Control

SunStar Laboratories, Inc.

Analyte	Result	Reporting	Units	Spike Level	Source Result	%RFC	%REC	RPD	RPD Limit	Notes
. mary co	Result	Linit	enits	Lever	Result	/utele	Linits	Nu D	Linit	110105
Batch 8041321 - EPA 3550 ECD/GCMS										
Blank (8041321-BLK1)				Prepared: (04/13/18 A	nalyzed: 04	/17/18			
Surrogate: 2-Fluorophenol	1750		ug/kg	3300		53.0	15-121			
Surrogate: Phenol-d6	1930		"	3300		58.6	24-113			
Surrogate: Nitrobenzene-d5	2070		"	3300		62.7	21.3-119			
Surrogate: 2-Fluorobiphenyl	2330		"	3300		70.5	32.4-102			
Surrogate: 2,4,6-Tribromophenol	2680		"	3300		81.2	18.1-105			
Surrogate: Terphenyl-dl4	2480		"	3300		75.1	29.1-130			
LCS (8041321-BS1)				Prepared: (04/13/18 A	nalyzed: 04	/17/18			
Phenol	1550	1000	ug/kg	3290		47.0	34-114			
2-Chlorophenol	1700	1000	"	3290		51.6	34-114			
1,4-Dichlorobenzene	1760	300	"	3290		53.5	34-114			
N-Nitrosodi-n-propylamine	1880	300	"	3290		57.2	30-110			
1,2,4-Trichlorobenzene	2080	300	"	3290		63.3	39-119			
4-Chloro-3-methylphenol	2210	1000	"	3290		67.2	50-130			
Acenaphthene	2210	300	"	3290		67.2	34-114			
Pentachlorophenol	2380	1000	"	3290		72.4	50-130			
Pyrene	1810	300	"	3290		55.0	30-110			
Surrogate: 2-Fluorophenol	1430		"	3290		43.4	15-121			
Surrogate: Phenol-d6	1580		"	3290		48.0	24-113			
Surrogate: Nitrobenzene-d5	1720		"	3290		52.2	21.3-119			
Surrogate: 2-Fluorobiphenyl	2080		"	3290		63.4	32.4-102			
Surrogate: 2,4,6-Tribromophenol	2520		"	3290		76.6	18.1-105			
Surrogate: Terphenyl-dl4	2200		"	3290		67.0	29.1-130			
Matrix Spike (8041321-MS1)	Sou	rce: T181249-	01	Prepared: (04/13/18 A	nalyzed: 04				
Phenol	1770	1000	ug/kg	3300	ND	53.8	34-114			
2-Chlorophenol	1820	1000	"	3300	ND	55.2	34-114			
1,4-Dichlorobenzene	1950	300	"	3300	ND	59.0	34-114			
N-Nitrosodi-n-propylamine	1860	300	"	3300	ND	56.3	30-110			
1,2,4-Trichlorobenzene	2380	300	"	3300	ND	72.1	39-119			
4-Chloro-3-methylphenol	2700	1000	"	3300	ND	81.7	50-130			
Acenaphthene	2440	300	"	3300	ND	73.8	34-114			
Pentachlorophenol	2510	1000	"	3300	ND	76.2	50-130			
Pyrene	2420	300	"	3300	654	53.5	30-110			
Surrogate: 2-Fluorophenol	1590		"	3300		48.3	15-121			
Surrogate: Phenol-d6	1870		"	3300		56.6	24-113			

SunStar Laboratories, Inc.

Brusca Associates Inc.	Project: Lathrop 48-Ac Property	
PO Box 332	Project Number: 137-002	Reported:
Roseville CA, 95661	Project Manager: Joe Brusca	04/20/18 11:17

Semivolatile Organic Compounds by EPA Method 8270C - Quality Control

SunStar Laboratories, Inc.

				· · · · ·						
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 8041321 - EPA 3550 ECD/GCMS										
Matrix Spike (8041321-MS1)	Sou	ırce: T181249-	01	Prepared: (04/13/18 A	nalyzed: 04	4/16/18			
Surrogate: Nitrobenzene-d5	1850		ug/kg	3300		56.1	21.3-119			
Surrogate: 2-Fluorobiphenyl	2380		"	3300		72.0	32.4-102			
Surrogate: 2,4,6-Tribromophenol	2780		"	3300		84.2	18.1-105			
Surrogate: Terphenyl-dl4	2330		"	3300		70.7	29.1-130			
Matrix Spike Dup (8041321-MSD1)	Source: T181249-01			Prepared: 04/13/18 Analyzed: 04/16/18						
Phenol	1630	1000	ug/kg	3260	ND	49.9	34-114	8.72	42	
2-Chlorophenol	1730	1000	"	3260	ND	53.2	34-114	4.93	40	
1,4-Dichlorobenzene	1650	300	"	3260	ND	50.7	34-114	16.4	28	
N-Nitrosodi-n-propylamine	1830	300	"	3260	ND	56.3	30-110	1.26	38	
1,2,4-Trichlorobenzene	2110	300	"	3260	ND	64.8	39-119	12.0	28	
4-Chloro-3-methylphenol	2550	1000	"	3260	ND	78.2	50-130	5.71	42	
Acenaphthene	2430	300	"	3260	ND	74.7	34-114	0.100	31	
Pentachlorophenol	2500	1000	"	3260	ND	76.7	50-130	0.579	50	
Pyrene	3330	300	"	3260	654	82.1	30-110	31.7	31	QM-07
Surrogate: 2-Fluorophenol	1310		"	3260		40.3	15-121			
Surrogate: Phenol-d6	1680		"	3260		51.7	24-113			
Surrogate: Nitrobenzene-d5	1690		"	3260		51.9	21.3-119			
Surrogate: 2-Fluorobiphenyl	2170		"	3260		66.6	32.4-102			
Surrogate: 2,4,6-Tribromophenol	2790		"	3260		85.5	18.1-105			
Surrogate: Terphenyl-dl4	2440		"	3260		74.9	29.1-130			

SunStar Laboratories, Inc.

Brusca Associates Inc.	Project: Lathrop 48-Ac Property	
PO Box 332	Project Number: 137-002	Reported:
Roseville CA, 95661	Project Manager: Joe Brusca	04/20/18 11:17

Notes and Definitions

- QM-07 The spike recovery and or RPD was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery.
- QM-05 The spike recovery was outside acceptance limits for the MS and/or MSD due to possible matrix interference. The LCS was within acceptance criteria. The data is acceptable as no negative impact on data is expected.
- DET Analyte DETECTED
- ND Analyte NOT DETECTED at or above the reporting limit
- NR Not Reported
- dry Sample results reported on a dry weight basis
- RPD Relative Percent Difference

SunStar Laboratories, Inc.

Mike Jaroudi, Project Manager

Client: Sample disposal Instructions: Project Manager: Phone: (116) Address: Po Relinquished by: (signature) Rélinquished by: (signature) Rélinquished by: (signature) SP3 PROVIDING QUALITY ANALYTICAL SERVICES NATIONWIDE SunStar 949-297-5020 25712 Commercentre Drive, Lake Forest, CA 92630 - 1 25 Sis SPS 2021 292 SP3 5-29 P3-2 P3-KRUSCA ASSUCATES, 19 Ĭ Sample ID Ŋ ١ 1 1 Laboratories, Inc.) 14 620 6 0 - 129 Sox 4-12-18 l o D Disposal @ \$2.00 each 9:30 そろ BRUSCA Sampled <u>C</u> Date 17/18 Rossizue Date / Time Date / Time Date / Time 113-12: 10:51 Fax: (916 10:55 20:51 (000 121 11:14 1:09 5 ŝ Time 1:26 223 1:16 :33 Ĵ 513 Received by: (signature) Received by: (signature) Rece Sample Type 147-147 Return to client 3256 by: (signature) LAR Chain of Custody Record Container Type 4-12-18 \$270 SVOLS 3260 8260 + OXÝ Pickup 9:30 Date / Time Date / Time Date / Time 8260 BTEX, OXY only 2 Date: RC 8032 Batch #: Collector: Project Name: 1546 8021 BTEX 8015M (gasoline) Chain of Custody seals XN/NA BRUSCH Turn around time: NORWAL 8015M (diesel Received good condition/cold Silic Carbon Chain ALASA 7000 Title 22 Metals Seals intact? Y/N/NA Total # of containers 181249 6020 ICP-MS Metals パーチ EDF # 3.6 Client Project #: 10 07 90 04 ŝ R 80 8 Q 02 0 ñ Laboratory ID # hotery **COC** 160914 Comments/Preservative 137-002 **Q** Notes Total # of containers

PROVIDING QUALITY ANALYTICAL SERVICES NATIONWIDE

27 April 2018

Joe Brusca Brusca Associates Inc. PO Box 332 Roseville, CA 95661 RE: Lathrop 48-Ac Property

Enclosed are the results of analyses for samples received by the laboratory on 04/14/18 08:10. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Mike Jaroudi Project Manager

Brusca Associates Inc.	Project: Lathrop 48-Ac Property	
PO Box 332	Project Number: 137-002	Reported:
Roseville CA, 95661	Project Manager: Joe Brusca	04/27/18 11:08

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
SP5-1	T181265-01	Soil	04/13/18 10:00	04/14/18 08:10

SunStar Laboratories, Inc.

Brusca Associates Inc.	Project: Lathrop 48-Ac Property	
PO Box 332	Project Number: 137-002	Reported:
Roseville CA, 95661	Project Manager: Joe Brusca	04/27/18 11:08

DETECTIONS SUMMARY

Sample ID: SP5-1	Laboratory ID:		T181265-01		
		Reporting			
Analyte	Result	Limit	Units	Method	Notes
Arsenic	31	1.0	ug/l	6020 ICP-MS	STLC
Barium	400	1.0	ug/l	6020 ICP-MS	STLC
Beryllium	1.2	1.0	ug/l	6020 ICP-MS	STLC
Chromium	47	1.0	ug/l	6020 ICP-MS	STLC
Cobalt	32	1.0	ug/l	6020 ICP-MS	STLC
Copper	55	1.0	ug/l	6020 ICP-MS	STLC
Lead	46	2.0	ug/l	6020 ICP-MS	STLC
Molybdenum	7.3	1.0	ug/l	6020 ICP-MS	STLC
Nickel	47	1.0	ug/l	6020 ICP-MS	STLC
Vanadium	200	1.0	ug/l	6020 ICP-MS	STLC
Zinc	220	1.0	ug/l	6020 ICP-MS	STLC

SunStar Laboratories, Inc.

Brusca Associates Inc. PO Box 332 Roseville CA, 95661	Proje Project Numb Project Manag	ect: Lathro per: 137-0 ger: Joe Bi	op 48-Ac Pro 02 rusca	perty			Reported: 04/27/18 11:	08
	T1812	SP5-1 265-01 (Se	oil)					
Analyte Resu	Reporting lt Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	SunStar L	aborator	ies, Inc.					
Metals by EPA 6020 Method								
Antimony N	D 1.0	ug/l	1	8042318	04/23/18	04/26/18	6020 ICP-MS	STLC
Arsenic 3	1 1.0	"	"	"	"	"	"	STLC
Barium 40	0 1.0	"		"	"	"	"	STLC
Beryllium 1.	2 1.0	"		"	"	04/27/18	"	STLC
Cadmium N	D 1.0	"	"	"	"	04/26/18	"	STLC
Chromium 4	7 1.0	"		"	"	"	"	STLC
Cobalt 3	2 1.0	"		"	"	"	"	STLC
Copper 5	5 1.0	"	"	"	"	"	"	STLC
Lead 4	6 2.0	"	"	"	"	"	"	STLC
Mercury N	D 0.10	"	"	"	"	"	"	STLC
Molybdenum 7.	3 1.0	"	"	"	"	"	"	STLC
Nickel 4	7 1.0	"	"	"	"	"	"	STLC
Selenium	D 5.0	"	"	"	"	"	"	STLC
Silver	D 1.0	"	"	"	"	"	"	STLC
Thallium	D 1.0	"	"	"	"	"	"	STLC
Vanadium 20	0 1.0	"	"	"	"	"	"	STLC
Zinc 22	0 1.0	"	"	"			"	STLC

SunStar Laboratories, Inc.

Brusca Associates Inc.	Project: Lathrop 48-Ac Property	
PO Box 332	Project Number: 137-002	Reported:
Roseville CA, 95661	Project Manager: Joe Brusca	04/27/18 11:08

Metals by EPA 6020 Method - Quality Control

SunStar Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch 8042318 - STLC Metals

Blank (8042318-BLK1)	Prepared: 04/23/18 Analyzed: 04/26/18								
Antimony	ND	1.0	ug/l						
Arsenic	ND	1.0							
Barium	ND	1.0							
Beryllium	ND	1.0							
Cadmium	ND	1.0	"						
Chromium	ND	1.0	"						
Cobalt	ND	1.0	"						
Copper	ND	1.0	"						
Lead	ND	2.0	"						
Mercury	ND	0.10	"						
Molybdenum	ND	1.0	"						
Nickel	ND	1.0	"						
Selenium	ND	5.0	"						
Silver	ND	1.0	"						
Thallium	ND	1.0	"						
Vanadium	ND	1.0	"						
Zinc	ND	1.0	"						
LCS (8042318-BS1)				Prepared: 04/23/1					
Arsenic	57.4	1.0	ug/l	50.0	115	80-120			
Barium	56.4	1.0	"	50.0	113	80-120			
Cadmium	56.5	1.0	"	50.0	113	80-120			
Chromium	55.6	1.0	"	50.0	111	80-120			
Lead	56.2	2.0	"	50.0	112	80-120			
Duplicate (8042318-DUP1)	Source: T181179-06			Prepared: 04/23/18 Analyzed: 04/26/18					
Barium	548	5.0	ug/l	52	21		4.95	200	
Chromium	54.5	5.0	"	53	.8		1.28	200	

SunStar Laboratories, Inc.

Mike Jaroudi, Project Manager

Brusca Associates Inc.	Project: Lathrop 48-Ac Property	
PO Box 332	Project Number: 137-002	Reported:
Roseville CA, 95661	Project Manager: Joe Brusca	04/27/18 11:08

Metals by EPA 6020 Method - Quality Control

SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 8042318 - STLC Metals										
Matrix Spike (8042318-MS1)	Sou	rce: T181179-(06	Prepared:	04/23/18 A	nalyzed: 04	4/26/18			
Arsenic	72.5	1.0	ug/l	50.0	27.8	89.2	75-125			
Barium	611	1.0		50.0	521	178	75-125			QM-PS
Cadmium	46.0	1.0		50.0	0.966	90.1	75-125			
Chromium	121	1.0		50.0	53.8	134	75-125			QM-PS
Lead	168	2.0	"	50.0	112	112	75-125			
Matrix Spike Dup (8042318-MSD1)	Sou	rce: T181179-(06	Prepared: (04/23/18 A	nalyzed: 04	4/26/18			
Arsenic	73.4	1.0	ug/l	50.0	27.8	91.2	75-125	1.36	20	
Barium	595	1.0	"	50.0	521	147	75-125	2.61	20	QM-PS
Cadmium	47.4	1.0	"	50.0	0.966	92.9	75-125	2.97	20	
Chromium	124	1.0	"	50.0	53.8	141	75-125	2.85	20	QM-PS
Lead	164	2.0	"	50.0	112	104	75-125	2.22	20	
Post Spike (8042318-PS1)	Sou	rce: T181179-(06	Prepared:	04/23/18 A	nalyzed: 04	4/26/18			
Barium	287		ug/l	25.0	261	104	80-120			
Chromium	56.2			25.0	26.9	117	80-120			

SunStar Laboratories, Inc.

Roseville CA, 95661	Project Manager: Joe Brusca	04/27/18 11:08
PO Box 332	Project Number: 137-002	Reported:
Brusca Associates Inc.	Project: Lathrop 48-Ac Property	

Notes and Definitions

- STLC Sample prepared in accordance with CCR Chapter 11, Article 5, Appendix II, Waste Extraction Test (WET).
- QM-PS The percent recovery and/or RPD are outside acceptance criteria. Results accepted based upon percent recovery results in the post spike and/or serial dilution.
- DET Analyte DETECTED
- ND Analyte NOT DETECTED at or above the reporting limit
- NR Not Reported
- dry Sample results reported on a dry weight basis
- RPD Relative Percent Difference

SunStar Laboratories, Inc.

Mike Jaroudi, Project Manager

|--|

May 2, 2018

FAL Project ID: 11472

Mr. Joe Brusca Brusca Associates 7633 Stonewood Court Granite Bay, CA 95746

Dear Mr. Brusca,

The following results are associated with Frontier Analytical Laboratory project **11472**. This corresponds to your **Lathrop 48-Ac Property** project under project number **137-002**. Four solid samples were received on 4/13/2018 in good condition. These samples were extracted and analyzed by EPA Method 1613 for tetra through octa chlorinated dibenzo dioxins and furans. The Toxic Equivalency (TEQ) for your samples has been calculated using the 2005 World Health Organization's (WHO's) toxic equivalency factors (TEFs). The total TEQ is reported on the upper right hand corner of each sample data sheet. Brusca Associates requested a turnaround time of fifteen business days for project **11472**.

The following report consists of an Analytical Data section and a Sample Receipt section. The Analytical Data section contains our sample tracking log and the analytical results. The Sample Receipt section contains your chain of custody, our sample login form and a sample photo. The attached results are specifically for the samples referenced in this report only. These results meet all NELAC requirements and shall not be reproduced except in full. Frontier Analytical Laboratory's State of Oregon NELAP certificate number is **4041**. Our State of California ELAP certificate number is **2934**. This report has been emailed to you as a portable document format (PDF) file. A hardcopy will not be sent to you unless specifically requested.

If you have any questions regarding project **11472**, please contact me at (916) 934-0900. Thank you for choosing Frontier Analytical Laboratory for your analytical testing needs.

