Laserfiche WebLink
Quantity and Quality of Domestic Wastewater <br /> Mr. Singh indicated that the proposed primary residence will have five bedrooms, and <br /> the proposed second unit dwelling will have one bedroom. <br /> Crites and Tchobanoglous (1998) list a typical flow rate of 50 to 70 gallons per person <br /> per day for an individual residence. In the past, San Joaquin County Environmental <br /> Health Department has requested that the flow rate be calculated as 140 gallons per <br /> bedroom per day to reflect maximum usage. On March 4, 2020, however, Michael Kith, <br /> Registered Environmental Health Specialist, Program Coordinator at the San Joaquin <br /> County Environmental Health Department, stated that he has conferred with Norman <br /> Hantzsche (author of the 1992 paper discussed previously), and they have arrived at a <br /> new method to determine flow from residential sources. He indicated that wastewater <br /> flow from a single-family residence should be calculated as 100 gallons per day (gpd) <br /> for the first bedroom and 50 gpd for each additional bedroom; additional residences <br /> should be calculated in the same manner (personal communication, March 4, 2020). <br /> Using this method, the primary residence contributes 300 gpd, and the second unit <br /> dwelling contributes 100 gpd, for a total maximum daily flow rate of 400 gpd. <br /> A typical residential concentration of 35 mg/L of nitrate as N was selected for the <br /> proposed residence (Crites and Tchobanoglous, 1998). <br /> Denitrification Reductions <br /> Denitrification is a process that occurs in the septic system drain field whereby certain <br /> bacteria oxidize the nitrate (NO3) in the wastewater and release nitrogen gas (N2) to the <br /> atmosphere. Due to the biologic processes in the shallow soils, nitrogen in the drain <br /> field may undergo a reduction between 10 percent to 35 percent. Soils with higher clay <br /> content, moist soil conditions, high pH, and organic material denitrify by about 35 <br /> percent, and soils with high sand content tend to denitrify at a lower rate of about 10 <br /> percent. <br /> A denitrification factor of 35 percent was selected for the Site because of the clayey soil <br /> present at the percolation test location. <br /> Nitrate Loading Estimate <br /> A nitrate loading scenario was employed to determine the impact from the proposed <br /> project to ground water. The scenario utilizes the variables discussed previously, which <br /> represent the estimated conditions and uses associated with this project. The following <br /> table presents a summary of the assumptions for the nitrate loading calculation for the <br /> Site, as presented in Plate 15. <br /> LOGE 20-44 Page 10 <br />