Laserfiche WebLink
R <br /> f Nitrate Mass Balance Calculation <br /> ( j Data Input: <br /> Effluent Quantity(Q): 420 gals/day Concentration Rain (Ne): 1.00 mg/L-N <br /> Effluent Stream (NW): 4o <br /> � Denitrification(d): 25.0/ <br /> i Site Area-( : 2.02 cres Deep Perc. of Rain (R): 7,95 in/r <br /> Result: <br /> Mass Balance(N�): 9.5 mg/L-N <br /> rt MCL Drinking Water Nitrate as N: 10.0 mg/L-N Waste Loading (W): 2.80 in/yr <br /> Percent of MCL Nitrate as N 95% <br /> j Equations: <br /> (W) in = (Q) gal x 1 ft3 x 365 da x 1 acre x 12 in x 1 Find <br /> C <br /> yr day 7.48 gal 1 year 43,560 ft2 1 ft (A)acre <br /> 2.8 in/yr(site) =420 gal/day x(1 cu-ft/7.48 gals)x(365 days/1 year)x(1 acre 143,560 sq-ft)x(12 in/1 ft)x(1 site/2.02 acres) ' <br /> ' I <br /> N,= WN 1-d +RN Hantzsche-Fennemore Epuation(Nc) <br /> W+R <br /> 1 F i <br /> 9.52 mg/L- =((2.8 in/yr x 45 mg/L-N x(1-0.25))+(7.95 in/yr x 1 mg/L-N))/(2.8 in/yr+7.95 in/yr) <br /> Variables: <br /> Nc=Average nitrate-N concentration (mg/1)of combined effluent and rainfall percolate (9.52 mg/L-N). <br /> W= Uniform waste water loading for study area (in/yr) (2.8 inches/year). <br /> Nw=Total nitrate-N concentration of waste water percolate(45 mg/L-N). <br /> d= Fraction of nitrate-N loss due to denitrification in the soil (25%). <br /> R=Uniform deep percolation of rainfall (7.95 in/yr). <br /> Nb= Background nitrate-N concentration of rainfall (1 mg/L-N). + <br /> Assumptions: <br /> 1. Total nitrogen concentration of waste stream based on estimate of 45 mg/L-N. <br /> Fi 2. Fraction of nitrate-N loss due to denitrification in the soil is assumed to be 25%. <br /> 3. Estimated deep percolation of rainfall is 7.95 in/yr, see deep percolation of rain worksheet. <br /> 4. Assume background nitrate-N concentration of rainfall is 1 mg/L-N. I <br /> i <br /> i <br /> i <br /> t <br /> r <br /> 7 <br /> �I <br /> 1 � <br /> NEIL Q. ANDERSON " <br /> i <br /> A N D A S 5 O C I A T E S <br /> _l <br /> Plate 9 <br /> F41 <br />