Sincerely,

Bradley B. Silverbush Director of Operations

Frontier Analytical Laboratory

Sample Tracking Log

FAL Project ID: 11472

Received on: 04/13/2018 Project Due: 05/07/2018 Storage: <u>R-3</u> FAL Client Client Requested Sampling Sampling Hold Time Sample ID Dup Project ID Sample ID Method Matrix Date Time Due Date EPA 1613 D/F 11472-001-SA 0 137-002 SP5-1 Solid 04/13/2018 10:00 am 04/15/2019 11472-002-SA SP5-2 EPA 1613 D/F 04/13/2018 0 137-002 Solid 10:04 am 04/15/2019 11472-003-SA 0 137-002 SP5-3 EPA 1613 D/F Solid 04/13/2018 10:06 am 04/15/2019 11472-004-SA 0 137-002 SP5-4 EPA 1613 D/F Solid 04/13/2018 10:09 am 04/15/2019

FAL ID: 11472-001-MB Client ID: Method Blank Matrix: Solid Batch No: X4493	Date E Date R Amoun	eceived: 04-3 eceived: NA ht: 5.00 g	30-2018	ICal: PCD GC Colum Units: pg/g	DFAL4-12- nn: DB5MS 9	20-17	Acquired: 05 2005 WHO T Basis: Dry W	-01-2018 TEQ: 0.0 /eight	
Compound	Conc	DL	Qual	2005 WHO Tox	MDL	Compound	Conc	DL	Qual
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD 0CDD	ND ND ND ND ND ND	0.151 0.182 0.197 0.221 0.191 0.180 0.314		- - - -	0.0273 0.0570 0.0793 0.0940 0.0823 0.0842 0.172	Total TCDD Total PeCDD Total HxCDD Total HxCDD	ND ND ND ND	0.151 0.182 0.221 0.180	
2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF 1,2,3,4,7,8,9-HpCDF 0CDF	ND ND ND ND ND ND ND ND	0.116 0.140 0.141 0.126 0.137 0.132 0.160 0.122 0.211 0.225			0.0269 0.0449 0.0468 0.0437 0.0574 0.0574 0.0657 0.0747 0.0883 0.170	Total TCDF Total PeCDF Total HxCDF Total HxCDF	ND ND ND ND	0.116 0.141 0.160 0.211	
Internal Standards 13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HxCDD 13C-2,3,7,8-PeCDF 13C-2,3,4,7,8-PeCDF 13C-1,2,3,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,7,8,9-HxCDF 13C-1,2,3,4,7,8,9-HxCDF 13C-1,2,3,4,7,8,9-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,7,8,9-HxCDF 13C-1,2,3,4,7,8,9-HxCDF 13C-1,2,3,4,7,8,9-HxCDF 13C-1,2,3,4,7,8,9-HxCDF 13C-1,2,3,4,7,8,9-HxCDF 13C-1,2,3,4,7,8,9-HxCDF 13C-1,2,3,4,7,8,9-HxCDF 13C-1,2,3,4,7,8,9-HxCDF 13C-1,2,3,4,7,8,9-HxCDF 13C-1,2,3,4,7,8,9-HxCDF 13C-1,2,3,4,7,8,9-HxCDF 13C-1,2,3,4,7,8,9-HxCDF 13C-1,2,3,4,7,8,9-HxCDF 13C-1,2,3,4,7,8,9-HxCDF 13C-1,2,3,4,7,8,9-HxCDF 13C-1,2,3,4,7,8,9-HxCDF 13C-1,2,3,4,7,8,9-HxCDF 13C-1,2,3,4,7,8,9-HxCDF14,4,4,4,4,4,4,4,4,4	% Rec 104 107 110 105 101 111 104 108 99.4 98.5 99.1 97.8 98.8 75.9 97.2	QC Limits 25.0 - 164 25.0 - 181 32.0 - 141 28.0 - 130 23.0 - 140 17.0 - 157 24.0 - 169 24.0 - 185 21.0 - 178 26.0 - 152 26.0 - 123 28.0 - 136 29.0 - 147 28.0 - 138 17.0 - 157	Qual		A IS B A C C D F DNQ A F A J A ND A NP N P F S S X M * F	sotopic Labeled S signal to noise ratio Analyte is present Chemical Interfere Presence of Diphe Analyte concentrat Analyte concentrat Maximum possible Analyte Not Detect Not Provided Pre-filtered through Sample acceptance Matrix interference Result taken from	tandard outsi o is >10:1 in Method Bla nce nyl Ethers ion is below o ion is above on on second ion is below o concentratio ed at Detecti n a Whatman e criteria not s dilution or rei	de QC range ank calibration ra calibration ra ary column calibration ra n on Limit Lev 0.7um GF/F met njection	e but inge ange inge el [:] filter
37CI-2,3,7,8-TCDD	94.0	35.0 - 197			·				

Analyst: Date: 5/2/2018

Reviev	ved By:	SPV
Date:	5/2/20	18

FAL ID: 11472-001-OPR Client ID: OPR Matrix: Solid Batch No: X4493	Date Extracted: 04-30-2018 Date Received: NA Amount: 5.00 g	ICal: PCDDFAL4-12-20-17 GC Column: DB5MS Units: ng/ml	Acquired: 05-01-2018 2005 WHO TEQ: NA
Compound	Conc QC Limits Qu	al	
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD OCDD	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		
2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,4,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF 0CDF	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
Internal Standards	% Rec QC Limits Qu	al	
13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,6,7,8-HpCDD 13C-0CDD 13C-2,3,7,8-TCDF 13C-1,2,3,7,8-PeCDF 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,7,8,9-HxCDF 13C-1,2,3,4,7,8,9-HxCDF 13C-0CDF	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	AIsotopic Lab signal to noi:BAnalyte is prCChemical IniDPresence ofDNQAnalyte condEAnalyte condFAnalyte condJAnalyte condJAnalyte condMMaximum poNDAnalyte NotNPNot ProvidedPPre-filtered tSSample accode	eled Standard outside QC range but se ratio is >10:1 esent in Method Blank terference Diphenyl Ethers centration is below calibration range centration is above calibration range firmation on secondary column centration is below calibration range ossible concentration Detected at Detection Limit Level d hrough a Whatman 0.7um GF/F filter eptance criteria not met
Cleanup Surrogate	72 0 31 0 101	X Matrix interfe * Result taken	erences from dilution or reinjection
37 CI-2, 3, 7, 0- I CDD	12.0 31.0 - 191		

Analyst: Date: 5/2/2018

Reviewed By:_	DPV
Date: 5/2/20)18

FAL ID: 11472-001-SA Client ID: SP5-1 Matrix: Solid Batch No: X4493	Date Extracted: 04-30-2018 Date Received: 04-13-2018 Amount: 5.01 g % Solids: 88.35			ICal: PCD GC Colun Units: pg/	DFAL4-12-2 nn: DB5MS g	20-17 A 2 E	acquired: 05- 005 WHO T asis: Dry W	01-2018 EQ: 0.759 eight	
Compound	Con	ic DL	Qual	2005 WHO Tox	MDL	Compound	Conc	DL	Qual
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD 0CDD	Ni Ni 0.95 0.69 16. 10	D 0.226 D 0.227 D 0.213 3 - 6 - 1 - 4 -	J J	- 0.0953 0.0696 0.161 0.0312	0.0273 0.0570 0.0793 0.0940 0.0823 0.0842 0.172	Total TCDD Total PeCDD Total HxCDD Total HxCDD	ND 0.602 7.07 29.2	0.226 - - -	J
2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF 0,00000000000000000000000000000000000	0.81 NI 0.54 0.50 0.37 0.33 NI 3.2 NI 6.4	5 - D 0.178 7 - 7 - 9 - 6 - D 0.219 4 - D 0.262 5 -	ן ר ר ר ר ר	0.0815 0.164 0.0507 0.0379 0.0336 0.0324 0.00194	0.0269 0.0449 0.0468 0.0437 0.0417 0.0574 0.0657 0.0747 0.0883 0.170	Total TCDF Total PeCDF Total HxCDF Total HpCDF	3.42 3.71 5.28 8.39		J
Internal Standards 13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-1,2,3,7,8-PeCDF 13C-2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF	% Rec 78.5 88.5 109 105 89.2 90.8 79.1 92.7 95.4 99.2 95.2 93.3 82.9 78.5 82.2 84.2	QC Limits 25.0 - 164 25.0 - 181 32.0 - 141 28.0 - 130 23.0 - 140 17.0 - 157 24.0 - 169 24.0 - 185 21.0 - 178 26.0 - 152 26.0 - 123 28.0 - 136 29.0 - 147 28.0 - 143 26.0 - 138 17.0 - 157	Qual		A IS B A C D P DNQ A E A F A M D N P A N P S S X K *	sotopic Labeled Sta ignal to noise ratio malyte is present in Presence of Diphen malyte concentratio malyte concentratio malyte concentratio malyte concentratio Maximum possible of malyte Not Detecte lot Provided Pre-filtered through Sample acceptance Matrix interferences Result taken from di	Indard outsi is >10:1 Method Blace yl Ethers in is below of in is above of on is above of on seconda on seconda on seconda on seconda on a seconda o	de QC rang ank calibration ra calibration ra ary column calibration ra n on Limit Lev 0.7um GF/F met	e but ange ange rel F filter
37CI-2,3,7,8-TCDD	72.4	35.0 - 197							

U Analyst: Date: 5/2/2018

Reviewed By:	DPV
Date: 5/2/20	18

FAL ID: 11472-002-SA Client ID: SP5-2 Matrix: Solid Batch No: X4493	Date Date Amo % So	Date Extracted: 04-30-2018 Date Received: 04-13-2018 Amount: 5.03 g % Solids: 92.60		ICal: PCD GC Colun Units: pg/	DFAL4-12-2 nn: DB5MS ′g	0-17 A 2 E	acquired: 05- 005 WHO T Basis: Dry We	01-2018 EQ: 0.670 eight	
Compound	Con	ic DL	Qual	2005 WHO Tox	MDL	Compound	Conc	DL	Qual
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD 0CDD	N N 0.73 0.58 10. 73.	D 0.189 D 0.287 D 0.213 6 - 9 - 9 - 3 -	J L	0.0736 0.0589 0.109 0.0220	0.0273 0.0570 0.0793 0.0940 0.0823 0.0842 0.172	Total TCDD Total PeCDD Total HxCDD Total HxCDD	ND ND 5.21 20.4	0.189 0.287 -	
2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF 0CDF	0.82 0.26 0.47 0.57 0.45 0.40 N 2.6 N 5.9	9 - 9 - 8 - 2 - 9 - 7 - D 0.159 6 - D 0.246 5 -	ן ר ר ר ר ר	0.0829 0.00807 0.143 0.0572 0.0459 0.0407 - - 0.0266 - 0.00179	0.0269 0.0449 0.0468 0.0437 0.0417 0.0574 0.0657 0.0747 0.0883 0.170	Total TCDF Total PeCDF Total HxCDF Total HpCDF	4.70 4.34 4.67 6.39		J
Internal Standards 13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,6,7,8-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-2,3,7,8-PeCDF 13C-2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,7,8,9-HxCDF	% Rec 85.9 93.1 112 108 98.8 89.6 82.8 94.7 94.6 103 99.3 98.4 88.7 80.9 85.6 84.9	QC Limits 25.0 - 164 25.0 - 181 32.0 - 141 28.0 - 130 23.0 - 140 17.0 - 157 24.0 - 169 24.0 - 185 21.0 - 178 26.0 - 152 26.0 - 123 28.0 - 136 29.0 - 147 28.0 - 138 17.0 - 157	Qual		A lsc sig B Ar C Ct D Pr DNQ Ar F Ar J Ar M Ma ND Ar NP Nc P Pr S Sa X Ma * Re	otopic Labeled Sta gnal to noise ratio nalyte is present in nemical Interferen esence of Diphen nalyte concentration nalyte concentration nalyte concentration aximum possible of nalyte Not Detected of Provided te-filtered through ample acceptances esult taken from di	andard outsio is >10:1 I Method Bla ce yl Ethers on is below c on is below c concentration d at Detectio a Whatman criteria not r	de QC range nk alibration ra alibration ra alibration ra n bn Limit Lev 0.7um GF/F net jection	e but ange ange ange el
37CI-2,3,7,8-TCDD	76.2	35.0 - 197							

U Analyst: Date: 5/2/2018

Reviewed By:	DPV
Date: 5/2/20	18

FAL ID: 11472-003-SA Client ID: SP5-3 Matrix: Solid Batch No: X4493	Date Date Amo % Se	Extracted: 04- Received: 04- ount: 5.03 g olids: 90.60	30-2018 13-2018	ICal: PCE GC Colur Units: pg/	0DFAL4-12-20 nn: DB5MS /g)-17	Acquired: 05-01-2018 2005 WHO TEQ: 1.24 Basis: Dry Weight		
Compound	Cor	nc DL	Qual	2005 WHO Tox	MDL	Compound	Conc	DL	Qual
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD OCDD	N 0.34 0.91 0.49 12 82	D 0.204 40 - 1D 0.279 10 - 99 - .7 - .4 -	J J J	0.340 0.0910 0.0499 0.127 0.0247	0.0273 0.0570 0.0793 0.0940 0.0823 0.0842 0.172	Total TCDD Total PeCDD Total HxCDD Total HpCDD	0.472 2.65 6.81 24.6	- - -	L L
2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF 0,2DF	1.0 0.27 0.74 0.92 0.56 0.48 0.37 2.9 0.55 5.7	04 - 72 - 17 - 20 - 35 - 34 - 72 - 31 - 56 - 75 -	J J J J J J J J	0.104 0.00816 0.224 0.0920 0.0565 0.0484 0.0372 0.0291 0.00556 0.00173	0.0269 0.0449 0.0468 0.0437 0.0417 0.0574 0.0657 0.0747 0.0883 0.170	Total TCDF Total PeCDF Total HxCDF Total HpCDF	5.58 5.24 6.19 7.89	- - -	М
Internal Standards 13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,4,6,7,8-HpCDD 13C-2,3,7,8-PeCDF 13C-1,2,3,7,8-PeCDF 13C-1,2,3,4,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF 13C-1,2,3,4,7,8,9-HpCDF	% Rec 81.6 90.1 112 110 97.8 91.7 80.4 95.3 98.1 102 99.8 96.1 88.5 84.6 83.3 88.4	QC Limits 25.0 - 164 25.0 - 181 32.0 - 141 28.0 - 130 23.0 - 140 17.0 - 157 24.0 - 169 24.0 - 185 21.0 - 178 26.0 - 152 26.0 - 152 26.0 - 123 28.0 - 136 29.0 - 147 28.0 - 138 17.0 - 157	Qual		A lsc sig B An C Ch D Pre DNQ An E An F An J An M Ma ND An NP No P Pre S Sa X Ma * Re	atopic Labeled St inal to noise ratic alyte is present i memical Interferer esence of Dipher alyte concentrati alyte concentration alyte concentration aly	andard outside b is >10:1 n Method Blar nce nyl Ethers on is below ca on is above ca on on secondar on is below ca concentration ed at Detectior a a Whatman 0 e criteria not m s dilution or reinjo	e QC range k libration ra libration ra y column libration ra h Limit Leve .7um GF/F et ection	e but inge inge el : filter
37CI-2,3,7,8-TCDD	73.6	35.0 - 197							

Analyst: Date: 5/2/2018

Reviewe	ed By:&	PV
Date:	5/2/2018	

FAL ID: 11472-004-SA Client ID: SP5-4 Matrix: Solid Batch No: X4493	Date Extracted: 04-30-2018ICal: IDate Received: 04-13-2018GC CAmount: 5.01 gUnits:% Solids: 91.50		ICal: PCD GC Colum Units: pg/g	DFAL4-12-20 nn: DB5MS g	-17 A 2 E	Acquired: 05-02-2018 2005 WHO TEQ: 0.539 Basis: Dry Weight			
Compound	Con	nc DL	Qual	2005 WHO Tox	MDL	Compound	Conc	DL	Qual
2,3,7,8-TCDD 1,2,3,7,8-PeCDD 1,2,3,4,7,8-HxCDD 1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD 1,2,3,4,6,7,8-HpCDD 0CDD	N 0.44 0.97 0.80 15. 90.	D 0.193 D 0.231 1 - 16 - 6 - 0 -	L L L	0.0441 0.0971 0.0806 0.156 0.0270	0.0273 0.0570 0.0793 0.0940 0.0823 0.0842 0.172	Total TCDD Total PeCDD Total HxCDD Total HpCDD	ND 2.34 10.1 30.6	0.193 - - -	J
2,3,7,8-TCDF 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF 0,2DF	N N 0.32 N N N 3.0 0.39 6.7	D 0.226 D 0.191 4 - D 0.289 D 0.266 D 0.283 D 0.344 47 - 99 -	J J J	0.0972 - - 0.0307 0.00399 0.00204	0.0269 0.0449 0.0468 0.0437 0.0417 0.0574 0.0657 0.0747 0.0883 0.170	Total TCDF Total PeCDF Total HxCDF Total HxCDF	0.380 1.62 3.21 9.66		L L L
Internal Standards 13C-2,3,7,8-TCDD 13C-1,2,3,7,8-PeCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,4,7,8-HxCDD 13C-1,2,3,4,6,7,8-HxCDD 13C-2,3,7,8-TCDF 13C-2,3,7,8-PeCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,7,8-HxCDF 13C-1,2,3,4,6,7,8-HxCDF 13C-1,2,3,4,7,8,9-HyCDF 13C-1,2,	% Rec 81.6 89.8 110 108 95.1 90.6 79.4 95.8 95.5 97.0 94.2 94.8 85.5 79.6 80.0 87.1	QC Limits 25.0 - 164 25.0 - 181 32.0 - 141 28.0 - 130 23.0 - 140 17.0 - 157 24.0 - 169 24.0 - 178 26.0 - 123 28.0 - 136 29.0 - 147 28.0 - 143 26.0 - 138 17.0 - 157	Qual		A Iso A sigu B Ana C Chu D Pre DNQ Ana E Ana F Ana J Ana M Ma ND Ana NP Not P Pre S Sau X Ma * Res	topic Labeled Sta nal to noise ratio alyte is present ir emical Interferen esence of Diphen alyte concentration alyte concentr	andard outsio is >10:1 n Method Bla ce yl Ethers on is below c on is above c n on seconda on is below c concentratior d at Detection a Whatman criteria not r	de QC range nk alibration ra alibration ra ary column alibration ra n Di Limit Lev 0.7um GF/F net jection	e but ange ange el filter
37CI-2,3,7,8-TCDD	73.4	35.0 - 197			L			-	

U Analyst: Date: 5/2/2018

Review	wed By:	SPV
Date:	5/2/20	18

E E E E E E E E E E E E E E E E E E E	rontier Analytical Laborat 172 Hillsdale Circle 1 Dorado Hills, CA 95762 el: 916-934-0900 ax: 916-934-0999	ory <i>FAL U</i> Labora Tempe	<i>SE Ol</i> tory Pi ature:	VLY roject	No.: <i>O</i>	°C	14	7	2_			Cł www Plea	fron se Pi	n of Custody tieranalytical.com tint in Pen Page _ of
CLIENT INFORMATION Company Name: Brusca Asso Contact Name: Joe Brusca Address: PO Box 332, Rosevil Phone: 916-677-1470 Email: jbrusca@bruscaassocia	le, CA 95661 Fax: tes.com	INVOICE I Company Na Contact Nam Address: Phone: Email:	NFOR me: Sa e:		TION Fax:	(if diffe	erent fr	om cli	ent inf	o) H F F F F F F F F F F	PROJ FAL (P.O. # Projec Projec FAT (FAL	ECT Juote t #: t Nar busine mus	INF #: 3 (3 ne:	ORMATION 310 7-002 A71+B0P $49-Ae$ Property $s): 15 10 5* 3* (\sqrt{one})$ where and RUSH TAT in writing.
Report Level: I/II EDD: FAL Bas Other:	III I IV ic Geotracker Custom: Contac Water Form	t FAL	py If inclu .pdf inc	ding f	EDDs g EDI	if req Ds if r	ueste eques	d) sted)		100)	K	at	h	D to Joe · 15-TAT.
System #: Sampler: Sample ID	Source #: Employer: Date Colle	Time Matri	# of containers	EPA 1613**	EPA 8290**	DLM 02.0	EPA 8280**	Appendix IX	EPA TO-9/9A	EPA 23/23A	EPA 1668	FAL 15	Other	**CONGENERS **TEQ 2,3,7,8-TCDD only 1998 WHO 2,3,7,8-TCDD/F only ✓ 2005 WHO ✓ PCDD/F (Cl ₄ -Cl ₈) Other Remarks
1 SP5-1 2 SP5-2 3 SP5-3 4 SP5-4 5	4/(3/(8	10:00 SOLA. 10:04 10:06 10:09		XXXXXX										
6 7 8 9 10														Pink Copy -
11 12 13 14 15														
Relinquished by: (Signature	Samples will be dispo	sed of 90 days after sam Da 4/(3)	te 13	pt unles Tim Z: (Z	s other ie PM		ements ived	have l	Signat	ture a	d agree nd Pr	ed upo inted	n in w Nam K.Z	riting. re) Date Time -pp 4113/18 1412_

Client understands that all terms described in the proposals, quotations, and/or the general terms provided in the current FAL price schedules) boof@10000011 FAL reserves the rights to terminate its service or withhold delivery of reports, if in FAL's sole discretion the terms of the project have been broken.

