Laserfiche WebLink
Nitrate Mass Balance Calculation <br /> Parcel 4 <br /> Data Input: <br /> Effluent Quantity(Q): 490 gals/day Concentration Rain (Nb): 1.00 mg/L-N <br /> Effluent Stream (NW): 40.00 mg/L-N Denitrification (d): 35.0% <br /> Site Area (A): 2.00 Acre Deep Perc. of Rain (R): 5.76 in/yr <br /> Result: <br /> Mass Balance(N.): 10.1 mg/L-N <br /> MCL Drinking Water Nitrate as N: 10.0 mg/L-N Waste Loading (W): 3.29 in/yr <br /> Percent of MCL Nitrate a5- 0 <br /> Equations: <br /> (W) in = (Q) gal x 1 ft3 x 365 day x 1 acre x 12 in x 1 Find <br /> _. yr day 7.48 gal 1 year 43,560 ft2 1 ft (A) acre <br /> 3.29 in/yr(site) =490 gal/day x (1 cu-ft/7.48 gals)x (365 days/1 year)x(1 acre 143,560 sq-ft) x (12 in/1 ft)x (1 site 12 acres) <br /> N,= WN-(1-d)+RN,, Hantzsche-Fennemore Equation (Nc) <br /> W+R <br /> 10.09 mg/L-N= ((3.29 in/yr x 40 mg/L-N x (1-0.35))+(5.76 in/yr x 1mg/L-N))/(3.29 in/yr+5.76 in/yr) <br /> Variables: <br /> Nc=Average nitrate-N concentration (mg/1) of combined effluent and rainfall percolate (10.09 mg/L-N). <br /> W= Uniform waste water loading for study area (in/yr) (3.29 inches/year). <br /> Nw=Total nitrate-N concentration of waste water percolate (40 mg/L-N). <br /> d = Fraction of nitrate-N loss due to denitrification in the soil (35%). <br /> R= Uniform deep percolation of rainfall (5.76 in/yr). <br /> Nb= Background nitrate-N concentration of rainfall (1 mg/L-N). <br /> Assumptions: <br /> 1. Total nitrogen concentration of waste stream based on estimate of 40 mg/L-N. <br /> 2. Fraction of nitrate-N loss due to denitrification in the soil is assumed to be 35%. <br /> 3. Estimated deep percolation of rainfall is 5.76 in/yr, see deep percolation of rain worksheet. <br /> 4. Assume background nitrate-N concentration of rainfall is 1 mg/L-N. <br /> NEIL O. ANDERSON <br /> A N D A S S O C I A T E S <br /> Plate 13 <br />