Laserfiche WebLink
t C) n <br /> Nitrate Mass Balance Calculation <br /> t <br /> Data Input: <br /> N Effluent Quantity(Q):1420 gals/day Concentration Rain (Na): 1.00 mg/L-N <br /> Effluent Stream(N,): 4 g/L- Denitrification (d): .26.0% <br /> I _ <br /> Site Area( 2.00 Acres Deep Perc. of Rain (R): 7.95 <br /> Result: <br /> Mass Balance(N,): 9.6 mg/L-N <br /> ? MCL Drinking Water Nitrate as N: 10.0 mg/L-N Waste Loading(W): 2.82 in/yr <br /> Percent of MCL Nitrate as N 96% <br /> Equations: <br /> I (W) in = (Q) gal x 1 ft3 x 365 day x 1 acre x 12 in x 1 Find <br /> yr day 7.48 gal 1 year 43,560 ft2 1 ft (A)acre <br /> 2.82 in/yr(site) =420 ga!/day x(1 cu-ff/7.48 gals)x(365 days/1 year)x(1 acre 143,560 sq-ft)x(12 in/1 ft)x(1 site/2 acres) <br /> N,= WN-(1-d)+RN,, Hantzsche-Fennemore Equation Nc <br /> t W+R <br /> 9.58 mN=((2.82 in/yr x 45 mg/L-N x(1-0.25))+(7.95 in/yr x 1m9/L-N))/(2.82 in/yr+7.95 in/yr) <br /> es: <br /> Nc=Average nitrate-N concentration (mg/1) of combined effluent and rainfall percolate(9.58 mg/L-N). <br /> { W=Uniform waste water loading for study area(in/yr)(2.82 inches/year). <br /> r Nw=Total nitrate-N concentration of waste water percolate(45 mg/L-N). <br /> d= Fraction of nitrate-N loss due to denitrification in the soil (25%). <br /> R= Uniform deep percolation of rainfall(7.95 in/yr). <br /> Nb=Background nitrate-N concentration of rainfall(1 mg/L-N). <br /> Assumptions: <br /> 1. Total nitrogen concentration of waste stream based on estimate of 45 mg/L-N. <br /> 2. Fraction of nitrate-N loss due to denitrification in the soil is assumed to be 25%. <br /> 3. Estimated deep percolation of rainfall is 7.95 in/yr, see deep percolation of.rain worksheet. <br /> 4. Assume background nitrate-N concentration of rainfall is 1 mg/L-N. <br /> I <br /> fi <br /> NEIL O. ANDERSON <br /> AN D ASSOCIATES <br /> .._ 11 <br />