Frontier Analytical Laboratory

Sample Login Form

FAL Project ID: 11472

Client:	Brusca Associates, Inc.
Client Project ID:	137-002
Date Received:	04/13/2018
Time Received:	02:12 pm
Received By:	KZ
Logged In By:	KZ
# of Samples Received:	4
Duplicates:	0
Storage Location:	R-3

Method of Delivery:	Courier
Tracking Number:	NA
Shipping Container Received Intact	Yes
Custody seals(s) present?	No
Custody seals(s) intact?	No
Sample Arrival Temperature (C)	0
Cooling Method	lce
Chain Of Custody Present?	Yes
Return Shipping Container To Client	Yes
Test aqueous sample for residual Chlorine	No
Sodium Thiosulfate Added	No
Adequate Sample Volume	Yes
Appropriate Sample Container	Yes
pH Range of Aqueous Sample	N/A
Physical Sample Container pH Range of Aqueous Sample Anomalies or additional comments:	N/A

23 April 2018

Joe Brusca Brusca Associates Inc. PO Box 332 Roseville, CA 95661 RE: Lathrop 48-Ac Property

Enclosed are the results of analyses for samples received by the laboratory on 04/14/18 08:10. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Mike Jaroudi Project Manager

Brusca Associates Inc.	Project: Lathrop 48-Ac Property	
PO Box 332	Project Number: 137-002	Reported:
Roseville CA, 95661	Project Manager: Joe Brusca	04/23/18 10:35

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
SP5-1	T181265-01	Soil	04/13/18 10:00	04/14/18 08:10
SP5-2	T181265-02	Soil	04/13/18 10:04	04/14/18 08:10
SP5-3	T181265-03	Soil	04/13/18 10:06	04/14/18 08:10
SP5-4	T181265-04	Soil	04/13/18 10:09	04/14/18 08:10

SunStar Laboratories, Inc.

Brusca Associates Inc.	Project: Lathrop 48-Ac Property	
PO Box 332	Project Number: 137-002	Reported:
Roseville CA, 95661	Project Manager: Joe Brusca	04/23/18 10:35

DETECTIONS SUMMARY

Sample ID: SP5-1	Laboratory ID:		T181265-01		
		Reporting			
Analyte	Result	Limit	Units	Method	Notes
C13-C28 (DRO)	53	10	mg/kg	EPA 8015B	
C29-C40 (MORO)	61	10	mg/kg	EPA 8015B	
Barium	59	1.0	mg/kg	EPA 6010B	
Chromium	8.6	2.0	mg/kg	EPA 6010B	
Cobalt	4.3	2.0	mg/kg	EPA 6010B	
Copper	4.4	1.0	mg/kg	EPA 6010B	
Nickel	6.2	2.0	mg/kg	EPA 6010B	
Vanadium	20	5.0	mg/kg	EPA 6010B	
Zinc	33	1.0	mg/kg	EPA 6010B	
PCB-1254	17	10	ug/kg	EPA 8082	

Sample ID: SP5-2	Laborat	T181265-02			
		Reporting			
Analyte	Result	Limit	Units	Method	Notes
C13-C28 (DRO)	70	10	mg/kg	EPA 8015B	
C29-C40 (MORO)	58	10	mg/kg	EPA 8015B	
Barium	63	1.0	mg/kg	EPA 6010B	
Chromium	6.4	2.0	mg/kg	EPA 6010B	
Cobalt	5.3	2.0	mg/kg	EPA 6010B	
Copper	4.9	1.0	mg/kg	EPA 6010B	
Nickel	7.2	2.0	mg/kg	EPA 6010B	
Vanadium	20	5.0	mg/kg	EPA 6010B	
Zinc	30	1.0	mg/kg	EPA 6010B	
PCB-1254	14	10	ug/kg	EPA 8082	
Sample ID: SP5-3	Laborat	tory ID:	T181265-03		

		•			
		Reporting			
Analyte	Result	Limit	Units	Method	Notes
C13-C28 (DRO)	35	10	mg/kg	EPA 8015B	
C29-C40 (MORO)	50	10	mg/kg	EPA 8015B	
Barium	61	1.0	mg/kg	EPA 6010B	

SunStar Laboratories, Inc.

Brusca Associates Inc. PO Box 332 Roseville CA, 95661			Reported: 04/23/18 10:35			
Sample ID:	SP5-3	Lal	ooratory ID:	T181265-03		
			Reporting			
Analyte		Result	Limit	Units	Method	Notes
Chromium		7.0	2.0	mg/kg	EPA 6010B	
Cobalt		4.5	2.0	mg/kg	EPA 6010B	
Copper		8.6	1.0	mg/kg	EPA 6010B	
Nickel		6.4	2.0	mg/kg	EPA 6010B	
Vanadium		18	5.0	mg/kg	EPA 6010B	

30

35

Sample ID: SP5-4	Laborat	T181265-04								
	Reporting									
Analyte	Result	Limit	Units	Method	Notes					
C13-C28 (DRO)	17	10	mg/kg	EPA 8015B						
C29-C40 (MORO)	56	10	mg/kg	EPA 8015B						
Barium	64	1.0	mg/kg	EPA 6010B						
Chromium	6.7	2.0	mg/kg	EPA 6010B						
Cobalt	4.9	2.0	mg/kg	EPA 6010B						
Copper	5.2	1.0	mg/kg	EPA 6010B						
Nickel	7.2	2.0	mg/kg	EPA 6010B						
Vanadium	20	5.0	mg/kg	EPA 6010B						
Zinc	31	1.0	mg/kg	EPA 6010B						

1.0

10

mg/kg

ug/kg

EPA 6010B

EPA 8082

SunStar Laboratories, Inc.

Zinc

PCB-1254

Brusca Associates Inc. PO Box 332	Project: Lathrop 48-Ac Property Project Number: 137-002 Project Manager: Joe Brussa								:
Rosevine CA, 95001		Troject Muluger. Voe Druseu							
			SP5-1						
		T1812	265-01 (So	oil)					
		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Extractable Petroleum Hydrocar	bons by 8015B with Silica	Gel Cleanu	p						
C6-C12 (GRO)	ND	10	mg/kg	1	8041214	04/18/18	04/18/18	EPA 8015B	
C13-C28 (DRO)	53	10	"	"	"	"	"	"	
C29-C40 (MORO)	61	10	"	"	"	"	"	"	
Surrogate: p-Terphenyl		107 %	65-	135	"	"	"	"	
Metals by EPA 6010B									
Antimony	ND	3.0	mg/kg	1	8041623	04/16/18	04/16/18	EPA 6010B	
Silver	ND	2.0	"	"	"	"	"	"	
Arsenic	ND	5.0	"	"	"	"	"	"	
Barium	59	1.0	"	"	"	"	"	"	
Beryllium	ND	1.0	"	"	"	"	"	"	
Cadmium	ND	2.0	"	"	"	"	"	"	
Chromium	8.6	2.0	"	"	"	"	"	"	
Cobalt	4.3	2.0	"	"	"	"	"	"	
Copper	4.4	1.0	"	"	"	"	"	"	
Lead	ND	3.0	"	"	"	"	"	"	
Molybdenum	ND	5.0	"	"	"	"	"	"	
Nickel	6.2	2.0	"	"	"	"	"	"	
Selenium	ND	5.0	"	"	"	"	"	"	
Thallium	ND	2.0	"	"	"	"	"	"	
Vanadium	20	5.0	"	"	"	"	"	"	
Zinc	33	1.0	"	"	"	"	"	"	
Cold Vapor Extraction EPA 7470/	/7471								
Mercury	ND	0.10	mg/kg	1	8041624	04/16/18	04/16/18	EPA 7471A Soil	

SunStar Laboratories, Inc.

Brusca Associates Inc.Project: Lathrop 48-Ac Property'O Box 332Project Number: 137-002Roseville CA, 95661Project Manager: Joe Brusca								Reported 04/23/18 10	:):35
		T1812	SP5-1 265-01 (So	oil)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	ies, Inc.					
Polychlorinated Binhenyls by EPA M	lethod 8082								
PCB-1016	ND	10	ug/kg	1	8041633	04/16/18	04/18/18	EPA 8082	
PCB-1221	ND	10	"	"	"	"	"	"	
PCB-1232	ND	10	"	"	"	"	"	"	
PCB-1242	ND	10	"	"	"	"	"	"	
PCB-1248	ND	10	"	"	"	"	"	"	
PCB-1254	17	10	"	"	"	"	"	"	
PCB-1260	ND	10	"	"	"	"	"	"	
Surrogate: Tetrachloro-meta-xylene		84.8 %	35-	140	"	"	"	"	
Surrogate: Decachlorobiphenyl		84.4 %	35-	140	"	"	"	"	
Somivolatile Organia Compounds by	EDA Mathad 9770C								
Semivolatile Organic Compounds by	LFA Method 6270C	200	ng/kg	1	80/162/	04/16/19	04/17/19	EDA 8270C	
Phenol	ND	1000	ug/kg	"	"	"	"	"	
Aniline	ND	300	"	"		"			
2-Chlorophenol	ND	1000	"	"		"			
1 4-Dichlorobenzene	ND	300	"	"		"			
N-Nitrosodi-n-propylamine	ND	300	"	"	"	"			
1.2.4-Trichlorobenzene	ND	300	"	"		"			
4-Chloro-3-methylphenol	ND	1000	"	"		"		"	
2-Methylnanhthalene	ND	300	"	"		"		"	
1-Methylnaphthalene	ND	300	"	"	"	"		"	
Acenaphthene	ND	300	"	"	"	"		"	
4-Nitrophenol	ND	1000	"	"	"	"		"	
2.4-Dinitrotoluene	ND	300	"	"	"	"	"	"	
Pentachlorophenol	ND	1000	"	"	"	"	"	"	
Pyrene	ND	300	"	"	"	"			
Acenaphthylene	ND	300	"	"	"	"	"	"	
Anthracene	ND	300	"	"	"	"			
Benzo (a) anthracene	ND	300	"	"	"	"	"		
Benzo (b) fluoranthene	ND	300	"	"	"	"	"		
Benzo (k) fluoranthene	ND	300	"	"	"	"	"		
Benzo (g,h,i) perylene	ND	1000	"	"		"	"	"	

SunStar Laboratories, Inc.

Brusca Associates Inc. PO Box 332 Roseville CA, 95661		Proje Project Numb Project Manag	eet: Lathro per: 137-00 ger: Joe Bi	op 48-Ac Pro 02 rusca	perty			Reported 04/23/18 10	: :35
		5 T1812	SP5-1 265-01 (Se	oil)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aborator	ies, Inc.					
Semivolatile Organic Compounds by E	PA Method 8270C								
Benzo (a) pyrene	ND	300	ug/kg	1	8041634	04/16/18	04/17/18	EPA 8270C	
Benzyl alcohol	ND	300	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	300	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	300	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	300	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	300	"	"	"	"	"	"	
4-Bromophenyl phenyl ether	ND	300	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	300	"	"	"	"	"	"	
4-Chloroaniline	ND	300	"	"	"	"	"	"	
2-Chloronaphthalene	ND	300	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether	ND	300	"	"	"	"	"	"	
Chrysene	ND	300	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	300	"	"	"	"	"	"	
Dibenzofuran	ND	300	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	300	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	300	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	300	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	1000	"	"	"	"	"	"	
Diethyl phthalate	ND	300	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	1000	"	"	"	"	"	"	
Dimethyl phthalate	ND	300	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol	ND	1000	"	"	"	"	"	"	
2,4-Dinitrophenol	ND	1000	"	"	"	"	"	"	
2,6-Dinitrotoluene	ND	1000	"	"	"	"	"	"	
Di-n-octyl phthalate	ND	300	"	"	"	"	"	"	
Fluoranthene	ND	300	"	"	"	"	"	"	
Fluorene	ND	300	"	"	"	"	"	"	
Hexachlorobenzene	ND	1500	"	"	"	"	"	"	
Hexachlorobutadiene	ND	300	"	"	"	"	"	"	
Hexachlorocyclopentadiene	ND	1000	"	"	"	"	"	"	
Hexachloroethane	ND	300	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene	ND	300	"	"	"	"	"	"	

SunStar Laboratories, Inc.

Brusca Associates Inc. PO Box 332 Roseville CA, 95661		Project: Lathrop 48-Ac Property Project Number: 137-002 Project Manager: Joe Brusca							
		T1812	885-1 265-01 (So	oil)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Semivolatile Organic Compounds by EP	A Method 8270C								
Isophorone	ND	300	ug/kg	1	8041634	04/16/18	04/17/18	EPA 8270C	
2-Methylphenol	ND	1000	"	"	"	"	"	"	
4-Methylphenol	ND	1000	"	"	"	"	"	"	
Naphthalene	ND	300	"	"	"	"	"	"	
2-Nitroaniline	ND	300	"	"	"	"	"	"	
3-Nitroaniline	ND	300	"	"	"	"	"	"	
4-Nitroaniline	ND	300	"	"	"	"	"	"	
Nitrobenzene	ND	1000	"	"	"	"	"	"	
2-Nitrophenol	ND	1000	"	"	"	"	"	"	
N-Nitrosodimethylamine	ND	300	"	"	"	"	"	"	
N-Nitrosodiphenylamine	ND	300	"	"	"	"	"	"	
2,3,5,6-Tetrachlorophenol	ND	300	"	"	"	"	"	"	
2,3,4,6-Tetrachlorophenol	ND	300	"	"	"	"	"	"	
Phenanthrene	ND	300	"	"	"	"	"	"	
Azobenzene	ND	300	"	"	"	"	"	"	
Pyridine	ND	300	"	"	"	"	"	"	
2,4,5-Trichlorophenol	ND	1000	"	"	"	"	"	"	
2,4,6-Trichlorophenol	ND	1000	"	"	"	"	"	"	
Surrogate: 2-Fluorophenol		43.4 %	15-	121	"	"	"	"	
Surrogate: Phenol-d6		54.5 %	24-	113	"	"	"	"	
Surrogate: Nitrobenzene-d5		56.1 %	21.3	-119	"	"	"	"	
Surrogate: 2-Fluorobiphenyl		65.3 %	32.4	-102	"	"	"	"	
Surrogate: 2,4,6-Tribromophenol		90.2 %	18.1	-105	"	"	"	"	
Surrogate: Terphenyl-dl4		85.5 %	29.1	-130	"	"	"	"	

SunStar Laboratories, Inc.

Brusca Associates Inc. PO Box 332 Roseville CA, 95661	J	Project: Lathrop 48-Ac Property Project Number: 137-002 Project Manager: Joe Brusca							
			SP5-2						
		T1812	265-02 (So	oil)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Extractable Petroleum Hydrocart	oons by 8015B with Silica	Gel Cleanu	þ						
C6-C12 (GRO)	ND	10	mg/kg	1	8041214	04/18/18	04/18/18	EPA 8015B	
C13-C28 (DRO)	70	10	"	"	"	"	"	"	
C29-C40 (MORO)	58	10	"	"	"	"	"	"	
Surrogate: p-Terphenyl		106 %	65-	135	"	"	"	"	
Metals by EPA 6010B									
Antimony	ND	3.0	mg/kg	1	8041623	04/16/18	04/16/18	EPA 6010B	
Silver	ND	2.0	"	"	"	"	"	"	
Arsenic	ND	5.0	"	"	"	"	"	"	
Barium	63	1.0	"	"	"	"	"	"	
Beryllium	ND	1.0	"	"	"	"	"	"	
Cadmium	ND	2.0	"	"	"	"	"	"	
Chromium	6.4	2.0	"	"	"	"	"	"	
Cobalt	5.3	2.0	"	"	"	"	"	"	
Copper	4.9	1.0	"	"	"	"	"	"	
Lead	ND	3.0	"	"	"	"	"	"	
Molybdenum	ND	5.0	"	"	"	"	"	"	
Nickel	7.2	2.0	"	"	"	"	"	"	
Selenium	ND	5.0	"	"	"	"	"	"	
Thallium	ND	2.0	"	"	"	"	"	"	
Vanadium	20	5.0	"	"	"	"	"	"	
Zinc	30	1.0	"	"	"	"	"	"	
Cold Vapor Extraction EPA 7470/	7471								
Mercury	ND	0.10	mg/kg	1	8041624	04/16/18	04/16/18	EPA 7471A Soil	

SunStar Laboratories, Inc.

Brusca Associates Inc. PO Box 332 Roseville CA, 95661		Proje Project Numb Project Manag	ect: Lathro ber: 137-00 ger: Joe Br	p 48-Ac Pro)2 usca	operty			Reported 04/23/18 10	: 1:35
		T1812	SP5-2 265-02 (So	oil)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Polychlorinated Biphenyls by EPA M	lethod 8082								
PCB-1016	ND	10	ug/kg	1	8041633	04/16/18	04/18/18	EPA 8082	
PCB-1221	ND	10	"	"	"	"	"	"	
PCB-1232	ND	10	"	"	"	"	"	"	
PCB-1242	ND	10	"	"	"	"	"	"	
PCB-1248	ND	10	"	"	"	"	"	"	
PCB-1254	14	10	"	"	"	"	"	"	
PCB-1260	ND	10	"	"	"	"	"	"	
Surrogate: Tetrachloro-meta-xylene		86.2 %	35-	140	"	"	"	"	
Surrogate: Decachlorobiphenyl		85.8 %	35-	140	"	"	"	"	
Semivoletile Organia Compounds hu	EDA Mathad 9270C								
Carbazele	ND	200	ug/kg	1	80/162/	04/16/19	04/17/18	EDA 8270C	
Phanal	ND	1000	ug/kg	"	8041034	"	"	EFA 8270C	
Aniline	ND	300	"	"		"			
2 Chlorophenol	ND	1000	"	"	"	"			
1 4-Dichlorobenzene	ND	300	"	"		"			
N-Nitrosodi-n-propylamine	ND	300	"	"	"	"			
1.2.4-Trichlorobenzene	ND	300	"	"		"	"		
4-Chloro-3-methylphenol	ND	1000	"	"	"	"			
1-Methylnanhthalene	ND	300	"	"		"	"		
2-Methylnaphthalene	ND	300	"	"		"		"	
Acenaphthene	ND	300	"	"	"	"		"	
4-Nitrophenol	ND	1000	"	"	"	"		"	
2 4-Dinitrotoluene	ND	300	"	"	"	"		"	
Pentachlorophenol	ND	1000	"	"	"	"		"	
Pvrene	ND	300	"	"	"	"	"	"	
Acenaphthylene	ND	300	"	"	"	"		"	
Anthracene	ND	300	"	"	"	"	"		
Benzo (a) anthracene	ND	300	"	"	"	"			
Benzo (b) fluoranthene	ND	300	"	"	"	"	"		
Benzo (k) fluoranthene	ND	300	"	"	"	"			
Benzo (g,h,i) perylene	ND	1000	"	"	"	"	"	"	
·····									

SunStar Laboratories, Inc.

Brusca Associates Inc. PO Box 332 Roseville CA, 95661	Proje Project Numb Project Manag	ect: Lathro per: 137-0 ger: Joe Br	op 48-Ac Pro 02 rusca	perty			Reported 04/23/18 10	:35
	T1812	SP5-2 265-02 (Se	oil)					
Analyte Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	SunStar L	aborator	ies, Inc.					
Semivolatile Organic Compounds by EPA Method 8270	0C							
Benzo (a) pyrene ND	300	ug/kg	1	8041634	04/16/18	04/17/18	EPA 8270C	
Benzyl alcohol ND	300	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane ND	300	"	"	"	"	"	"	
Bis(2-chloroethyl)ether ND	300	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether ND	300	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate ND	300	"	"	"	"	"	"	
4-Bromophenyl phenyl ether ND	300	"	"	"	"	"	"	
Butyl benzyl phthalate ND	300	"	"	"	"	"	"	
4-Chloroaniline ND	300	"	"	"	"	"	"	
2-Chloronaphthalene ND	300	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether ND	300	"	"	"	"	"	"	
Chrysene ND	300	"	"	"	"	"	"	
Dibenz (a,h) anthracene ND	300	"	"		"	"	"	
Dibenzofuran ND	300	"	"		"	"	"	
Di-n-butyl phthalate ND	300	"	"		"	"	"	
1,2-Dichlorobenzene ND	300	"	"		"	"	"	
1,3-Dichlorobenzene ND	300	"	"		"	"	"	
2,4-Dichlorophenol ND	1000	"	"		"	"	"	
Diethyl phthalate ND	300	"	"		"	"	"	
2,4-Dimethylphenol ND	1000	"	"		"	"	"	
Dimethyl phthalate ND	300	"	"		"	"	"	
4,6-Dinitro-2-methylphenol ND	1000	"	"		"	"	"	
2,4-Dinitrophenol ND	1000	"	"		"	"	"	
2,6-Dinitrotoluene ND	1000	"	"		"	"	"	
Di-n-octyl phthalate ND	300	"	"		"	"	"	
Fluoranthene ND	300	"	"	"	"	"	"	
Fluorene ND	300	"	"	"	"	"	"	
Hexachlorobenzene ND	1500	"	"	"	"	"	"	
Hexachlorobutadiene ND	300	"	"	"	"	"	"	
Hexachlorocyclopentadiene ND	1000		"		"	"	"	
Hexachloroethane ND	300		"		"	"	"	
Indeno (1,2,3-cd) pyrene ND	300	"	"		"	"	"	

SunStar Laboratories, Inc.

Brusca Associates Inc. PO Box 332 Roseville CA, 95661	Project: Lathrop 48-Ac Property Project Number: 137-002 Project Manager: Joe Brusca								Reported: 04/23/18 10:35	
		T1812	SP5-2 265-02 (So	oil)						
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes	
		SunStar L	aboratori	ies, Inc.						
Semivolatile Organic Compounds by EPA Metho	od 8270C	2								
Isophorone	ND	300	ug/kg	1	8041634	04/16/18	04/17/18	EPA 8270C		
2-Methylphenol	ND	1000	"	"	"	"	"	"		
4-Methylphenol	ND	1000	"	"	"	"	"	"		
Naphthalene	ND	300	"	"	"	"	"	"		
2-Nitroaniline	ND	300	"	"	"	"	"	"		
3-Nitroaniline	ND	300	"	"	"	"	"	"		
4-Nitroaniline	ND	300	"	"	"	"	"	"		
Nitrobenzene	ND	1000	"	"	"	"	"	"		
2-Nitrophenol	ND	1000	"	"	"	"	"	"		
N-Nitrosodimethylamine	ND	300	"	"	"	"	"	"		
N-Nitrosodiphenylamine	ND	300	"	"	"	"	"	"		
2,3,5,6-Tetrachlorophenol	ND	300	"	"	"	"	"	"		
2,3,4,6-Tetrachlorophenol	ND	300	"	"	"	"	"	"		
Phenanthrene	ND	300	"	"	"	"	"	"		
Azobenzene	ND	300	"	"	"	"	"	"		
Pyridine	ND	300	"	"	"	"	"	"		
2,4,5-Trichlorophenol	ND	1000	"	"	"	"	"	"		
2,4,6-Trichlorophenol	ND	1000	"	"	"	"	"	"		
Surrogate: 2-Fluorophenol		49.5 %	15-	121	"	"	"	"		
Surrogate: Phenol-d6		60.8 %	24-	113	"	"	"	"		
Surrogate: Nitrobenzene-d5		60.2 %	21.3	-119	"	"	"	"		
Surrogate: 2-Fluorobiphenyl		71.2 %	32.4	-102	"	"	"	"		
Surrogate: 2,4,6-Tribromophenol		94.0 %	18.1	-105	"	"	"	"		
Surrogate: Terphenyl-dl4		84.5 %	29.1	-130	"	"	"	"		

SunStar Laboratories, Inc.

TY

Brusca Associates Inc.		Project: Lathrop 48-Ac Property							
PO Box 332		Project Number: 157-002							
Koseville CA, 95001		Project Manag	gel. Jue Bl	usca				04/23/18 10	.35
			SP5-3						
		T1812	265-03 (So	oil)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Extractable Petroleum Hydrocart	oons by 8015B with Silic	a Gel Cleanu)						
C6-C12 (GRO)	ND	10	mg/kg	1	8041214	04/18/18	04/18/18	EPA 8015B	
C13-C28 (DRO)	35	10	"	"	"	"	"	"	
C29-C40 (MORO)	50	10	"	"	"	"	"	"	
Surrogate: p-Terphenyl		106 %	65-	135	"	"	"	"	
Metals by EPA 6010B									
Antimony	ND	3.0	mg/kg	1	8041623	04/16/18	04/16/18	EPA 6010B	
Silver	ND	2.0	"	"	"	"	"	"	
Arsenic	ND	5.0	"	"	"	"	"	"	
Barium	61	1.0	"	"	"	"	"	"	
Beryllium	ND	1.0	"	"	"	"	"	"	
Cadmium	ND	2.0	"	"	"	"	"	"	
Chromium	7.0	2.0	"	"	"	"	"	"	
Cobalt	4.5	2.0	"	"	"	"	"	"	
Copper	8.6	1.0	"	"	"	"	"	"	
Lead	ND	3.0	"	"	"	"	"	"	
Molybdenum	ND	5.0	"	"	"	"	"	"	
Nickel	6.4	2.0	"	"	"	"	"	"	
Selenium	ND	5.0	"	"	"	"	"	"	
Thallium	ND	2.0	"	"	"	"	"	"	
Vanadium	18	5.0	"	"	"	"	"	"	
Zinc	30	1.0	"	"	"	"	"	"	
Cold Vapor Extraction EPA 7470/	7471								
Mercury	ND	0.10	mg/kg	1	8041624	04/16/18	04/16/18	EPA 7471A Soil	

SunStar Laboratories, Inc.

Brusca Associates Inc. PO Box 332 Roseville CA, 95661		Proje Project Numb Project Manag	ect: Lathro ber: 137-00 ger: Joe Br	p 48-Ac Pro)2 usca	operty			Reported 04/23/18 10	: 1:35
		T1812	SP5-3 265-03 (So	oil)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Polychlorinated Biphenyls by EPA M	lethod 8082								
PCB-1016	ND	10	ug/kg	1	8041633	04/16/18	04/18/18	EPA 8082	
PCB-1221	ND	10	"	"	"	"	"	"	
PCB-1232	ND	10	"	"	"	"	"	"	
PCB-1242	ND	10	"	"	"	"	"	"	
PCB-1248	ND	10	"	"	"	"	"	"	
PCB-1254	35	10	"	"	"	"	"	"	
PCB-1260	ND	10	"	"	"	"	"	"	
Surrogate: Tetrachloro-meta-xylene		83.3 %	35-	140	"	"	"	"	
Surrogate: Decachlorobiphenyl		81.8 %	35-	140	"	"	"	"	
Somivolatile Organia Compounds by	EDA Mothod 9770C								
Carbazele	ND	200	ug/kg	1	80/162/	04/16/19	04/17/18	EDA 8270C	
Phenol	ND	1000	ug/kg "	"	8041034	"	"	EFA 8270C	
Aniline	ND	300		"		"			
2 Chlorophenol	ND	1000		"	"	"			
1 4-Dichlorobenzene	ND	300	"	"		"			
N-Nitrosodi-n-propylamine	ND	300		"	"	"			
1.2.4-Trichlorobenzene	ND	300	"	"		"	"		
4-Chloro-3-methylphenol	ND	1000		"	"	"			
1-Methylnanhthalene	ND	300		"		"	"		
2-Methylnaphthalene	ND	300		"		"	"		
Acenaphthene	ND	300		"		"		"	
4-Nitrophenol	ND	1000		"		"		"	
2 4-Dinitrotoluene	ND	300		"	"	"		"	
Pentachlorophenol	ND	1000		"	"	"		"	
Pyrene	ND	300		"	"	"		"	
Acenaphthylene	ND	300		"	"	"	"	"	
Anthracene	ND	300	"	"	"	"	"		
Benzo (a) anthracene	ND	300	"	"	"	"	"		
Benzo (b) fluoranthene	ND	300	"	"	"	"	"		
Benzo (k) fluoranthene	ND	300	"	"	"	"			
Benzo (g,h,i) perylene	ND	1000	"	"	"	"	"		

SunStar Laboratories, Inc.

Brusca Associates Inc. PO Box 332 Roseville CA, 95661	Proje Project Numb Project Manag	ect: Lathro per: 137-0 ger: Joe Bi	op 48-Ac Pro 02 rusca	perty			Reported 04/23/18 10	:35
	T1812	SP5-3 265-03 (Se	oil)					
Analyte Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	SunStar L	aborator	ies, Inc.					
Semivolatile Organic Compounds by EPA Method 8270)C							
Benzo (a) pyrene ND	300	ug/kg	1	8041634	04/16/18	04/17/18	EPA 8270C	
Benzyl alcohol ND	300	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane ND	300	"	"	"	"	"	"	
Bis(2-chloroethyl)ether ND	300	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether ND	300	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate ND	300	"	"	"	"	"	"	
4-Bromophenyl phenyl ether ND	300	"	"	"	"	"	"	
Butyl benzyl phthalate ND	300	"	"	"	"	"	"	
4-Chloroaniline ND	300	"	"	"	"	"	"	
2-Chloronaphthalene ND	300	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether ND	300	"	"	"	"	"	"	
Chrysene ND	300	"	"	"	"	"	"	
Dibenz (a,h) anthracene ND	300	"	"		"	"	"	
Dibenzofuran ND	300	"	"		"	"	"	
Di-n-butyl phthalate ND	300	"	"		"	"	"	
1,2-Dichlorobenzene ND	300	"	"		"	"	"	
1,3-Dichlorobenzene ND	300	"	"		"	"	"	
2,4-Dichlorophenol ND	1000	"	"		"	"	"	
Diethyl phthalate ND	300	"	"		"	"	"	
2,4-Dimethylphenol ND	1000	"	"		"	"	"	
Dimethyl phthalate ND	300	"	"		"	"	"	
4,6-Dinitro-2-methylphenol ND	1000	"	"		"	"	"	
2,4-Dinitrophenol ND	1000	"	"	"	"	"	"	
2,6-Dinitrotoluene ND	1000	"	"		"	"	"	
Di-n-octyl phthalate ND	300	"	"		"	"	"	
Fluoranthene ND	300	"	"	"	"	"	"	
Fluorene ND	300	"	"	"	"	"	"	
Hexachlorobenzene ND	1500	"	"	"	"	"	"	
Hexachlorobutadiene ND	300	"	"	"	"	"	"	
Hexachlorocyclopentadiene ND	1000		"		"	"	"	
Hexachloroethane ND	300		"		"	"	"	
Indeno (1,2,3-cd) pyrene ND	300	"	"		"	"	"	

SunStar Laboratories, Inc.

Brusca Associates Inc. PO Box 332 Roseville CA, 95661	Project: Lathrop 48-Ac Property Project Number: 137-002 Project Manager: Joe Brusca							Reported: 04/23/18 10:35		
		T1812	SP5-3 265-03 (So	il)						
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes	
		SunStar L	aboratori	es, Inc.						
Semivolatile Organic Compounds by EPA	Method 8270C									
Isophorone	ND	300	ug/kg	1	8041634	04/16/18	04/17/18	EPA 8270C		
2-Methylphenol	ND	1000	"	"	"	"	"	"		
4-Methylphenol	ND	1000	"		"	"	"	"		
Naphthalene	ND	300	"		"	"	"	"		
2-Nitroaniline	ND	300	"	"	"	"	"	"		
3-Nitroaniline	ND	300	"	"	"	"	"	"		
4-Nitroaniline	ND	300	"	"	"	"	"	"		
Nitrobenzene	ND	1000	"	"	"	"	"	"		
2-Nitrophenol	ND	1000	"	"	"	"	"	"		
N-Nitrosodimethylamine	ND	300	"	"	"	"	"	"		
N-Nitrosodiphenylamine	ND	300	"	"	"	"	"	"		
2,3,5,6-Tetrachlorophenol	ND	300	"		"	"	"	"		
2,3,4,6-Tetrachlorophenol	ND	300	"		"	"	"	"		
Phenanthrene	ND	300	"	"	"	"	"	"		
Azobenzene	ND	300	"	"	"	"	"	"		
Pyridine	ND	300	"	"	"	"	"	"		
2,4,5-Trichlorophenol	ND	1000	"	"	"	"	"	"		
2,4,6-Trichlorophenol	ND	1000	"	"	"	"	"	"		
Surrogate: 2-Fluorophenol		56.9 %	15-1	121	"	"	"	"		
Surrogate: Phenol-d6		68.6 %	24-1	113	"	"	"	"		
Surrogate: Nitrobenzene-d5		68.0 %	21.3-	-119	"	"	"	"		
Surrogate: 2-Fluorobiphenyl		83.3 %	32.4-	-102	"	"	"	"		
Surrogate: 2,4,6-Tribromophenol		99.1 %	18.1-	-105	"	"	"	"		
Surrogate: Terphenyl-dl4		88.9 %	29.1-	-130	"	"	"	"		

SunStar Laboratories, Inc.

Brusca Associates Inc. PO Box 332 Roseville CA, 95661		Proje Project Numb Project Manag	ect: Lathro per: 137-00 ger: Joe Br SP5-4	p 48-Ac Pro)2 usca	operty		Reported: 04/23/18 10:35		
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Extractable Petroleum Hydrocarl	oons by 8015B with Silic	a Gel Cleanu	n						
C6-C12 (GRO)	ND	10	mø/kø	1	8041214	04/18/18	04/18/18	EPA 8015B	
C13-C28 (DRO)	17	10	"	"	"	"	"	"	
C29-C40 (MORO)	56	10	"	"	"	"		"	
Surrogate: p-Terphenyl		105 %	65-	135	"	"	"	"	
Metals by EPA 6010B									
Antimony	ND	3.0	mg/kg	1	8041623	04/16/18	04/16/18	EPA 6010B	
Silver	ND	2.0	"	"	"	"	"	"	
Arsenic	ND	5.0	"	"	"	"	"	"	
Barium	64	1.0	"	"	"	"	"	"	
Beryllium	ND	1.0	"	"	"	"	"	"	
Cadmium	ND	2.0	"	"	"	"	"	"	
Chromium	6.7	2.0	"	"	"	"	"	"	
Cobalt	4.9	2.0	"	"	"	"		"	
Copper	5.2	1.0	"	"	"	"		"	
Lead	ND	3.0	"	"	"	"	"	"	
Molybdenum	ND	5.0	"	"	"	"	"	"	
Nickel	7.2	2.0	"	"	"	"	"	"	
Selenium	ND	5.0	"	"	"	"		"	
Thallium	ND	2.0	"	"	"	"		"	
Vanadium	20	5.0	"	"	"	"	"	"	
Zinc	31	1.0	"	"		"	"	"	
Cold Vapor Extraction EPA 7470/	7471								
Mercury	ND	0.10	mg/kg	1	8041624	04/16/18	04/16/18	EPA 7471A Soil	

SunStar Laboratories, Inc.

Brusca Associates Inc. PO Box 332 Roseville CA, 95661		Proje Project Numb Project Manag	ect: Lathro ber: 137-00 ger: Joe Br	p 48-Ac Pro)2 usca	perty			Reported 04/23/18 10	:):35
		T1812	SP5-4 265-04 (So	oil)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aboratori	es, Inc.					
Polychlorinated Binhenyls by EPA M	lethod 8082								
PCB-1016	ND	10	ug/kg	1	8041633	04/16/18	04/18/18	EPA 8082	
PCB-1221	ND	10	"	"		"			
PCB-1232	ND	10	"	"	"	"			
PCB-1242	ND	10	"	"		"			
PCB-1248	ND	10	"	"	"	"			
PCB-1254	ND	10	"	"	"	"	"	"	
PCB-1260	ND	10	"	"		"	"	"	
Surrogate: Tetrachloro-meta-xylene		94.1 %	35-	140	"	"	"	"	
Surrogate: Decachlorobiphenvl		95.9 %	35-	140	"	"	"	"	
	EDA M (L. 10270C)								
Semivolatile Organic Compounds by	EPA Method 82/0C	200	а		0041604	04/16/10	04/15/10	ED4 0050G	
	ND	300	ug/kg	I	8041634	04/16/18	04/17/18	EPA 8270C	
Anilia	ND	1000							
Annine 2 Chlorenhenel	ND	300	"						
2-Chiorophenoi	ND	200	"						
N. Nitraca di mananalamina	ND	300	"						
1.2.4 Trickland and an	ND	300	"						
1,2,4-1richlorobenzene	ND	300							
2 Mathylpanhthalana	ND	200	"			"			
	ND	300	"			"		"	
	ND	300	"						
4 Nitrophonol	ND	1000	"			"			
2.4 Dinitrateluane	ND	200	"			"			
Pentaghlorophonol	ND	1000	"			"			
Prenaction	ND	200	"			"			
Acenaphthylene	ND	300	"	"		"		"	
Anthracene	ND	300	"	"		"		"	
Benzo (a) anthracene		200	"			"	"		
Benzo (b) fluoranthere		200	"			"	"		
Benzo (k) fluoranthere		200	"			"	"		
Benzo (g, h, i) pervlene		1000	"			"	"		
Denzo (g,ii,i) peryiene	IND	1000							

SunStar Laboratories, Inc.

Brusca Associates Inc. PO Box 332 Roseville CA, 95661		Proje Project Numb Project Manag	eet: Lathro per: 137-00 ger: Joe Bi	op 48-Ac Pro 02 rusca	perty			Reported 04/23/18 10	:35
		5 T1812	SP5-4 265-04 (Se	oil)					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		SunStar L	aborator	ies, Inc.					
Semivolatile Organic Compounds by EP	A Method 8270C								
Benzo (a) pyrene	ND	300	ug/kg	1	8041634	04/16/18	04/17/18	EPA 8270C	
Benzyl alcohol	ND	300	"	"	"	"	"	"	
Bis(2-chloroethoxy)methane	ND	300	"	"	"	"	"	"	
Bis(2-chloroethyl)ether	ND	300	"	"	"	"	"	"	
Bis(2-chloroisopropyl)ether	ND	300	"	"	"	"	"	"	
Bis(2-ethylhexyl)phthalate	ND	300	"	"	"	"	"	"	
4-Bromophenyl phenyl ether	ND	300	"	"	"	"	"	"	
Butyl benzyl phthalate	ND	300	"	"	"	"	"	"	
4-Chloroaniline	ND	300	"	"	"	"	"	"	
2-Chloronaphthalene	ND	300	"	"	"	"	"	"	
4-Chlorophenyl phenyl ether	ND	300	"	"	"	"	"	"	
Chrysene	ND	300	"	"	"	"	"	"	
Dibenz (a,h) anthracene	ND	300	"	"	"	"	"	"	
Dibenzofuran	ND	300	"	"	"	"	"	"	
Di-n-butyl phthalate	ND	300	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	300	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	300	"	"	"	"	"	"	
2,4-Dichlorophenol	ND	1000	"	"	"	"	"	"	
Diethyl phthalate	ND	300	"	"	"	"	"	"	
2,4-Dimethylphenol	ND	1000	"	"	"	"	"	"	
Dimethyl phthalate	ND	300	"	"	"	"	"	"	
4,6-Dinitro-2-methylphenol	ND	1000	"	"	"	"	"	"	
2,4-Dinitrophenol	ND	1000	"	"	"	"	"	"	
2,6-Dinitrotoluene	ND	1000	"	"	"	"	"	"	
Di-n-octyl phthalate	ND	300	"	"	"	"	"	"	
Fluoranthene	ND	300	"	"	"	"	"	"	
Fluorene	ND	300	"	"	"	"	"	"	
Hexachlorobenzene	ND	1500	"	"	"	"	"	"	
Hexachlorobutadiene	ND	300	"	"	"	"	"	"	
Hexachlorocyclopentadiene	ND	1000	"	"	"	"	"	"	
Hexachloroethane	ND	300	"	"	"	"	"	"	
Indeno (1,2,3-cd) pyrene	ND	300	"	"		"	"	"	

SunStar Laboratories, Inc.

Brusca Associates Inc. PO Box 332 Roseville CA, 95661	Pro Project Nur Project Man	oject: Lathronder: 137-0 ager: Joe B	op 48-Ac Pro 02 rusca	perty			Reported 04/23/18 10	:):35
	T18	8P5-4 1265-04 (S	oil)					
Analyte Re	Reporting esult Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	SunStar	Laborator	ies, Inc.					
Semivolatile Organic Compounds by EPA Method	8270C							
Isophorone	ND 300	ug/kg	1	8041634	04/16/18	04/17/18	EPA 8270C	
2-Methylphenol	ND 1000	"	"	"	"	"	"	
4-Methylphenol	ND 1000	"	"	"	"	"	"	
Naphthalene	ND 300	"	"	"	"	"	"	
2-Nitroaniline	ND 300	"	"	"	"	"	"	
3-Nitroaniline	ND 300	"	"	"	"	"	"	
4-Nitroaniline	ND 300	"	"	"	"	"		
Nitrobenzene	ND 1000	"	"	"	"	"		
2-Nitrophenol	ND 1000	"	"	"	"	"		
N-Nitrosodimethylamine	ND 300	"	"	"	"	"		
N-Nitrosodiphenylamine	ND 300	"	"	"	"	"	"	
2,3,5,6-Tetrachlorophenol	ND 300	"	"	"	"	"	"	
2,3,4,6-Tetrachlorophenol	ND 300	"	"	"	"	"	"	
Phenanthrene	ND 300	"	"	"	"	"	"	
Azobenzene	ND 300	"	"	"	"	"		
Pyridine	ND 300	"	"	"	"	"		
2,4,5-Trichlorophenol	ND 1000	"	"	"	"	"		
2,4,6-Trichlorophenol	ND 1000	"	"	"	"	"	"	
Surrogate: 2-Fluorophenol	57.5 %	15	-121	"	"	"	"	
Surrogate: Phenol-d6	65.7 %	24	-113	"	"	"	"	
Surrogate: Nitrobenzene-d5	65.1 %	21	3-119	"	"	"	"	
Surrogate: 2-Fluorobiphenyl	75.3 %	32.4	4-102	"	"	"	"	
Surrogate: 2,4,6-Tribromophenol	95.4 %	18.	1-105	"	"	"	"	
Surrogate: Terphenyl-dl4	86.6 %	29.	1-130	"	"	"	"	

SunStar Laboratories, Inc.

Brusca Associates Inc.	Project: Lathrop 48-Ac Property	
PO Box 332	Project Number: 137-002	Reported:
Roseville CA, 95661	Project Manager: Joe Brusca	04/23/18 10:35

Extractable Petroleum Hydrocarbons by 8015B with Silica Gel Cleanup - Quality Control

SunStar Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 8041214 - EPA 3550B GC										
Blank (8041214-BLK1)				Prepared: (04/12/18 A	nalyzed: 04	/18/18			
C6-C12 (GRO)	ND	10	mg/kg							
C13-C28 (DRO)	ND	10	"							
C29-C40 (MORO)	ND	10	"							
Surrogate: p-Terphenyl	97.8		"	99.0		98.8	65-135			
LCS (8041214-BS1)				Prepared: (04/12/18 A	nalyzed: 04	/18/18			
C13-C28 (DRO)	500	10	mg/kg	495		101	75-125			
Surrogate: p-Terphenyl	101		"	99.0		102	65-135			
Matrix Spike (8041214-MS1)	Sou	rce: T181265-	01	Prepared: (04/12/18 A	nalyzed: 04	/18/18			
C13-C28 (DRO)	560	10	mg/kg	505	53	100	75-125			
Surrogate: p-Terphenyl	106		"	101		105	65-135			
Matrix Spike Dup (8041214-MSD1)	Sou	rce: T181265-	01	Prepared: (04/12/18 A	nalyzed: 04	/18/18			
C13-C28 (DRO)	590	10	mg/kg	500	53	108	75-125	5.92	20	
Surrogate: p-Terphenyl	104		"	100		104	65-135			

SunStar Laboratories, Inc.

SunStar Laboratories, Inc. Providing Quality Analytical Services Nationwide

25712 Commercentre Drive Lake Forest, California 92630 949.297.5020 Phone 949.297.5027 Fax

Brusca Associates Inc.	Project: Lathrop 48-Ac Property	
PO Box 332	Project Number: 137-002	Reported:
Roseville CA, 95661	Project Manager: Joe Brusca	04/23/18 10:35

Metals by EPA 6010B - Quality Control

SunStar Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch 8041623 - EPA 3050B

Blank (8041623-BLK1)				Prepared &	Analyzed:	04/16/18		
Antimony	ND	3.0	mg/kg					
Silver	ND	2.0	"					
Arsenic	ND	5.0	"					
Barium	ND	1.0	"					
Beryllium	ND	1.0	"					
Cadmium	ND	2.0	"					
Chromium	ND	2.0	"					
Cobalt	ND	2.0	"					
Copper	ND	1.0	"					
Lead	ND	3.0	"					
Molybdenum	ND	5.0	"					
Nickel	ND	2.0	"					
Selenium	ND	5.0	"					
Thallium	ND	2.0	"					
Vanadium	ND	5.0	"					
Zinc	ND	1.0	"					
L CS (80/1623 BS1)				Prepared &	Analyzed	04/16/18		
Argania	02.0	5.0	ma/ka	100	Anaryzeu.	02.0	75 125	
Rarium	92.9	1.0	mg/kg	100		92.9	75-125	
Cadmium	91.0 88.7	2.0		100		91.0	75 125	
Chromium	00.3	2.0		100		00.3	75 125	
Lead	96.9	2.0		100		96.9	75 125	
Leau	90.9	5.0		100		90.9	75-125	
Matrix Spike (8041623-MS1)	Sourc	e: T181256-	01	Prepared &	Analyzed:	04/16/18		
Arsenic	88.5	5.0	mg/kg	100	1.81	86.7	75-125	
Barium	119	1.0	"	100	37.7	81.1	75-125	
Cadmium	83.2	2.0		100	0.425	82.8	75-125	
Chromium	89.3	2.0		100	5.37	84.0	75-125	
Lead	93.3	3.0	"	100	ND	93.3	75-125	

SunStar Laboratories, Inc.

SunStar Laboratories, Inc. Providing Quality Analytical Services Nationwide

25712 Commercentre Drive Lake Forest, California 92630 949.297.5020 Phone 949.297.5027 Fax

Brusca Associates Inc.	Project: Lathrop 48-Ac Property	
PO Box 332	Project Number: 137-002	Reported:
Roseville CA, 95661	Project Manager: Joe Brusca	04/23/18 10:35

Metals by EPA 6010B - Quality Control

SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 8041623 - EPA 3050B										
Matrix Spike Dup (8041623-MSD1)	Source: T181256-01			Prepared & Analyzed: 04/16/18						
Arsenic	95.2	5.0	mg/kg	100	1.81	93.4	75-125	7.37	20	
Barium	123	1.0	"	100	37.7	85.1	75-125	3.25	20	
Cadmium	85.4	2.0	"	100	0.425	85.0	75-125	2.67	20	

"

...

100

100

5.37

ND

86.0

99.2

75-125

75-125

2.21

6.14

20

20

2.0

3.0

91.3

99.2

SunStar Laboratories, Inc.

Chromium

Lead

Brusca Associates Inc.	Project: Lathrop 48-Ac Property	
PO Box 332	Project Number: 137-002	Reported:
Roseville CA, 95661	Project Manager: Joe Brusca	04/23/18 10:35

Cold Vapor Extraction EPA 7470/7471 - Quality Control

SunStar Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD		
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes	
Batch 8041624 - EPA 7471A Soil											
Blank (8041624-BLK1)					Prepared & Analyzed: 04/16/18						
Mercury	ND	0.10	mg/kg								
LCS (8041624-BS1)		Prepared & Analyzed: 04/16/18									
Mercury	0.405	0.10	mg/kg	0.417		97.2	80-120				
Matrix Spike (8041624-MS1)	Sour	ce: T181256-	01	Prepared & Analyzed: 04/16/18							
Mercury	0.408	0.10	mg/kg	0.417	ND	98.0	75-125				
Matrix Spike Dup (8041624-MSD1)	Source: T181256-01			Prepared & Analyzed: 04/16/18							
Mercury	0.428	0.10	mg/kg	0.417	ND	103	75-125	4.64	20		

SunStar Laboratories, Inc.

Brusca Associates Inc.	Project: Lathrop 48-Ac Property	
PO Box 332	Project Number: 137-002	Reported:
Roseville CA, 95661	Project Manager: Joe Brusca	04/23/18 10:35

Polychlorinated Biphenyls by EPA Method 8082 - Quality Control

SunStar Laboratories, Inc.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 8041633 - EPA 3550 ECD/GCMS										
Blank (8041633-BLK1)				Prepared:	04/16/18 A	nalyzed: 04	/18/18			
PCB-1016	ND	10	ug/kg							
PCB-1221	ND	10	"							
PCB-1232	ND	10	"							
PCB-1242	ND	10	"							
PCB-1248	ND	10	"							
PCB-1254	ND	10	"							
PCB-1260	ND	10	"							
Surrogate: Tetrachloro-meta-xylene	8.65		"	9.90		87.3	35-140			
Surrogate: Decachlorobiphenyl	10.1		"	9.90		102	35-140			
LCS (8041633-BS1)				Prepared:	04/16/18 A	nalyzed: 04	/18/18			
PCB-1016	70.1	10	ug/kg	99.0		70.8	40-130			
PCB-1260	66.8	10	"	99.0		67.5	40-130			
Surrogate: Tetrachloro-meta-xylene	9.51		"	9.90		96.0	35-140			
Surrogate: Decachlorobiphenyl	11.0		"	9.90		112	35-140			
Matrix Spike (8041633-MS1)	Sou	rce: T181265-	01	Prepared:	04/16/18 A	nalyzed: 04	/18/18			
PCB-1016	60.2	10	ug/kg	101	ND	59.6	40-130			
PCB-1260	60.1	10	"	101	ND	59.5	40-130			
Surrogate: Tetrachloro-meta-xylene	8.99		"	10.1		89.0	35-140			
Surrogate: Decachlorobiphenyl	9.25		"	10.1		91.5	35-140			
Matrix Spike Dup (8041633-MSD1)	Sou	rce: T181265-	01	Prepared:	04/16/18 A	nalyzed: 04	/18/18			
PCB-1016	64.2	10	ug/kg	101	ND	63.6	40-130	6.49	30	
PCB-1260	62.7	10	"	101	ND	62.1	40-130	4.28	30	
Surrogate: Tetrachloro-meta-xylene	9.14		"	10.1		90.5	35-140			
Surrogate: Decachlorobiphenyl	9.02		"	10.1		89.3	35-140			

SunStar Laboratories, Inc.

Mike Jaroudi, Project Manager

Brusca Associates Inc.	Project: Lathrop 48-Ac Property	
PO Box 332	Project Number: 137-002	Reported:
Roseville CA, 95661	Project Manager: Joe Brusca	04/23/18 10:35

Semivolatile Organic Compounds by EPA Method 8270C - Quality Control

SunStar Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch 8041634 - EPA 3550 ECD/GCMS

Blank (8041634-BLK1)				Prepared: 04/16/18 Analyzed: 04/17/18
Carbazole	ND	300	ug/kg	
Phenol	ND	1000	"	
Aniline	ND	300	"	
2-Chlorophenol	ND	1000	"	
1,4-Dichlorobenzene	ND	300	"	
N-Nitrosodi-n-propylamine	ND	300	"	
1,2,4-Trichlorobenzene	ND	300	"	
4-Chloro-3-methylphenol	ND	1000	"	
1-Methylnaphthalene	ND	300	"	
2-Methylnaphthalene	ND	300	"	
Acenaphthene	ND	300	"	
4-Nitrophenol	ND	1000	"	
2,4-Dinitrotoluene	ND	300	"	
Pentachlorophenol	ND	1000	"	
Pyrene	ND	300	"	
Acenaphthylene	ND	300	"	
Anthracene	ND	300	"	
Benzo (a) anthracene	ND	300	"	
Benzo (b) fluoranthene	ND	300	"	
Benzo (k) fluoranthene	ND	300	"	
Benzo (g,h,i) perylene	ND	1000	"	
Benzo (a) pyrene	ND	300	"	
Benzyl alcohol	ND	300	"	
Bis(2-chloroethoxy)methane	ND	300	"	
Bis(2-chloroethyl)ether	ND	300	"	
Bis(2-chloroisopropyl)ether	ND	300	"	
Bis(2-ethylhexyl)phthalate	ND	300	"	
4-Bromophenyl phenyl ether	ND	300	"	
Butyl benzyl phthalate	ND	300	"	
4-Chloroaniline	ND	300	"	
2-Chloronaphthalene	ND	300	"	
4-Chlorophenyl phenyl ether	ND	300	"	
Chrysene	ND	300	"	
Dibenz (a,h) anthracene	ND	300	"	
Dibenzofuran	ND	300	"	
Di-n-butyl phthalate	ND	300	"	

SunStar Laboratories, Inc.

Brusca Associates Inc.	Project: Lathrop 48-Ac Property	
PO Box 332	Project Number: 137-002	Reported:
Roseville CA, 95661	Project Manager: Joe Brusca	04/23/18 10:35

Semivolatile Organic Compounds by EPA Method 8270C - Quality Control

SunStar Laboratories, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch 8041634 - EPA 3550 ECD/GCMS

Blank (8041634-BLK1)				Prepared: 04/16/18 Analyzed: 04/17/18
1,2-Dichlorobenzene	ND	300	ug/kg	
1,3-Dichlorobenzene	ND	300	"	
2,4-Dichlorophenol	ND	1000	"	
Diethyl phthalate	ND	300	"	
2,4-Dimethylphenol	ND	1000	"	
Dimethyl phthalate	ND	300	"	
4,6-Dinitro-2-methylphenol	ND	1000	"	
2,4-Dinitrophenol	ND	1000	"	
2,6-Dinitrotoluene	ND	1000	"	
Di-n-octyl phthalate	ND	300	"	
Fluoranthene	ND	300	"	
Fluorene	ND	300	"	
Hexachlorobenzene	ND	1500	"	
Hexachlorobutadiene	ND	300	"	
Hexachlorocyclopentadiene	ND	1000	"	
Hexachloroethane	ND	300	"	
Indeno (1,2,3-cd) pyrene	ND	300	"	
Isophorone	ND	300	"	
2-Methylphenol	ND	1000	"	
4-Methylphenol	ND	1000	"	
Naphthalene	ND	300	"	
2-Nitroaniline	ND	300	"	
3-Nitroaniline	ND	300	"	
4-Nitroaniline	ND	300	"	
Nitrobenzene	ND	1000	"	
2-Nitrophenol	ND	1000	"	
N-Nitrosodimethylamine	ND	300	"	
N-Nitrosodiphenylamine	ND	300	"	
2,3,5,6-Tetrachlorophenol	ND	300	"	
2,3,4,6-Tetrachlorophenol	ND	300	"	
Phenanthrene	ND	300	"	
Azobenzene	ND	300	"	
2,4,5-Trichlorophenol	ND	1000	"	
Pyridine	ND	300	"	
2,4,6-Trichlorophenol	ND	1000	"	

SunStar Laboratories, Inc.

Brusca Associates Inc.	Project: Lathrop 48-Ac Property	
PO Box 332	Project Number: 137-002	Reported:
Roseville CA, 95661	Project Manager: Joe Brusca	04/23/18 10:35

Semivolatile Organic Compounds by EPA Method 8270C - Quality Control

SunStar Laboratories, Inc.

Analyte	Regult	Reporting	Unite	Spike	Source	%PEC	%REC	R bL	RPD Limit	Notes
/ maryte	resuit	Liiiit	Units	LEVEI	Result	/0KEC	Linnis	ΝD	Lillit	110105
Batch 8041634 - EPA 3550 ECD/GCMS										
Blank (8041634-BLK1)				Prepared: (04/16/18 A	nalyzed: 04	/17/18			
Surrogate: 2-Fluorophenol	1790		ug/kg	3380		53.0	15-121			
Surrogate: Phenol-d6	1920		"	3380		56.9	24-113			
Surrogate: Nitrobenzene-d5	2150		"	3380		63.5	21.3-119			
Surrogate: 2-Fluorobiphenyl	2510		"	3380		74.3	32.4-102			
Surrogate: 2,4,6-Tribromophenol	3160		"	3380		93.4	18.1-105			
Surrogate: Terphenyl-dl4	2960		"	3380		87.6	29.1-130			
LCS (8041634-BS1)				Prepared: (04/16/18 A	nalyzed: 04	/17/18			
Phenol	1490	1000	ug/kg	3280		45.6	34-114			
2-Chlorophenol	1620	1000	"	3280		49.4	34-114			
1,4-Dichlorobenzene	1680	300	"	3280		51.4	34-114			
N-Nitrosodi-n-propylamine	1700	300	"	3280		51.9	30-110			
1,2,4-Trichlorobenzene	1900	300	"	3280		58.0	39-119			
4-Chloro-3-methylphenol	2150	1000	"	3280		65.6	50-130			
Acenaphthene	1720	300	"	3280		52.6	34-114			
Pentachlorophenol	2280	1000	"	3280		69.7	50-130			
Pyrene	1530	300		3280		46.8	30-110			
Surrogate: 2-Fluorophenol	1450		"	3280		44.3	15-121			
Surrogate: Phenol-d6	1650		"	3280		50.4	24-113			
Surrogate: Nitrobenzene-d5	1790		"	3280		54.7	21.3-119			
Surrogate: 2-Fluorobiphenyl	2130		"	3280		65.1	32.4-102			
Surrogate: 2,4,6-Tribromophenol	2810		"	3280		85.6	18.1-105			
Surrogate: Terphenyl-dl4	2600		"	3280		79.4	29.1-130			
Matrix Spike (8041634-MS1)	Sour	·ce: T181265-	01	Prepared: (04/16/18 A	nalyzed: 04	/17/18			
Phenol	1750	1000	ug/kg	3390	ND	51.7	34-114			
2-Chlorophenol	1860	1000	"	3390	ND	54.9	34-114			
1,4-Dichlorobenzene	1830	300	"	3390	ND	54.0	34-114			
N-Nitrosodi-n-propylamine	1880	300	"	3390	ND	55.4	30-110			
1,2,4-Trichlorobenzene	2190	300	"	3390	ND	64.5	39-119			
4-Chloro-3-methylphenol	2550	1000	"	3390	ND	75.3	50-130			
Acenaphthene	1960	300	"	3390	ND	57.8	34-114			
Pentachlorophenol	2620	1000		3390	ND	77.3	50-130			
Pyrene	1980	300	"	3390	160	53.7	30-110			
Surrogate: 2-Fluorophenol	1600		"	3390		47.3	15-121			
Surrogate: Phenol-d6	1890		"	3390		55.8	24-113			

SunStar Laboratories, Inc.

Brusca Associates Inc.	Project: Lathrop 48-Ac Property	
PO Box 332	Project Number: 137-002	Reported:
Roseville CA, 95661	Project Manager: Joe Brusca	04/23/18 10:35

Semivolatile Organic Compounds by EPA Method 8270C - Quality Control

SunStar Laboratories, Inc.

				,						
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 8041634 - EPA 3550 ECD/GCMS										
Matrix Spike (8041634-MS1)	Sou	ırce: T181265-	01	Prepared: (04/16/18 A	nalyzed: 04	4/17/18			
Surrogate: Nitrobenzene-d5	2040		ug/kg	3390		60.1	21.3-119			
Surrogate: 2-Fluorobiphenyl	2310		"	3390		68.1	32.4-102			
Surrogate: 2,4,6-Tribromophenol	3090		"	3390		91.2	18.1-105			
Surrogate: Terphenyl-dl4	2670		"	3390		78.7	29.1-130			
Matrix Spike Dup (8041634-MSD1)	Source: T181265-01			Prepared: 04/16/18 Analyzed: 04/17/18			4/17/18			
Phenol	1720	1000	ug/kg	3410	ND	50.4	34-114	2.00	42	
2-Chlorophenol	1840	1000	"	3410	ND	53.9	34-114	1.32	40	
1,4-Dichlorobenzene	1760	300	"	3410	ND	51.7	34-114	3.82	28	
N-Nitrosodi-n-propylamine	1840	300	"	3410	ND	54.0	30-110	1.82	38	
1,2,4-Trichlorobenzene	2090	300	"	3410	ND	61.4	39-119	4.29	28	
4-Chloro-3-methylphenol	2560	1000	"	3410	ND	74.9	50-130	0.108	42	
Acenaphthene	1960	300	"	3410	ND	57.3	34-114	0.119	31	
Pentachlorophenol	2860	1000	"	3410	ND	83.9	50-130	8.97	50	
Pyrene	1940	300	"	3410	160	52.1	30-110	2.05	31	
Surrogate: 2-Fluorophenol	1630		"	3410		47.8	15-121			
Surrogate: Phenol-d6	1870		"	3410		54.8	24-113			
Surrogate: Nitrobenzene-d5	1870		"	3410		54.9	21.3-119			
Surrogate: 2-Fluorobiphenyl	2210		"	3410		64.7	32.4-102			
Surrogate: 2,4,6-Tribromophenol	3080		"	3410		90.1	18.1-105			
Surrogate: Terphenyl-dl4	2940		"	3410		86.0	29.1-130			

SunStar Laboratories, Inc.

Brusca Associates Inc.	Project: Lathrop 48-Ac Property	
PO Box 332	Project Number: 137-002	Reported:
Roseville CA, 95661	Project Manager: Joe Brusca	04/23/18 10:35

Notes and Definitions

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

- dry Sample results reported on a dry weight basis
- RPD Relative Percent Difference

SunStar Laboratories, Inc.

Mike Jaroudi, Project Manager

APPENDIX B – Foundation Investigation

FOUNDATION INVESTIGATION MURPHY PARKWAY WAREHOUSE Murphy Parkway near D'Arcy Parkway Lathrop, California

RANEY GEOTECHNICAL INC. JOB NO. 146-618

December 19, 2016

Buzz Oates Development LP Attention: Troy Estacio 8615 Elder Creek Road Sacramento, CA 95828

FOUNDATION INVESTIGATION MURPHY PARKWAY WAREHOUSE

Murphy Parkway near D'Arcy Parkway Lathrop, California Job No. 146-618

INTRODUCTION

Our firm has completed a Foundation Investigation for a warehouse proposed for construction east of Murphy Parkway in Lathrop. This report presents the results of the investigation. The purpose of this report is to provide data pertinent to earthwork construction, foundation design, floor support, and pavement design.

Field exploration for this investigation has included the drilling of ten test borings to depths of ten to 20 feet below the existing site grade, and one boring to a depth of 50 feet. Undisturbed soil samples were obtained from the borings for classification and laboratory testing. Disturbed samples of the near surface soils also were obtained from proposed pavement areas. The test boring and sampling locations are shown on Plate 1, Plot Plan; logs of the test borings completed for this study are shown on Plates 2 through 16, Log of Boring. The nomenclature used to describe the soils on the logs is defined on Plate 17, Unified Soil Classification System. Moisture, density and unconfined compressive strength test data are presented on the logs at the depths of each sample tested. Two samples of the subsurface sandy soils were subjected to sieve analyses to provide information used in our liquefaction analyses; these test results are graphed on Plate 18, Grain Size Analyses. Near surface soil samples were subjected to direct shear tests to evaluate strength properties; these test results are tabulated on Plate 19, Direct Shear Data. Samples of anticipated pavement subgrade soils were subjected to resistance value tests to evaluate pavement subgrade properties; the test results are shown on Plates 20 and 21, Resistance Value Data. A sample of the subgrade soils was mixed with cement, remolded, and tested in unconfined compression to evaluate reactivity with the treatment chemical; these test results are tabulated on Plate 22, Treated Soil Compressive Strength Data. Two samples of the subsurface soils were submitted to an associate chemical laboratory for testing of corrosion properties; these test results are reproduced on Plates 23 and 24. The results of liquefaction analyses are depicted on Plates 25, Liquefaction Analysis.

PROPOSED CONSTRUCTION

We understand the property will be developed for a single distribution warehouse. The warehouse will have plan dimensions of about 510 feet by 1680 feet. The building construction is expected to be of concrete tilt-up-panel design with a concrete slab-on-grade floor. Depressed portland cement concrete paved loading docks would be provided along the north and south sides of the building. Asphalt concrete paved automobile parking and driveways would be placed along the west side of the building. Truck driveways would surround the building and connect the docks to Murphy Parkway.

Building foundation loads are expected to be moderate and typical to this type of construction.

For the purposes of this report we have assumed that the building pad level will be near the average existing site grade.

SITE CONDITIONS AND CONCLUSIONS

SURFACE

The subject site encompasses 48.6 acres and is situated between about 500 feet and 2800 feet east of the northerly end of Murphy Parkway. The property is bordered on the north by the shuttered Pilkington glass plant, and on the south by warehouse, trucking and distribution businesses. A pasture and lands of a Simplot fertilizer plant are to the east of the subject parcel. A shuttered cogeneration plant that apparently supplied the Pilkington plant, occupies the northerly portion of the parcel between Murphy Parkway and the subject site. An earth berm, power lines, and chain link fencing are along the northerly border at the glass plant. A drainage swale with trees is along the southerly edge of the site. Wire fencing is along the westerly border.

Most of the property is relatively flat and is currently used as sheep pasture. The easterly portion supports dry weeds and new grass growth. Patchy weeds are present on the westerly portion. An eight-to ten-foot deep depression of an apparent former pond is on the northwesterly portion of the site. It appears the pond may have been used for disposal by the adjacent glass or cogeneration plants. Aerial photos also suggest that glass had been stored or disposed of on the northwesterly corner of the property, and was later spread further to the south. We observed considerable amounts of broken glass on the surface and mixed into the surface soils of the west edge of the subject property as well as on the southerly portion of the cogeneration parcel to the west.

SUBSURFACE

Boring 2 was drilled on the northwesterly corner of the property and found about five feet of fill on the surface. The fill was observed to consist loose to medium dense silty fine sands and to contain glass fragments and shards. Boring 2 was located in an area that is shown on aerial photographs to have supported large piles of glass beads or fragments.

Except for the surface fills at Boring 2, the test borings revealed relatively uniform soil conditions across

the property. The test borings generally encountered surface soils consisting of loose to medium dense, brown silty fine sands with some fine sandy silts and extending to depths of four to six feet.

Beneath the surface sandy soils medium dense and sometimes variably cemented light brown fine sandy silts and silty fine sands often were encountered. These silty soils were observed to extend to depths varying from six to about nine feet. The silty layers often were underlain by medium dense to very dense white to light gray clean fine to medium sands. The clean sands were observed to extend to depths varying from 12 to 15 feet. Beneath these sands and extending to the 50 foot maximum depth drilled, interlayered light brown to gray stiff clayey fine sandy silts and very stiff silty fine sandy clays, as well as medium dense to very dense gray fine to medium sands were encountered.

Borings 14 and 15 were drilled within the former pond areas on the northwesterly portion of the site and were drilled at elevations that appear to be seven to eight feet below the site grades outside of the pond limits. These two borings encountered interelayered sands and silts that are consistent with the soil profile of at similar elevations of the other test borings.

BEARING CAPACITY

The soils within the upper six or nine feet include loose sand and silt layers that can be subject to some densification and settlement under heavy loads. The native undisturbed soils are considered capable of supporting the planned construction. The building may be supported on spread foundations, however foundation bearing pressures must be limited to control settlements of the loose near surface soils. With the recommended earthwork preparation procedures, new engineered fills placed and compacted in accordance with the recommendations of this report are expected to have sufficient strength for support of the planned construction.

EXPANSIVE SOILS

The near surface soils consist primarily of low plasticity sands and silt. These soils are considered to be of low expansion potential. Expansive soils are not expected to have a significant effect on the planned construction.

GROUNDWATER

Groundwater was encountered in the test borings at depths varying from 13 to 17 feet below the ground surface. After drilling, water levels in the borings appeared to stabilize at depths of about varying from about 11 to 14 feet below the site grade.

Although the groundwater level will fluctuate somewhat with rainfall and season, the level is expected to remain below final grade levels and not have a significant effect on completed surface improvements. Deep utility or other construction excavations may experience groundwater inflow. Foundation excavations at loading docks may encounter groundwater if constructed during a high groundwater period. Construction excavations extending more than about six feet below the original site grade may engage clean sands that can be subject to sloughing and caving regardless of the groundwater level. Below groundwater levels, the site silty soils also may be subject to sloughing and caving. Sloughing

and caving soils may require formwork to keep them open.

The surface soils include low permeability layers and have variable drainage characteristics. The surface soils have high silt contents that render them sensitive to moisture contents. High moisture content soils are likely to be unstable under construction equipment, and require considerable aeration in order to achieve a moisture content that will allow compaction. The surface soils are likely to have high moisture conditions during the wet season and for several weeks following rains or irrigation. Subsurface soils within a few feet of groundwater are likely to have high moisture contents year round. The potential for high soil moisture contents should be considered in construction scheduling.

SOIL LIQUEFACTION POTENTIAL

Soil liquefaction is the loss of strength of low- to no- cohesion soils (usually sands) that occurs when pore water pressure exceeds the confining stress (weight) of the soils. Liquefaction normally occurs only under saturated conditions and in soils with a low relative density. Liquefaction can occur during earthquakes as vibrations induce soils to readjust to a more compact state. Experience has shown that earthquake induced liquefaction normally occurs only within the upper 50 to 60 feet of the soil profile.

The test borings show loose to medium dense sands and sandy silts within the upper nine feet. Layers of medium dense to dense sandy soils are indicated between depths of six and 50 feet. The soils below depths of 13 to 14 feet below the building pad level are likely to be saturated year round. Slightly higher groundwater levels may be possible, but the duration of such high groundwater levels is expected to be limited.

We have used the methods of Seed and others as implemented in the LiquefyPro software by CivilTech Corporation to assess the liquefaction susceptibility of the sandy soils, as well as to evaluate potential settlements of the loose near surface soils during seismic shaking. The method correlates standard penetration resistance and liquefaction potential based on historical case studies. In determining liquefaction potential, groundwater depth, confining pressures, and, intensity and duration of potential ground shaking are considered.

Probabilistic seismic hazards mapping by the United States Geological Survey indicates that the peak ground acceleration produced by maximum credible earthquakes on nearby faults (10 percent probability of exceedance in 50 years) is likely to be on the order of 0.28 g. Interpretations according to the ASCE 7-10 standard indicates that the peak ground acceleration produced by maximum credible earthquakes with a two percent probability of exceedance in 50 years is likely to be on the order of 0.43g. The controlling earthquakes in developing these accelerations appear to mostly be events of magnitude 6.5 to 6.7 occurring within the Coast Range/Central Valley (CRCV) boundary zone about 21 kilometers to the southwest. Using these earthquake data, our analysis indicates that seismic induced liquefaction on this project is unlikely, although some sandy soils at depths of near 40 feet may approach a state of liquefaction under the highest levels of shaking. Settlements of the soils during maximum seismic shaking are estimated to be on the order of one quarter inch. The results of the analyses can be viewed on Plate 25, *Liquefaction Analysis*.

CORROSION POTENTIAL

Two samples of the native soils from anticipated pipe horizons were submitted to an associate laboratory for corrosion evaluation tests; the test data are presented on Plates 23 and 24.

We have used criteria established by the Ductile Iron Pipe Research Association to evaluate the corrosivity of the soils tested to iron pipe. The criteria assigns point values to the test results as well as a subjective evaluation of moisture conditions at pipe level; a total point value of ten or higher indicates the soils are potentially corrosive to iron pipe. Our evaluation indicates total point values of 2. We conclude that the soils are not corrosive to gray or ductile iron pipe.

Based on the Portland Cement Association (PCA) guidelines, the soluble sulfate content of the site soils indicates that the relative degree of sulfate attack on concrete is negligible, and therefore use of Type I, Type II, or Type 1-II portland cement is appropriate.

RECOMMENDATIONS

EARTHWORK

The building pad and pavement areas should be cleared of surface vegetation, trees and root systems, rubble fragments exceeding three inches in maximum dimension, rubbish, and any other debris. Any earth berms, stockpiled soils and any other existing fills should be removed. Fills were found in Boring 2 to a depth of about five feet on the northwesterly corner of the property. These fills should be overexcavated to allow replacement as engineered fill. Test excavations should be made on the northwesterly corner of the property and adjacent areas with our representative present to check for the presence of old fill materials. Unsuitable soils identified by our representative should be removed.

Any underground pipes within two feet of original or final grade (whichever is lower) should be removed. Abandoned pipes exceeding two inches in diameter should be removed from the building areas regardless of depth. Low areas should be cleaned out of any loose or saturated materials. Excavations required for the removal of the above items, as well as any other loose or unstable soil deposits identified by our representative, should be cleaned of loose, saturated or soft materials so that firm undisturbed soils are exposed. Deep excavations required for the removal of the above items required for the removal of the above items are exposed. Deep excavations required for the removal of the above items should be sloped back to a dish shaped configuration allowing through passage of compaction equipment. Any deep excavations should be restored to grade with engineered fill placed and compacted in accordance with the recommendations of this report.

Areas designated to receive engineered fill as well as building pad and pavement areas left at existing grade should be scarified to a depth of eight inches, brought to a uniform moisture content of at least optimum, and compacted in place to at least 90 percent of the maximum dry density determined by ASTM D1557-02 test procedure. If recompacted subgrades are unstable or compaction cannot be achieved due to high soil moisture contents, our firm should be contacted for further recommendations.

Engineered fill should be placed in lifts not exceeding six inches in compacted thickness, brought to a

moisture content of at least optimum, and compacted. Fill placed in the building pad area at depths of more than two feet below the final soil building pad level should be compacted to at least 95 percent of the ASTM D1557 maximum dry density. All other fills should be compacted to at least 90 percent of the maximum dry density in accordance with the above standard. On-site soils are suitable for use as engineered fill provided the soils do not contain significant vegetable matter, rubble, rubbish, or other undesirable substances. Import materials, if any, should consist of sands, silts, or gravels with a plasticity index of ten or less and should be tested and approved by this firm prior to importation to the site.

To enhance slab performance and provide a more stable base for working during the rainy season, the upper portion of the building pad and any adjacent concrete flatwork areas should be treated with portland cement. The treatment should extend at least five feet outside of building wall lines, or to the outer edges of surrounding portland cement concrete walkways or aprons, whichever is greater in extent. The soils should be treated to a depth of at least 12 inches with at least five percent portland cement as measured by dry unit weight of the compacted soil. The treated soil should be brought to a uniform over optimum moisture content, thoroughly mixed with the cement, and compacted to at least 92 percent of the maximum dry density determined by the ASTM D1557-02 test procedure. Not more than three hours should elapse between the time the cement is mixed with the soil/water and final compaction is completed. The above concentration of treatment chemical are based on assumptions made regarding the soil composition of the upper 12 inches of the building pad. Some modification to this concentration may be required. The percentage and type of treatment chemical be used should be established by our engineers based on a review of the types of soils present on each area to be treated. Treatment should conform to applicable provisions of the Caltrans Standard Specifications, Sections 24 and 27. The treated pad should either be kept wet for a period of at least three days after compaction or seal coated.

Untreated pavement subgrades, if any, should be compacted to at least 90 percent of the ASTM D1557-02 maximum dry density regardless of whether the final grade is achieved by cutting, filling or left at final grade.

Permanent excavation and embankment slopes should not exceed an inclination of one vertical on two horizontal. A representative of this firm should be present during grading operations to test and observe earthwork construction.

FOUNDATIONS

The proposed building may be supported upon continuous and/or isolated spread foundations based in undisturbed or recompacted natural ground, engineered fill, or a combination of these materials. Building foundations should extend to a minimum depth of 18 inches below the building pad. Foundations in dock areas should extend at least 12 inches below the lowest surrounding soil subgrade level. Foundation excavations should be observed by an Engineer from this office to ensure that proper bearing soils are engaged. A minimum foundation width of 12 inches should be maintained. Foundations so established may be designed for maximum allowable soil bearing pressures of 2000 pounds per square foot (psf) for dead load, 2500 psf for dead plus live load, and 3300 psf for total load including the effects of wind and seismic forces.

Foundations for trash enclosure walls, signs, landscape retaining walls, and other appurtenant construction should extend a minimum of 12 inches below the building pad or lowest surrounding soil grade, and have a minimum width of 12 inches. Such foundations may be sized for allowable soil bearing pressures of 1500 psf for dead load, 2300 psf for dead plus live load, and 3000 psf for dead plus live plus seismic/wind loads.

The weight of foundation concrete below grade may be disregarded in sizing computations. Continuous foundations should be reinforced with at least four No. 4 bars--two each, top and bottom, as a minimum. The actual reinforcement should be determined by the Structural Engineer.

Foundation excavations should not be allowed to stand open for extended periods prior to concrete placement and should be clean and free of all loose and/or soft materials when concrete is placed. The bearing materials should be in a firm, moist condition. Some dock foundation excavations may engage clean or saturated sands and experience sloughing and caving; forming may be required.

Resistance to lateral forces may be computed using either friction or passive pressure, but not both, except as recommended below. A coefficient of friction of 0.30 may be utilized for design. Passive earth pressure may be considered equivalent to a fluid weighing 250 pounds per cubic foot. A combination of both friction and passive pressure may be utilized provided the larger mode of resistance is reduced by 50 percent. The recommended passive pressure and friction coefficient values have been modified by appropriate factors of safety and may be applied directly in design calculations.

SEISMIC DESIGN

In design using the lateral force provisions of the 2013 and 2016 California Building Codes, the parameters in Table 1 may be used.

Period (seconds)	Maj Spe Resp Accele (j	oped ctral oonse erations g)	Site Class	Site Site Class Coefficients		Max Cons Earth Spe Res Accele	imum idered nquake ectral ponse erations (g)	Design Spectral Response Accelerations (g)	
0.2	Ss	1.065		F _a	1.074	S _{MS}	1.144	S_{DS}	0.762
1	\mathbf{S}_{l}	0.372	D	F _v	1.655	S _{Ml}	0.616	S _{D1}	0.411

TABLE 1

LOADING DOCK WALLS

Restrained dock walls should be capable of resisting an at-rest soil pressure equivalent to that exerted by a fluid weighing 50 pounds per cubic foot. Wall design also should consider pressures associated with traffic or other adjacent surcharge. Care should be taken to avoid exertion of excessive compaction

pressures in backfilling of walls. The above loading is based on the assumption that hydrostatic pressures will not develop behind the walls.

Walls should be drained as needed to relieve potential hydrostatic pressure. Where floor slabs or pavements adjoin the tops of walls, this should suffice to exclude significant water and further drainage measures would not be required.

Only nonexpansive silts, sands or gravels should be used to backfill dock area walls. Clays should not be used in wall backfill. Use of 3/8-inch pea gravel or clean ³/4-inch crushed rock for wall backfill is acceptable and can facilitate placement and compaction procedures. Backfill should be placed in level lifts not exceeding 12 inches in compacted thickness. Each lift should be compacted at a uniform near optimum moisture content to at least 90 percent of the ASTM D1557-02 maximum dry density.

SLAB-ON-GRADE

Thickness Requirements

Because of stresses induced by truck cranes during panel erection a minimum six-inch thick floor slab is suggested for all floor areas. Our calculations indicate a six-inch thick slab would be capable of supporting typical 3000- to 5000-pound capacity forklifts carrying loads of less than 3000 pounds. If the floor will support more heavily loaded forklifts, or if high racks are used, then a six-inch slab may not be sufficient and our firm should be contacted for further recommendations. A modulus of subgrade reaction of 150 pounds per cubic inch may be used for the treated building pad in determining slab thickness for forklift loads.

Due to the industrial use, we suggest the floor slab be reinforced with No. 4 bars spaced on 24-inch centers in each direction as a minimum. The reinforcement should be chaired at the middepth of the slab. The above discussion of slab thickness is based on use of quality strength concrete (4000 pounds per square inch minimum 28-day compressive strength). We suggest slab concrete be placed at a slump of three to four inches. Fibermesh® may be used in concrete to increase toughness, if desired.

The floor slab should be thickened by at least 20 percent of the above recommended thickness at any drive-through doors. In addition, edges should be thickened wherever heavy materials will be stored within five feet of a free slab edge. A free slab edge is defined as any joint or edge where load transfer to adjacent areas is not provided, such as at building wall lines or undoweled expansion joints. The transition to the thickened edge may be achieved by tapering the slab thickness over a distance of five feet. Tapering may be accomplished by reducing the underlying aggregate base thickness at the edges.

<u>Joints</u>

Shrinkage crack control joints should consist of sawcut grooves penetrating at least one-fourth of the slab thickness. Control joints should not be spaced farther apart than about 30 times the slab thickness. Construction cold joints and expansion joints in the warehouse slab should include dowels to provide load transfer. Dowels should be three-quarters inch in diameter, 14 inches long, and spaced on 12 inch centers for six inch thick slabs. One end of dowels at expansion and crack control joints should be

greased and wrapped in plastic to allow horizontal movement. All reinforcement and dowels should be placed at the middepth of the slab.

Underlayment and Moisture Control

The floor slab may be supported on the chemically treated building pad prepared as recommended above. In warehouse areas where minor moisture penetration through the slabs can be tolerated, the slab should be underlain by a minimum four-inch thick layer of Caltrans Class 2 aggregate base to serve as a leveling course. The aggregate base should be wetted immediately prior to placement of slab concrete. Moisture sensitive areas such as office areas receiving impervious floor coverings should be underlain by a minimum four-inch thick layer of clean three-quarter inch crushed rock graded such that 100 percent passes a one-inch sieve and none passes a No. 4 sieve, to serve as a capillary moisture break. In such areas the drainage rock should be covered with a plastic membrane at least 10-mils thick as a moisture vapor retarder. One to two inches of clean sand may be spread over the membrane for protection and to aid concrete curing, if desired. Alternatively, the membrane may be placed directly on the building pad beneath the rock.

With the use of water-based floor adhesives, impervious floor coverings are extremely sensitive to slab moisture. Under some conditions, the small amount of moisture vapor which bypasses the vapor membrane, or even the excess water remaining in the slab from placement, can be sufficient to cause debonding and discoloration problems. To minimize moisture vapor problems, the capillary break gravel must be present to the minimum recommended thickness and the membrane must be continuous throughout the slab area. Any membrane seams should overlap by at least one foot. The membrane should be cut tight to penetrations. Tears and punctures should be sealed with membrane manufacturer-approved tape, or overlain by a second patching membrane. Slab concrete should be placed at as low a water-cement ratio as practical. The under-slab gravel layer should be protected from precipitation and other moisture; wetting of the sand over the membrane prior to concrete placement should be minimized. The edges of the slab at the building perimeter should be thickened to form a cutoff between the building exterior and under-slab gravel layers. If impervious floor coverings are planned and greater assurance against moisture problems is desired, consideration should be given to waterproofing of slabs with a quality commercial concrete sealant. A sealant or other waterproofing system may be necessary for the satisfactory performance of wood laminates, sheet vinyl, and other impervious flooring.

PAVEMENTS

Resistance (R) value tests are used to evaluate pavement subgrade properties. Our investigation indicates that the pavement subgrades are likely to consist of very silty sands of fair to good pavement support qualities. R values can range from five for the poorest quality clay subgrades to 70 or higher for high quality sand and gravel subgrades. Resistance value tests performed on samples of the site surface soils resulted in design R values of 64 and 65. We consider these R values to be somewhat high for the range of soils that are likely to be present on pavement subgrades, and therefore have used an R value of 45 in our calculations. The R value of 45, together with the results of unconfined compressive strength tests on soils treated with cement, have been used in the Caltrans Design Method for Flexible Pavements and in Portland Cement Association's design method to evaluate pavement sections.

The Caltrans design method uses traffic indices to account for vehicle loads, frequency, and design life. A design life of 20 years is commonly used for commercial pavements.

Based upon these data, the standard Oates structural pavement section consisting of three inches of asphalt concrete (AC) over three inches of aggregate base (AB) over 12 inches of chemically treated soil is considered to have a traffic capacity equivalent to TI 7.0. A TI of 7.0 is considered capable of supporting up to about 60 fully loaded, five-axle semi-trucks per week. Pavement sections designed for TI 8.0 are considered capable of supporting up to about 190 fully loaded, five axle semi-trucks per week. Our calculations indicate that pavement sections for TI 8.0 may consist of four inches of AC over three inches of AB over 12 inches of chemically treated subgrade, or three and one-half inches of AC over four inches of AB over 12 inches of chemically treated subgrade. These pavement sections, together with alternative asphalt concrete pavement sections without chemically treated subgrades, are summarized in Table 2. We can provide additional pavement section alternatives upon request.

Design	Type B	Class 2	Chemically
Traffic	Asphalt	Aggregate	Treated
Index/	Concrete	Base	Soil
Use	(inches)	(inches)	(inches)
4.5	2.5	4	
Auto Parking	2.5		10
7.0 Up to 60 Trucks per Week	3 3	8 3	12
8.0	3.5	9	
120 to 190	4	8	
Trucks per Week	3.5	4	12
	4	3	12

TABLE 2 ASPHALT CONCRETE PAVEMENT SECTION ALTERNATIVES

Materials and construction within structural pavement sections should conform to the applicable provisions of the 2010 Caltrans Standard Specifications

We recommend chemically treated subgrades be treated with portland cement to provide reactivity with the expected sandy subgrade soils. The pavement areas should be treated after the subgrades have been cut or filled to rough final grade and utility lines have been installed. The subgrade soils should be treated with at least five percent portland cement, as measured by dry unit weight of the compacted soil. The cement and soil should be brought to a uniform over-optimum moisture content, thoroughly mixed and compacted to at least 92 percent of the maximum dry density determined by the ASTM D1557-02 test procedure. Not more than three hours should elapse between the time the cement is mixed with the soil/water and final compaction is completed. The above concentration of cement is based on assumptions made regarding the soil composition of the pavement subgrades. The actual percentage and

type of treatment chemicals to be used should be established by our engineers based on a review of the types of soils present on each area to be treated.

All treatment should conform to applicable provisions of the 2010 Caltrans Standard Specifications, Sections 24 and 27, except with regard to compaction as specified above. The treated subgrade should be either kept wet for a period of at least three days after final compaction, or seal coated as recommended in Section 24.

Treated soils tend to experience shrinkage and cracking during curing. Such cracking does not affect the strength of the treated materials, but can lead to cosmetic reflective cracking through asphalt concrete. Depending on the degree of cracking, crack sealing or similar maintenance may be required to ensure long term pavement performance. Use of the nominal layer of Caltrans Class 2 aggregate base between the treated soil layer and the asphalt concrete will decrease the incidence of the described shrinkage cracking.

Recommended portland cement concrete pavement sections for the traffic indices discussed above are presented in Table 3.

LAND CEVIENT CONCRETE SECTION ALTERNATT								
Design	Portland	Class 2	Chemically					
Traffic	Cement	Aggregate	Treated					
Index	Concrete	Base	Soil					
	(inches)	(inches)	(inches)					
6.0	6	2	12					
7.0	6.5	2	12					
8.0	7	2	12					

 TABLE 3

 PORTLAND CEMENT CONCRETE SECTION ALTERNATIVES

The aggregate base layer is considered a leveling course and its thickness may be varied in the field for leveling purposes. Chemically treated soil subgrades should be constructed as recommended in the Foundation investigation report.

Any one section of Portland cement concrete pavements at depressed loading docks would be expected to support only a few trucks per day, including parking tractor-trailers and inadvertent travel of maneuvering vehicles. Based on this, traffic index 6.0 is considered appropriate for dock pavements.

The above portland cement concrete pavement sections are based on use of concrete with a minimum modulus of rupture of 490 pounds per square inch. We anticipate this will require use of concrete with a minimum compressive strength at 28 days of 3000 pounds per square inch. Thickened slab edges should be provided at isolation joints between the concrete pavement and adjacent construction, at the transition from portland cement concrete pavement to asphalt concrete pavement, and adjacent to unpaved areas. The thickened edge should be at least one and one-half inches greater than the unreinforced thicknesses recommended above, and should be tapered back to the design slab thickness over a distance of five feet. Narrow concrete strips used for support of trailer parking dollies should have minimum thicknesses of 7.5 inches, 8 inches, and 8.5 inches in traffic index 6.0, 7.0, and 8.0 areas,

respectively.

Shrinkage crack control joints should consist of premolded inserts or sawcut grooves penetrating at least one-fourth of the slab thickness. Control joints in unreinforced pavements should not be spaced farther apart than about 25 times the pavement thickness. Construction cold joints should include dowels to provide load transfer. Table 4shows the recommended dowel bar sizes and spacings.

Pavement Thickness (inches)	Dowel Diameter (inches)	Dowel Length (inches)	Dowel Spacing center to center (inches)					
6.0 - 6.5	3 /4	16	12					
7.0	1	18	12					

TABLE 4DOWEL SIZE AND SPACING

Where construction cold joints also serve as shrinkage crack control joints, one end of the dowels should be greased and wrapped in plastic to allow horizontal movement. All reinforcement and dowels should be placed at the middepth of the slab.

Where the slab edges are not confined such as adjacent to lower unpaved areas, the outer slab sections of large pavement areas may tend to spread laterally towards the free edge. For unreinforced pavements we recommend non-crack control construction cold joints parallel to and within 25 feet of the free edge include tie bars to hold joints closed. Tie bars should be No. 4 bars at least 21 inches long and spaced on 20 inch centers. Any crack control joints, including sawcut types and construction joints, parallel to and within 25 feet of the free edge should include dowels across the joint. Dowel sizes and spacings should be in accordance with the above recommendations.

LIMITATIONS

This report necessarily assumes uniform variation of soils between borings. Our recommendations are based upon this assumed uniformity and the information provided regarding the proposed construction. If unusual conditions are encountered during construction, the contractor or his representative should notify this firm immediately so that alternate written recommendations can be made.

This report is applicable only to the proposed construction, as described herein, and should not be utilized for design or construction on any other site.

oOo

The following Plates are attached and complete this report:

Plate 1 - Plot Plan Plates 2 through 16 - Log of Boring, Borings 1 through 15 Plate 17 - Unified Soil Classification System Plate 18 - Grain Size Distribution Plate 19 - Direct Shear Data Plates 20 and 21 - Resistance Value Data Plate 22 - Treated Soil Compressive Strength Data Plates 23 and 24 - Corrosion Test Data Plate 25 - Liquefaction Analysis

Sincerely,

RANEY GEOTECHNICAL, INC.

William C. Boli Geotechnical Engineer No. 2004

(1) addressee

PROJECT NUMBER: 146–616 DRAWN BY: WCB PLATE NUMBER: 1 DATE: 12/16/16

DRILLED: 11/17/16 0 BROWN SILTY VERY FINE SAND--LOOSE, MOIST SM 63/10" 107 13.5 3.0 SLIGHTLY CEMENTED GRAY-BROWN VERY FINE SANDY SILT--VERY DENSE, MOIST WITH RUST SPOTS 90/10" ML 102 22.4 5.2 LIGHT BROWN GRADING FINE SANDY 43 10 _____ 3.5 SP LIGHT BROWN AND GRAY FINE TO MEDIUM SAND -- DENSE, MOIST GROUNDWATER LEVEL AFTER DRILLING 11/17/16 24 LIGHT GRAY-BROWN CLAYEY FINE SANDY SILT--VERY 103 23.3 ML **GROUNDWATER FOUND DURING DRILLING 11/17/16** SP GRAY-BROWN FINE TO COARSE SAND--DENSE, SATURATED GRADING WITH LESS FINE SAND 69 20 FEET ΖI 13 DARK GRAY SILTY CLAY--STIFF, SATURATED LIGHT BLUE-GRAY 75 43.1 1.1 CL DEPTH BROWN FINE SAND -- MEDIUM DENSE, SATURATED SF 26 QARK GRAY SILTY CLAY--VERY STIFF, SATURATED 30 МĒ BROWN FINE SANDY CLAYEY SILT--VERY STIFF, CL SATURATED BLUE-GRAY SLIGHTLY FINE SANDY VERY SILTY CLAY WITH ORANGE-BROWN STREAKS--VERY STIFF, SATURATED 28 90 31.1 2.9 GRADING LESS FINE SANDY SM DARK GRAY SILTY M. TO C. SAND -- MED. DENSE 16 GRADING MORE SILTY AND WITH FINE SAND 40 DARK GRAY SLIGHTLY SILTY CLAY--VERY STIFF, CL SP DARK GRAY FINE TO MEDIUM SAND--DENSE, SATURATED 43 109 17.2 GRADING WITH SOME COARSE SAND VERY DENSE 66 50 РCF ы С Н o\¢ NOTES: Т THE BORING LOG DEPICTS SUBSURFACE CONDITIONS ONLY 1. Т 1 CONTENT AT THE BORING LOCATION AND TIME DESIGNATED. STRENGTH DENSITY NOMENCLATURE USED TO DESCRIBE SOILS DEFINED ON 2 PLATE 17. 3. UNDISTURBED SAMPLE OBTAINED WITH 2" I.D. MODIFIED CALIFORNIA SAMPLER. MOISTURE SAMPLER PENETRATION RESISTANCE IN BLOWS PER FOOT OR 4. DRY UNCONFINED FRACTION THEREOF; 140-POUND HAMMER, 30" DROP. Geotechnical Inc Raney LOG OF BORING

9

12/8/10

MCB

DRAWN BY: DATE:

 ∞

146 - 61

NUMBER: NUMBER:

PROJECT PLATE

DRILLED: 11/16/16 0 SM BROWN SILTY FINE SAND--MEDIUM DENSE, MOIST FILL 23 108 6.8 4 50/6" 110 4.8 WITH GLASS FRAGMENTS AND SHARDS BROWN SILTY FINE TO MEDIUM SAND--MEDIUM DENSE, MOIST SM LIGHT BROWN, FINE SAND 8 FEET 84/11" DEPTH IN LIGHT BROWN CLAYEY FINE SANDY SILT--VERY STIFF TO HARD, MOIST ML 12 GRADING VERY FINE SANDY 44 LIGHT BROWN AND GRAY FINE TO MEDIUM SAND--DENSE, MOIST SP 16-GROUNDWATER LEVEL AFTER DRILLED 11/16/16 GRAY-BROWN CLAYEY FINE SANDY SILT--STIFF, SATURATED ML 17 108 20.3 20 РCF o\0 NOTES: Т 1. THE BORING LOG DEPICTS SUBSURFACE CONDITIONS ONLY I. CONTENT AT THE BORING LOCATION AND TIME DESIGNATED. DENSITY 2. NOMENCLATURE USED TO DESCRIBE SOILS DEFINED ON PLATE 17. 3. SEE PLATE 2 FOR ADDITIONAL NOTES. MOISTURE DRY Geotechnical Inc Raney

LOG OF BORING

12/8/16

DATE:

PROJECT NUMBER: 146-618 PLATE NUMBER: 3

DRAWN BY: WCB

DRILLED: 11/16/16 0 LIGHT BROWN SILTY FINE TO MEDIUM SAND WITH OCCASIONAL COARSE SAND GRAINS--MEDIUM DENSE, MOIST SM 104 5.4 54 106 5.2 30 3.9 115 LIGHT GRAY-BROWN FINE TO MEDIUM SAND--MEDIUM DENSE, MOIST SP 8 FEET 18 Π 2.8 0.8 99 DEPTH GROUNDWATER LEVEL AFTER DRILLED 11/16/16 12 GROUNDWATER FOUND DURING DRILLING 11/16/16 SATURATED 26 GRAY VERY CLAYEY FINE SANDY SILT--VERY STIFF, SATURATED ML 16 GRAY-BROWN FINE SANDY SILTY CLAY--STIFF, SATURATED CL 19 98 25.6 1.0 20 ЦΩ РCF o\¢ NOTES: Т 1. THE BORING LOG DEPICTS SUBSURFACE CONDITIONS ONLY I. T CONTENT AT THE BORING LOCATION AND TIME DESIGNATED. DENSITY UNCONFINED STRENGTH 2. NOMENCLATURE USED TO DESCRIBE SOILS DEFINED ON PLATE 17. 3. SEE PLATE 2 FOR ADDITIONAL NOTES. MOISTURE DRY Geotechnical Inc Raney LOG OF BORING

12/8/16

DATE:

PROJECT NUMBER: <u>146-618</u> PLATE NUMBER: <u>4</u>

DRAWN BY: WCB

DRILLED: 11/16/16 0-BROWN SILTY FINE SAND--MEDIUM DENSE, MOIST SM 25 107 7.4 3 VERY SILTY 31 6 DEPTH IN FEET SP LIGHT GRAY FINE TO MEDIUM SAND--MEDIUM DENSE, MOIST 9 19 102 3.3 BROWN GRAY FINE VERY SANDY SILT--MEDIUM DENSE TO DENSE, MOIST 12-ML 43 24.1 96 MOTTLED GRAY AND RUST-BROWN 15 РCF o/0 NOTES: Т 1. THE BORING LOG DEPICTS SUBSURFACE CONDITIONS ONLY ī MOISTURE CONTENT AT THE BORING LOCATION AND TIME DESIGNATED. DENSITY 2. NOMENCLATURE USED TO DESCRIBE SOILS DEFINED ON PLATE 17. 4. FREE GROUNDWATER NOT ENCOUNTERED IN BORING 4. 5. SEE PLATE 2 FOR ADDITIONAL NOTES. DRY Geotechnical Inc Raney LOG OF BORING

DRAWN BY: WCB DATE: 12/8/16

PROJECT NUMBER: 146-618 PLATE NUMBER: 5

DRAWN BY: WCB PROJECT NUMBER: <u>146-618</u> PLATE NUMBER: <u>6</u>

12/8/16

DATE:

PROJECT NUMBER: 146-618 PLATE NUMBER: 7

12/8/16

DATE:

DRAWN BY: WCB

PROJECT NUMBER: 146-618 PLATE NUMBER: 8

DATE: 12/8/16

PLATE 8

PROJECT NUMBER: 146-618 PLATE NUMBER: 9

12/8/16

DATE:

DRAWN BY: WCB

PLATE 9

PROJECT NUMBER: <u>146-618</u> PLATE NUMBER: <u>10</u>

12/8/16

DRAWN BY: WCB DATE: 12/8

PLATE 10

DRAWN BY: WCB DATE: 12/8/16

DRILLED: 11/17/16 0 BROWN VERY SILTY VERY FINE SAND/FINE SANDY SILT--LOOSE, MOIST SM ML 12 105 13.1 LIGHT BROWN FINE SANDY SILT--LOOSE, MOIST ML 56 112 15.4 2.3 TAN-WHITE, VARIABLY CEMENTED BROWN VERY FINE SANDY SILT--MEDIUM DENSE, MOIST ML 8 FEET 50 N SP BROWN FINE TO MEDIUM SAND--DENSE, MOIST 107 3.2 LIGHT GRAY DEPTH 12 ML GRAY-BROWN CLAYEY FINE SANDY SILT--DENSE, MOIST GROUNDWATER LEVEL AFTER DRILLED 11/17/16 44 108 21.4 \P GROUNDWATER FOUND DURING DRILLING 11/17/16 16-BROWN AND GRAY FINE TO MEDIUM SAND--MEDIUM DENSE, SATURATED SP 28 WITH SILT LENS MEDIUM TO COARSE SAND 20 ЧΩ Т РCF o\¢ NOTES: Т THE BORING LOG DEPICTS SUBSURFACE CONDITIONS ONLY 1. Т Т CONTENT AT THE BORING LOCATION AND TIME DESIGNATED. STRENGTH DENSITY 2. NOMENCLATURE USED TO DESCRIBE SOILS DEFINED ON PLATE 17. 3. SEE PLATE 2 FOR ADDITIONAL NOTES. MOISTURE DRY UNCONFINED Geotechnical Inc Raney LOG OF BORING

12/8/16

DATE:

DRAWN BY: WCB

146 - 618

 \sim

PROJECT NUMBER: PLATE NUMBER:

DRAWN BY: WCB DATE: 12/8/16

PLATE 13
BORING 13 DRILLED: 11/17/16 0 LIGHT BROWN SILTY FINE SAND--MEDIUM DENSE, MOIST SM 18 105 13.6 16 LIGHT BROWN WITH ORANGE-BROWN SPOTS FINE VERY SANDY SILT--MEDIUM DENSE, MOIST ML SP BROWN SLIGHTLY SILTY FINE SAND--MEDIUM DENSE, MOIST GRADING WITH MEDIUM SAND 8 FEET 18 Π 15.0 97 GRAY-BROWN SLIGHTLY FINE SANDY SILTY CLAY--VERY STIFF, MOIST CL DEPTH SP LIGHT GRAY FINE TO MEDIUM SAND -- DENSE, MOIST 12 GROUNDWATER LEVEL AFTER DRILLED 11/17/16 75 VERY DENSE 111 16.8 16-DENSE SLIGHTLY SILTY WITH OCCASIONAL COARSE SAND GRAINS 47 112 16.4 20 РCF o\0 NOTES: Т 1. THE BORING LOG DEPICTS SUBSURFACE CONDITIONS ONLY L CONTENT AT THE BORING LOCATION AND TIME DESIGNATED. DENSITY 2. NOMENCLATURE USED TO DESCRIBE SOILS DEFINED ON PLATE 17. 3. SEE PLATE 2 FOR ADDITIONAL NOTES. MOISTURE DRY Geotechnical Inc Raney LOG OF BORING

12/8/16

DATE:

PROJECT NUMBER: <u>146-618</u> PLATE NUMBER: <u>14</u>

DRAWN BY: WCB

BORING 14 DRILLED: 11/16/16 0 LIGHT GRAY-BROWN WITH ORANGE STAINS VERY SANDY (FINE) SILT--LOOSE, MOIST ML 17 2 89 16.9 MEDIUM DENSE GRAY WITH ORANGE-BROWN STAINS MEDIUM SAND-LOOSE TO MEDIUM DENSE, MOIST SP 4 DEPTH IN FEET 10 96 2.2 6 GROUNDWATER LEVEL AFTER DRILLED 11/16/16 8 GRAY-BROWN SILTY FINE SAND--DENSE, SATURATED SM 42 10 РCF o/0 NOTES: 1 1. THE BORING LOG DEPICTS SUBSURFACE CONDITIONS ONLY I CONTENT AT THE BORING LOCATION AND TIME DESIGNATED. DENSITY 2. NOMENCLATURE USED TO DESCRIBE SOILS DEFINED ON PLATE 17. 3. SEE PLATE 2 FOR ADDITIONAL NOTES. MOISTURE DRY Geotechnical Inc Raney LOG OF BORING

12/8/16

DATE:

DRAWN BY: WCB

PROJECT NUMBER: <u>146-618</u> PLATE NUMBER: <u>15</u>

DATE: 12/8/16

DRAWN BY: WCB

PROJECT NUMBER: <u>146-618</u> PLATE NUMBER: <u>16</u>

GRAPH	SYMBOL	DESCRIPTION	MAJOR DIVISIONS					
	GW	WELL GRADED GRAVELS, GRAVEL- SAND MIXTURES	CLEAN GRAVELS WITH	GRAVEL AND				
	GP	POORLY GRADED GRAVELS, GRAVEL-SAND MIXTURES	LESS THAN 5% FINES	GRAVELLY SOILS	COARSE GRAINED SOILS MORE THAN 50% <u>LARGER</u> THAN NO. 200 SIEVE			
	GM	SILTY GRAVELS, GRAVEL-SAND- SILT MIXTURES	GRAVELS WITH	MORE THAN 50%				
	GC	CLAYEY GRAVELS, GRAVEL-SAND- CLAY MIXTURES	MORE THAN 12% FINES	OF COARSE FRAC- TION <u>RETAINED</u> ON NO. 4 SIEVE				
0 0 0 0 0	sw	WELL GRADED SANDS, GRAVELLY SANDS	CLEAN SANDS WITH	SANDS AND				
	SP	POORLY GRADED SANDS, GRAVELLY SANDS	LESS THAN 5% FINES	SANDY SOILS				
	SM	SILTY SANDS, SAND-SILT MIXTURES	SANDS WITH	MORE THAN 50% OF COARSE FRAC-				
	SC	CLAYEY SANDS, SAND- CLAY MIXTURES	MORE THAN 12% FINES	TION <u>PASSING</u> NO. 4 SIEVE				
	ML	INORGANIC SILTS, ROCK FLOUR, OR CLAYEY SILTS WITH SLIGHT PLASTICITY			NE GRAINED SOILS <u>SMALLER</u> THAN NO. 200 SIEVE			
	CL	INORGANIC CLAYS OF LOW TO MEDIUM PLASTICITY, GRAVELLY CLAYS, SANDY CLAYS, SILTY CLAYS, LEAN CLAYS	LIQUID LIMIT <u>LESS</u> THAN 50	SILTS AND CLAYS				
	OL	ORGANIC SILTS AND ORGANIC SILTY CLAYS OF LOW PLASTICITY						
	МН	INORGANIC SILTS, MICACEOUS OR DIATOMACEOUS SILTS, ELASTIC SILTS						
	СН	INORGANIC CLAYS OF HIGH PLASTICITY, FAT CLAYS	LIQUID LIMIT <u>GREATER</u> THAN 50	SILTS AND CLAYS	F] THAN 50%			
	он	ORGANIC CLAYS AND ORGANIC SILTS OF MEDIUM TO HIGH PLASTICITY	5		MORE			
	PT	PEAT, HUMUS, SWAMP SOILS WITH HIGH ORGANIC CONTENT	HIGHLY OR	GANIC SOILS				
	Geotechnical Inc							

Raney

UNIFIED SOIL CLASSIFICATION SYSTEM

PROJECT NUMBER: 146-618 PLATE NUMBER: 18

GRAIN SIZE DISTRIBUTION

PLATE 18

PERCENT COARSER

DIRECT SHEAR DATA

TEST DESIGNATION: UNCONSOLIDATED, QUICK

STRAIN RATE: 0.030 inches/minute

SAMPLE CONDITION: Undisturbed

MATERIAL	SAMPLE	MOISTURE CONTENT	DRY DENSITY	NORMAL	SHEAR STRESS (psf)	
DESCRIPTION	ι.υ.	(%)	(pcf)	(psf)	3% Strain	10% Strain
	Boring 3 1.6'	7.4	100	1000	720	960
Light brown silty fine to medium sand	Boring 3 1.8'	5.4	104	2000	1200	1820
	Boring 3 2.3'	5.2	106	4000	2270	2960
	Boring 10 1.9'	11.2	95	1000	930	1100
Light brown silty fine sand	Boring 10 1.5'	12.7	84	2000	1510	1820
	Boring 10 1.7'	10.4	90	4000	3780	5910

DIRECT SHEAR DATA

RESISTANCE VALUE TEST CALIFORNIA TEST METHOD 301G

SAMPLE LOCATION:SAMPLE S2DEPTH:12"-24"MATERIAL DESCRIPTION:Dark gray finve very sandy silt

TEST NUMBER	DRY DENSITY (PCF)	MOISTURE CONTENT (%)	EXUDATION PRESSURE (PSI)	EXPANSION PRESSURE (PSF)	RESISTANCE VALUE
1	118	11.8	104	17	60
2	118	11.3	252	26	64
3	119	10.8	427	43	66

Resistance value at 300 psi exudation pressure = 65

RESISTANCE VALUE DATA

RESISTANCE VALUE TEST CALIFORNIA TEST METHOD 301G

SAMPLE LOCATION:SAMPLE S3DEPTH:6"-18"MATERIAL DESCRIPTION:Gray-brown silty fine sand

TEST NUMBER	DRY DENSITY (PCF)	MOISTURE CONTENT (%)	EXUDATION PRESSURE (PSI)	EXPANSION PRESSURE (PSF)	RESISTANCE VALUE
1	115	12.4	88	0	62
2	115	11.4	215	0	63
3	114	10.4	646	0	66

Resistance value at 300 psi exudation pressure = 64

RESISTANCE VALUE DATA

CALIFORNIA TEST METHOD NO. 373

Sample Location: S5 Depth: 6"-18" Material Description: Brown silty fine sand Additives: Portland Cement as shown

Sample No.	Additive Amounts	Dry Density (pcf)	Moisture Content (%)	Maximum Dry Density/ Optimum Moisture Content	Unconfined Compressive Strength
А	4% cement	115.0	8.3	118 pcf @ 10.4%	357 psi
В	4% cement	115.0	9.4		328 psi
С	4% cement	117.8	10.4		414 psi
D	4% cement	117.4	11.5		329 psi
E	4% cement	117.7	10.4		363 psi
F	6% cement	120.6	10.4		605 psi
G	6% cement	120.5	10.4		565 psi

TREATED SOIL COMPRESSIVE STRENGTH DATA

Sunland Analytical

11419 Sunrise Gold Circle, #10 Rancho Cordova, CA 95742 (916) 852-8557

> Date Reported 12/02/2016 Date Submitted 11/28/2016

> > 8

To: William Boli Raney Geotechnical 3140 Beacon Blvd. Ste#100 West Sacramento, CA 95691

From: Gene Oliphant, Ph.D. \ Randy Horney General Manager \ Lab Manager

The reported analysis was requested for the following location: Location : 146-618 MURPHY PKWAY Site ID : B4 @ 4-5.5FT. Thank you for your business.

* For future reference to this analysis please use SUN # 73282-152961.

EVALUATION FOR SOIL CORROSION

the state in the second	6. 5. 6. 6				
Soil pH	7.80				
Moisture	10.9	8			
Minimum Resistiv	ity	1.	53 ohm-cm	(x1000)	
Chloride		47.7	ppm	00.00477	
Sulfate		125.6	ppm	00.01256	
Redox Potential	(+)	192	mv		
Sulfides		Pre	seace - NF	GATIVE	

METHODS

pH and Min.Resistivity CA DOT Test #643 Mod.(Sm.Cell) Sulfate CA DOT Test #417, Chloride CA DOT Test #422 Redox Potential ASTM G-200, Sulfides AWWA C105/A25.5

Sunland Analytical

11419 Sunrise Gold Circle, #10 Rancho Cordova, CA 95742 (916) 852-8557

> Date Reported 12/02/2016 Date Submitted 11/28/2016

To: William Boli Raney Geotechnical 3140 Beacon Blvd. Ste#100 West Sacramento, CA 95691

From: Gene Oliphant, Ph.D. \ Randy Horney

The reported analysis was requested for the following location: Location : 146-618 MURPHY PKWAY Site ID : B9 @ 4-5.5FT. Thank you for your business.

* For future reference to this analysis please use SUN # 73282-152962.

EVALUATION FOR SOIL CORROSION

Soil pH 7.95 Moisture 14.2 % Minimum Resistivity 1.66 ohm-cm (x1000) Chloride 29.4 ppm 00.00294 % Sulfate 78.4 ppm 00.00784 % Redox Potential (+) 210 mv Sulfides Presence - NEGATIVE

METHODS

pH and Min.Resistivity CA DOT Test #643 Mod.(Sm.Cell) Sulfate CA DOT Test #417, Chloride CA DOT Test #422 Redox Potential ASTM G-200, Sulfides AWWA C105/A25.5

CivilTech Corporation